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Abstract

Bayesian confirmatory factor analysis (CFA) offers an alternative to frequentist CFA
based on, for example, maximum likelihood estimation for the assessment of reliabil-
ity and validity of educational and psychological measures. For increasing sample sizes,
however, the applicability of current fit statistics evaluating model fit within Bayesian
CFA is limited. We propose, therefore, a Bayesian variant of the root mean square
error of approximation (RMSEA), the BRMSEA. A simulation study was performed
with variations in model misspecification, factor loading magnitude, number of indica-
tors, number of factors, and sample size. This showed that the 90% posterior prob-
ability interval of the BRMSEA is valid for evaluating model fit in large samples (N�
1,000), using cutoff values for the lower (\.05) and upper limit (\.08) as guideline.
An empirical illustration further shows the advantage of the BRMSEA in large sample
Bayesian CFA models. In conclusion, it can be stated that the BRMSEA is well suited
to evaluate model fit in large sample Bayesian CFA models by taking sample size and
model complexity into account.
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Introduction

Educational and psychological measures often include multiple indicators consisting

of items from a questionnaire, a set of observations, or results from an interactive

application. These indicators are believed to represent (multiple) latent factor(s)

which are not directly observable. The Classroom Assessment Scoring System

Toddler (CLASS; Pianta, Hamre, & La Paro, 2008), for example, combines observa-

tions on different domains to provide an indication of the educational and emotional

quality in the classroom. Confirmatory factor analysis (CFA) plays an important role

in the assessment of the reliability and validity of such measures (DiStefano & Hess,

2005). With CFA, the underlying theoretical framework of an instrument can be

assessed providing a transparent and theoretical description of its (psychometric)

properties (e.g., Kline, 2011). As such CFA gives insight in, for example, the relation

between indicators and the latent factor(s), the (hierarchical) factor structure, and

potential interdependencies between indicators of educational and psychological

measures. Besides these aspects, CFA can also assess the validity of an instrument

across groups and over time. This aspect, known as measurement equivalence/invar-

iance (ME/I), indicates if an instrument measures the same (latent) construct across

different populations or settings (Millsap, 2011; Van de Schoot, Schmidt, De

Beuckelaer, Lek, & Zondervan-Zwijnenburg, 2015). As such CFA plays an impor-

tant role within the development, validation, and application of most measurement

instruments.

While CFA is classically performed within a frequentist framework, recent

decades have seen a strong increase in the use of the Bayesian framework to estimate

CFA (Van de Schoot, Winter, Ryan, Zondervan-Zwijnenburg, & Depaoli, 2016).

Within large samples with normally distributed data that are not affected by a high

proportion of outliers or missingness, Bayesian CFA and frequentist CFA have

roughly the same results (Scheines, Hoijtink, & Boomsma, 1999). Bayesian CFA can

however offer several advantages over the frequentist approach such as computa-

tional advantages and intuitive interpretation of the results (Muthén & Asparouhov,

2012; Van de Schoot et al., 2014). Bayesian CFA also enables new modeling

approaches (Muthén & Asparouhov, 2012), such as approximate invariance (i.e.,

alignment; Muthén & Muthén, 2013; Van de Schoot et al., 2013). Researchers can,

furthermore, incorporate background knowledge into their analyses, through the spe-

cification of prior information (e.g., Van de Schoot et al., 2014). As such, Bayesian

CFA can ‘‘simply’’ be used as a different estimator, but it can also provide access to

CFA models that are not feasible within a frequentist framework (Kaplan & Depaoli,

2012). While the application of Bayesian CFA is on the rise, some issues warrant fur-

ther research. One of these aspects is the objective assessment of overall model fit

within large samples. While current measures for model fit within Bayesian CFA

show positive properties within studies with small samples, within large samples, sur-

passing 1,000 subjects, the sensitivity of the overall fit statistic to detect negligible

differences between the observed data and the hypothesized model is high (Hoijtink

& Van de Schoot, 2017). Within empirical settings, in which negligible deviations
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from the hypothesized model are always expected, an increase in sample size inevita-

bly leads therefore to a deterioration of model fit (MacCallum, 2003). That is, accep-

tance rates of models with a ‘‘small’’ misspecification (e.g., nonspecified negligible

cross-loading) decrease with increasing sample size (Asparouhov & Muthén, 2010).

For applied research this makes it difficult to objectively assess, interpret, and com-

municate the quality of the model. Consider, for example, that the CLASS would be

compared across different countries with a large number of measurements per country

in the study. As within empirical studies discrepancy between the hypothesized and

observed model is expected, this would result in a deteriorated model fit. This could

result in false conclusions with regard to the validity and application of the instrument

across countries. Although overall model fit is not synonymous with model quality, it

constitutes an important and integral part of it (Bentler, 2007; Millsap, 2007). The

current study introduces and validates a fit measure, the Bayesian root mean square

error of approximation (BRMSEA), which is less sensitive for large samples. This

could improve assessment of overall model fit within Bayesian CFA with large sam-

ples, enhancing application of this framework to provide insight regarding the relia-

bility and validity of measurement instruments.

Evaluation of the model fit within Bayesian CFA relies on the validity of the

model for future observations (Kaplan & Depaoli, 2012). To simulate such future

observations, replications of the observed data are generated (Levy, 2011). The x2

for the observed and replicated (or updated) data is subsequently computed for each

iteration within the Markov Chain (Levy, 2011). Within Bayesian CFA the posterior

predictive p value (ppp) checks the proportion of iterations for which the replicated

x2 exceeds the observed x2 (for other implementations of the ppp see, Gelman,

Carlin, Stern, & Rubin, 2014; Lee, 2007). A ‘‘good’’ fit is indicated if the ppp is

around .50 (Gelman et al., 2014; Muthén & Asparouhov, 2012). The ppp is found to

be robust for assessing model fit within small samples (Asparouhov & Muthén,

2010; Lee & Song, 2004; Rupp, Dey, & Zumbo, 2004). It is especially through these

characteristics, including the use of priors, that Bayesian CFA works so well in small

samples as it is not based on large-sample theory. For large samples, it seems how-

ever that the ppp becomes sensitive for trivial deviations from the hypothesized

model (Hoijtink & Van de Schoot, 2017). A simulation study by Asparouhov and

Muthén (2010) showed, for example, that despite the robustness of the ppp for mod-

els with a ‘‘minor’’ misspecification for larger samples compared with p values

within frequentist CFA, rejection rates still increase. In this study, a ‘‘minor’’ mis-

specification was defined as the omission of standardized cross-loadings smaller than

.1 within a CFA. Rejection rates increased with increasing sample sizes (N = 300,

500, and 1,000) both for frequentist CFA (19%, 21%, and 44%, respectively) and

Bayesian CFA (6%, 12%, and 29%, respectively). While studies within Bayesian

CFA regarding this phenomenon, or the functioning of model fit in general, are

underrepresented (Levy, 2011; Rindskopf, 2012), it seems that the sensitivity of the

ppp to detect negligible differences within large samples approaches 1.0. As such, it
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seems the ppp is well suited for studies with small to moderate samples, but loses it

salience within studies using large samples.

To resolve this problem within frequentist CFA, fit indices are frequently used

(Bentler, 1990; Kline, 2011). Fit indices provide, on a continuous scale, a quantitative

measure of model fit. In general terms, it can be stated that they provide a credibility

check of models while taking into account the overall and specific discrepancy

between the model and the population (MacCallum, 2003). The first criterion for

such fit indices is that they should not be penalized for an increasing sample size

(Marsh, Balla, & McDonald, 1988). The second criterion is the correction for model

complexity to ensure that there is no free lunch regarding the inclusion of extra

parameters—which always improves model fit (Browne & Cudeck, 1992). Fit indices

provide a goodness or a badness of fit. In the former, a higher value (often toward 1)

indicates a better fitting model while in the latter, a lower value (often toward 0) indi-

cates a better fitting model (West, Taylor, & Wu, 2012). Facilitating the interpreta-

tion of fit indices cutoff values are proposed indicating ‘‘good’’ ‘‘acceptable’’ and

‘‘poor’’ fit (Browne & Cudeck, 1992; Hu & Bentler, 1999).

It should be noted that there is a long-standing and ongoing discussion about fit

indices (e.g., Barrett, 2007). This debate not only focuses on the reliance on indica-

tive thresholds (or cutoff points) as golden rules but also on the neglect of the predic-

tive quality of the models and the negligence with respect to a significant x2 (e.g.,

Fan & Sivo, 2007; Marsh, Hau, & Wen, 2004; McDonald & Ho, 2002). In line with

Lai and Green (2016), quotation marks are therefore used in the present article for

quantifications of model fit (e.g., ‘‘good’’ model) and misspecification (e.g., ‘‘large’’

misspecification) to indicate the ambiguity of such qualifications. Notwithstanding

theoretical and statistical criticisms, fit indices can, however, play a crucial, but not

solitary, role in the assessment of model quality as qualitative judgment about the

overall model fit (e.g., Bentler, 2007; Kline, 2011; Millsap, 2007; Yuan, 2005).

Without such quantifications, the judgment of model quality within large sample

Bayesian CFA models relies almost solely on subjective measures. Thresholds pro-

vide a standard—which is ambiguous by nature—enabling transparent assessment

and communication of model quality. A fit index which is robust to an increased

sample size is therefore crucial as it would lead to an improved understanding of

model fit and accessibility for Bayesian CFA within large samples (e.g., Cieciuch,

Davidov, Schmidt, Algesheimer, & Schwartz, 2014; Milojev, Osborne, Greaves,

Barlow, & Sibley, 2013; Lung, Chiang, Lin, Shu, & Lee, 2011). Assessing model

quality in such samples would be greatly enhanced by a fit index which is informa-

tive within large samples.

The present article is the first to explore whether the rationale of such a fit index

(i.e., the RMSEA) can be applied within Bayesian CFA (i.e., the BRMSEA) to pro-

vide a valid evaluation of model fit within large samples. The motivation to imple-

ment the rationale of the RMSEA within Bayesian CFA is threefold. First, within

frequentist CFA the RMSEA has been shown to work especially well with large sam-

ples (Chen, Curran, Bollen, Kirby, & Paxton, 2008; Curran, Bollen, Chen, Paxton, &
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Kirby, 2003; MacCallum, Browne, & Sugawara, 1996), which is exactly the area in

which the ppp become less useful. Second, the RMSEA is an absolute fit index and

does therefore not require a baseline, or empty, model (Steiger & Lind, 1980; West

et al., 2012). Such a baseline model would be contradictory with the Bayesian frame-

work regarding the inclusion of prior knowledge of the model. Third, the RMSEA

enables the computation of a confidence interval (CI) which provides information

regarding the trustworthiness of the model fit (Browne & Cudeck, 1992; Steiger,

1990, 2000). This enhances comparability as this corresponds to the approach within

the Bayesian framework of reporting posterior probability intervals (PPIs; Van de

Schoot et al., 2014). Although not mathematically equivalent, the PPI and the CI

serve related inferential goals. These aspects support the implementation of the

BRMSEA as a fit index within Bayesian CFA. Additionally, the BRMSEA should

also function in accordance with the prior specification of a model, as this influences

the overall fit and complexity of a model (Spiegelhalter, Best, Carlin, & Van Der

Linde, 2002). Correct and informative priors should therefore positively affect the

BRMSEA and vice-versa. It is hypothesized that the BRMSEA accurately assesses

model fit in Bayesian CFA within large samples while the ppp in contrast loses its

salience for such samples.

Technical Background of the RMSEA and the BRMSEA

Background of the RMSEA

Throughout the Technical Background a parameter with a hat (^) indicates the estima-

tion of a population parameter. The RMSEA stems from the work by Steiger and

Lind (1980) who explored the fit of a model, derived from a sample, in relation to the

fit of the model in the true population. The fit (statistic) of a model within the popula-

tion is defined as F0. If a model does not show perfect fit, which is to be expected in

empirical settings, an estimate of F0 has to be derived (F̂0). Browne and Cudeck

(1992) argue that the sample fit (F̂) of a model can be used to estimate the fit statistic

(F̂0):

F̂0 = F̂ � d
� �

= N � 1ð Þ; ð1Þ

in which d is the number of free parameters and N the sample size. Equation (1) is

under the assumption that F̂0 indicates the degree of lack of fit taking into account

the lack of fit arising due to sampling error. As such this F̂0 takes the number of free

parameters and the sample size into account to estimate the misfit of a model in the

population. Browne and Cudeck (1992) further state that the model fit of a popula-

tion decreases if free parameters (q) are added. These two premises result in a mea-

sure of discrepancy of the model per free parameter (e; Browne & Cudeck, 1992),

defined as
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e =

ffiffiffiffiffi
F0

d

r
; ð2Þ

which prefers parsimonious models. That is, if two models have the same fit within

the population the model with fewer estimated parameters will yield a smaller value

(MacCallum et al., 1996). To estimate F0 in Equation (2) it can be substituted as

ê =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F̂ � d

d(N -1)

s
: ð3Þ

As it is possible that the numerator is negative, an added condition is that if d . F̂

the ê is set to zero. This results in a theoretical range of ê from zero to infinity in

which a value of zero denotes a perfect fitting model, whereas larger values reflect a

poor model fit (badness-of-fit).

Implementation of the RMSEA Within Frequentist Confirmatory Factor
Analysis

Within the frequentist framework the ê from Equation (3) is referred to as the

RMSEA which uses the x2 to reflect the degree of misfit (F̂; Equation 3):

RMSEA =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � df

df (N -1)

s
: ð4Þ

In Equation (4), df (degrees of freedom) reflects the number of free parameters in the

model:

df = p� q: ð5Þ

With p being the number of observations, defined as the number of unique elements

within the sample variance–covariance matrix (n[n + 1]/2) and q the number of free

(estimated) parameters. If the mean structure is included, this number is summed with

the number of (n) observed variables (Kline, 2011).

The F̂ from Equation (3) can also be replaced with the misfit from the general

least square or asymptotically distribution free instead of the maximum likelihood

(ML)–based x2 (Browne & Cudeck, 1992). Commonly used cutoff points for the

RMSEA are values less than .05 denoting good model fit, values less than .08 denot-

ing adequate model fit. Hu and Bentler (1999) suggested that for a good model fit a

cutoff point of .06 could also be used.

A key strength of the RMSEA is that the sampling distribution is known under cer-

tain assumptions. Support for this notion is based on the fact that the asymptotic dis-

tribution of RMSEA is a rescaled x2 for a given sample size, df, and a noncentrality

parameter l (Browne & Cudeck, 1992). The lower (LL) and upper limit (UL) of the

RMSEA CI are given as
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RMSEACI =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l̂LL

df (N � 1)

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l̂UL

df (N � 1)

s0
@

1
A: ð6Þ

This CI enables the test whether a model exhibits close or worse fit, which is

achieved when the lower limit is below or above a certain threshold (Browne &

Cudeck, 1992).

Implementation of the BRMSEA Within Bayesian Confirmatory Factor
Analysis

Inspired by Browne and Cudeck (1992) who stated that different measures of discre-

pancy (i.e., x2) can be used for the estimation of ê from Equation (3), we propose

that it can also be applied within Bayesian CFA. Hence, the fact that the RMSEA

was developed and applied within a frequentist framework does not hinder the

implementation of its rationale within the Bayesian framework. The notion that

the degree of misfit (F̂) should be rescaled according to the number of estimated

parameters (d) and sample size (N) is therefore implemented within Bayesian

CFA. Within a Bayesian framework there is, however, no classical discrepancy

function or df. This section illustrates the parameters from a Bayesian CFA frame-

work which are implemented in Equation (3) to achieve a Bayesian variant of the

RMSEA the BRMSEA.

With regard to model misfit (F̂), for which the x2 is used within the frequentist

framework (Equation 5), the difference between the observed and replicated x2

(x2
obsi
� x2

repi
) for each iteration (i; after burn-in) is used for the BRMSEA. Within

Bayesian CFA this difference can be regarded as the degree of misfit (F̂) in Equation

(3). Similar to a classical discrepancy function, such as the x2 within frequentist

CFA, x2
obsi
� x2

repi
will positively increase with increasing levels of misfit. In contrast

to classical discrepancy function, such as the x2 within frequentist CFA, x2
obsi
� x2

repi

can be negative for an iteration. For multiple iterations, however, x2
obs � x2

rep will

approximately result in 0 for a perfect fitting model and will positively increase with

increasing levels of misfit, similar to a classical discrepancy function.

To control for model complexity, it is important to include the effect that prior

information has on the estimation process, as prior information can alter the ‘‘effec-

tive’’ number of estimated parameters. A prior with a mean of zero and a very small

variance is, for example, nearly equal to a parameter which is fixed to zero

(Asparouhov, Muthén, & Morin, 2015). Especially if a multitude of such priors are

used, the difference between the number of estimated parameters and the effective

number of estimated parameters can become substantial. To correct for this effect

within Bayesian CFA the effective number of parameters (pD; Spiegelhalter et al.,

2002) are used. The pD parameter is developed in conjunction with the deviance

information criterion (DIC) as penalty term for complexity. Subtracting the pD,

instead of q (Equation 5), from the number of observations (p) gives a fair estimation
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of the effective model complexity within Bayesian CFA. Equivalent models with dif-

fering prior information will, therefore, have a different model complexity which is

in line with the Bayesian framework.

Combining the model fit of Bayesian CFA (x2
obsi
� x2

repi
) with the effective num-

ber of parameters (pD) results in the following equation for the BRMSEA:

BRMSEAi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

obsi
� x2

repi

h i
� p� pDð Þ

p� pDð Þ N � 1ð Þ

vuut
: ð7Þ

As such, the BRMSEA results in a set of (i) rescaled differences between the

observed and replicated x2, taking into account the (effective) number of estimated

parameters and sample size. By doing so it provides an estimation of the validity of

the model for the population while taking into account the lack of fit arising due to

sampling error. The numerator of the BRMSEA will be set at 0 for an iteration if it

is negative. As x2
obs � x2

rep will on average be 0 in a perfect fitting model, the

BRMSEA will also be zero for perfectly fitting models, and positively increase

toward infinity for increasing levels of misspecification.

In contrast to the frequentist framework, in which the CI of the RMSEA is com-

monly computed on the basis of asymptotic theory, the PPI of the BRMSEA should

be derived, as any posterior measure within Bayesian CFA, from the posterior den-

sity. The PPI (e.g., 90%) of the BRMSEA is extracted from the total set of iterations.

In the present study, the lower limit is 5% and the upper limit 95%, as the used PPI

of the BRMSEA is 90%. This 90% is in line with the 90% CI often used for the

RMSEA (Browne & Cudeck, 1992). Because of the (theoretical) comparability of

the RMSEA and BRMSEA, it is hypothesized that their functioning regarding the

assessment of overall model fit is equivalent. A simulation study is proposed to

empirically test this hypothesized functioning of the BRMSEA within Bayesian

CFA.

Simulation Study

In this article, the validity of the BRMSEA within a Bayesian CFA is evaluated (see

Supplement A for R-code). The characteristics of the BRMSEA and the ppp are

examined within various conditions in a simulation study. It is hypothesized that for

large samples the ppp rejects all models with any form of (‘‘small’’) misspecification

while the BRMSEA only rejects models which a ‘‘large’’ misspecification and

accepts models with a ‘‘small’’ misspecification. The comparison with the RMSEA

is made to see whether its characteristics are analogous with those of the BRMSEA.

The frequentist x2-based p value and the Bayesian ppp are expected to reject all

models with any form of misspecification. Implementation of the BRMSEA will be

further facilitated and evaluated by the implementation of cutoff points.
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Method
Data Generation. The simulation study consisted of two sections. In the first section,

different population covariance matrices (conditions) were tested against a common

one-factor CFA model. In the second section, a partly different set of conditions was

tested against a two-factor CFA model.

The different population covariance matrices (conditions) in the first section,

which were tested against a common one-factor CFA model (Figure 1A), were speci-

fied varying the following four aspects: (1) specification of the population factor

model (Models A-E; see Figure 1), (2) number of indicators (6 and 12), (3) magni-

tude of factor loadings (.5 and .7), and (4) sample size (50, 100, 250, 500, 1,000,

5,000, and 10,000). The specification of the population factor models (partly based

on, Shevlin & Miles, 1998), which were used to generate the data, were increasingly

different compared with a common one-factor model. Specifications B and C were

regarded as ‘‘small’’ misspecifications as the residual correlation was .1 and the sali-

ent pattern of the factor loadings corresponded with that of the reference model

(Heene, Hilbert, Freudenthaler, & Bühner, 2012). The number of residual correlation,

especially for Specification B, was furthermore limited. Specification D and espe-

cially Specification E were seen as models with more substantial (‘‘large’’) amounts

of misspecification, primarily because of the difference in the salient pattern of the

factor structure and the moderate correlation between these factors.

For the second section the reference model was a two-factor model (specification

D; Figure 1D). In this section, the number of indicators (i.e., 12) and the magnitude

of factor loadings (i.e., .7) were not varied and were based on the findings in the first

section. Sample size variation was equal to that in the first section. Specification of

the population factor model, partly based on Asparouhov and Muthén (2010), con-

sisted of four models (Models D, E, F1, and F2). Models F1 and F2 were similar to

Model D except the inclusion of cross-loadings between the sixth indicator and the

second factor and the seventh indicator and the first factor (Figure 1). These cross-

loadings were ‘‘small’’ and 10% of the salient factor loadings in Model F1 (.07) and

‘‘moderate’’ in Model F2 (.35). The ‘‘small’’ cross-loadings in model F1 should result

in acceptance of the model while the standardized cross-loadings above .3 in Model

F2 should result in a majority of the models being rejected (Asparouhov & Muthén,

2010; Saris, Satorra, & Van der Veld, 2009). Specifications A through C were not

tested against the reference model in the second section as this would be complicated

by the freely estimated covariance between the two factors, which would approach 1

in these models, resulting in a bias in parameter estimates but not in overall model fit.

All models were identified through constraining the factor variance(s) to 1.

Intercepts of all indicators and latent factor means were specified to be zero.

Residuals were estimated through subtracting 1 with the associated magnitude of the

factor loadings squared. The different variations (i.e., specification, number of indi-

cators, magnitude of factor loadings, and sample size) resulted in a total of 140 (5 3

2 3 2 3 7) different conditions in the first section and 28 (4 3 1 3 1 3 7) in the

second section. For each condition 500 samples were generated. Cumulative
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averages plots indicated that the number of samples was sufficient as estimates were

fully stabilized by 500 samples. Population RMSEA for the various conditions, in

both sections, are presented in Table 1.

Figure 1. The different specifications for the population factor models used to generate the
population covariance matrices for each condition.
Note. Factor loadings (li = .3, .5, or .7; lc = .07, .35) and number of indicators (6 or 12) varied between

the conditions. Residuals (u) were computed on the basis of the factor loadings (1 2l2). Intercepts and

factor means are not displayed as they were estimated to be zero in all models. Models A through C

were only used in the first section and Models F1 and F2 only in the second section. Model A was the

reference model in the first section and Model D was the reference model in the second section.
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Estimation and Prior Specification. In both sections two estimators were used, ML for

the frequentist CFA and Bayesian estimation for the Bayesian CFA. For the

Bayesian estimation, three variations regarding the specification of priors were

examined. Differentiation in prior specification was simulated to examine the

effect of priors on the characteristics of the BRMSEA. The first variation included

the default, diffuse priors of Mplus which are N(0,N) for the intercepts and factor

loadings, and IG(21, 0) for residual variances (Asparouhov & Muthén, 2010;

Muthén & Muthén, 1998). For the second variation the prior means of the factor

loadings and intercepts of the indicators had the ‘‘correct’’ parameter of the current

condition (e.g., .7 for a factor loading). As the priors furthermore had a variance of

0.05 (SD = 0.22), these priors were regarded as conservative (weakly informative).

The third variation of prior specification was only applied in the second section.

This variation included wrong prior specifications for the factor loadings (.9

instead of .7) and factor covariance (.3 instead of .5). Priors had furthermore a var-

iance of 0.005 (SD = 0.07), which was 10 times smaller as in the conservative prior

variation, to assure deviation of the prior distribution of the reference model. It

should be noted that these prior variations were only used for the model estimation

and not for the simulation of the underlying data. As such, each (single) sample

was estimated using different prior variations for the Bayesian CFA (and a single

frequentist CFA model using the ML estimator).

All the models were estimated as a common one-factor model (Figure 1A) in the

first section, with either 6 or 12 indicators, or as a two-factor model (Figure 1D), with

12 indicators, in the second section. The estimated model was identified through

the specification of the latent factor variance at 1 and its mean at 0. For the model

in the second section the covariance between the two factors was freely estimated.

The hypothesized models corresponded with the conditions in which the specifica-

tion of the reference model was used. The other specifications differed from the

hypothesized model (Table 1). In these instances, the hypothesized models did not

reflect the pattern of the underlying factor structure of the population used to gen-

erate the data.

For the models, all default estimation settings were used except for the conver-

gence criteria of the Bayesian CFA models. See Supplement B and Muthén and

Muthén (1998) for default settings. The default Bayesian CFA convergence criter-

ion (BCONVERGENCE) of 0.05 was set to 0.01. Mplus multiplies this criterion

with the multiplicity factor of the model, which can range from 1 (in a model with

one parameter) to 2 (in a model with a large number of parameters), to compute

the potential scale reduction factor (PSR) of each parameter of a model (for more

details, see Asparouhov & Muthén, 2010). It is argued, however, that a stringent

PSR criterion is preferable (Brown, 2015). A BCONVERGENCE of 0.01 will, as

such, result in the requirement that PSR values are below 1.02 instead of 1.10 with

the default convergence criterion of 0.05 (Depaoli & Van de Schoot, 2017).

Convergence was furthermore facilitated by a fixed minimum of iterations for

each model of at least 5,000 with a maximum 20,000. That is, if by the 20,000th
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iteration the highest PSR was not below the convergence criterion, the model did

not converge. Random checks indicated that further increasing the number of

iterations did not alter the results.

Analytic Strategy

For both sections, the same analytic strategy was used and were therefore reported in

conjunction. First the convergence of the models was inspected (detailed tables are

provided in Supplement C). Models that did not converge were excluded from the

analysis. The mean of the relevant parameters outcomes, the p value, and 90% CI

RMSEA for frequentist CFA and the ppp and 90% PPI BRMSEA for Bayesian CFA,

were (visually) inspected for the different settings. The applicability of these para-

meters for evaluation of model acceptance was, furthermore, quantified by imple-

menting cutoff values. For the x2 p value the conventional cutoff value of .05 was

used (a = .05). For the ppp a value of .05 was used, based on the recommendations

by Muthén and Asparouhov (2012). To quantify the CI of the RMSEA the lower limit

should be below .05 and the upper limit below .08 (Browne & Cudeck, 1992; Kenny,

2015). These cutoff points were also applied for the BRMSEA as preliminary results

showed, especially for large samples, striking similarities between the RMSEA and

the BRMSEA.

The software package Mplus (Version 7; Muthén & Muthén, 1998) was used for

the data simulation based on the population covariance matrices and for the model

estimation (see Supplement B for the syntax of both procedures). R (Version 3.1.1; R

Development Core Team, 2014) was used to program the simulation and analyze the

results. MplusAutomation (Version 0.6-2; Hallquist & Wiley, 2013) was used to facil-

itate the exchange between both programs.

Results
Convergence. In Supplemental Tables C1 and C2 the convergence of the models is

shown. Convergence rate of the frequentist models was below 90% for some condi-

tions with the one-factor reference model, especially for small samples and ‘‘large’’

misspecification. For the Bayesian CFA models, almost all models converged. In the

first section, no specific parameter was specifically associated with nonconvergence

in the Bayesian models. In the second section, however, the covariance parameter

between the two latent factors had most of the time the highest PSR if model did not

converge (87%). The 1,218 models (0.45%) that did not converge were excluded

from further analysis.

BRMSEA and RMSEA. Figures 2 to 4 show the mean values of the 90% CI RMSEA

within each condition for the frequentist CFA models. For the Bayesian estimation

procedures, with diffuse, conservative, and wrong, priors, the mean values of the

90% PPI BRMSEA are shown for each condition. As indicated in the analytic strat-

egy, the performance of the 90% CI RMSEA and the 90% PPI BRMSEA was also

Hoofs et al. 549

journals.sagepub.com/home/epm
journals.sagepub.com/home/epm
journals.sagepub.com/home/epm
journals.sagepub.com/home/epm


quantified by the implementation of cutoff points to indicate whether a model showed

an acceptable fit (Tables 2-4). For the RMSEA a cutoff point for the upper limit of

.08 and for the lower limit of .05 was used, values below these limits indicated

‘‘acceptable’’ fit (Hu & Bentler, 1999). As the average PPI of the BRMSEA showed

striking similarities with that of the average CI of the RMSEA (Figures 2-4), espe-

cially for large samples (N� 1,000), it seems that the properties of the BRMSEA

and RMSEA are analogous for large samples. The cutoff points from the RMSEA

were, therefore, also applied for the BRMSEA. These cutoff values were also

included in Figures 2 to 4 to compare them with the mean values for each condition.

As the differences between conservative and diffuse priors was marginal in the first

section, especially for large samples (Figures 2 and 3), only the results for the diffuse

priors were presented in Tables 2 and 3.

For large samples the 90% CI RMSEA showed lower values for models with

lower levels of misspecification, compared with models with higher levels of misspe-

cification. These lower values of the 90% CI RMSEA for models with lower levels

of misspecification, compared with models with higher levels of misspecification,

was also found for the conditions in the second section (Figure 4). This pattern was

also reflected when the performance of the RMSEA was inspected based on model

acceptance using the cutoff values (Tables 2-4). Table 5 summarizes these findings

of this acceptance rate for large samples (N� 1,000). For large samples the 90% CI

RMSEA proved to successfully assess model fit.

In the conditions with 12 indicators the BRMSEA seems invalid for small samples

as both the lower and the upper bound of the 90% PPI BRMSEA were zero, regard-

less for the level of misspecification. The Bayesian CFA estimation procedure using

conservative priors compared with estimation procedure using diffuse priors showed

a narrower PPI when sample size was small indicating the effect of prior information

on the BRMSEA. The wrong prior variation, in contrast, resulted in a broader and

somewhat higher BRMSEA (Figure 4). This effect was also visible for conditions

with larger sample sizes. For large samples the 90% PPI BRMSEA approached the

same values regardless of the prior variation (Figures 2-4). These findings were also

reflected when the performance of the BRMSEA was inspected based on models’

acceptance using cutoff values (Tables 2-4). Table 5 summarizes these findings of

this acceptance rate for large samples (N� 1,000). The 90% PPI BRMSEA showed

to successfully assess model fit within large samples.

The BRMSEA showed the same characteristics as the RMSEA for large samples.

The most noteworthy difference, with regard to model acceptance, was within the

condition with six indicators and large (.7) factor loadings (Table 2). Figure 3 shows,

however, that the absolute difference between the RMSEA and BRMSEA in this

condition was marginal. As the BRMSEA is not derived from asymptotic theory, the

form was different compared with the RMSEA. For large samples, however, the

BRMSEA, showed a striking similarity with the RMSEA (Figures 2-4). For large

samples the characteristics of the RMSEA and BRMSEA seem, therefore, compara-

ble. That is, both the values of the 90% CI RMSEA and the 90% PPI BRMSEA were
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Figure 2. Mean values of the 500 replications for the 90% posterior probability interval
(PPI) of the Bayesian root mean square error of approximation (BRMSEA) and the posterior
predictive p value (ppp) for the Bayesian confirmatory factor analysis (CFA) models, both
with informative and diffuse priors, and for the 90% confidence interval (CI) RMSEA and p
value for the frequentist CFA models of the first section, with the one-factor model as
reference (ref) model, for each sample size (as ordinal variable) and specification condition in
which the magnitude of the factor loadings was .5. Cutoff values for the BRMSEA and RMSEA
(.05 for the lower limit and .08 for the upper limit) and for the posterior predictive p value
and p value (.05) are indicated with the dashed lines. Values within these cutoff points have
(blue) circles, those outside (red) squares.
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Figure 3. Mean values of the 500 replications for the 90% posterior probability interval
(PPI) of the Bayesian root mean square error of approximation (BRMSEA) and the posterior
predictive p value (ppp) for the Bayesian confirmatory factor analysis (CFA) models, both
with informative and diffuse priors, and for the 90% confidence interval (CI) RMSEA and p
value for the frequentist CFA models of the first section, with the one-factor model as
reference (ref) model, for each sample size (as ordinal variable) and specification condition in
which the magnitude of the factor loadings was .7. Cutoff values for the BRMSEA and RMSEA
(.05 for the lower limit and .08 for the upper limit) and for the posterior predictive p value
and p value (.05) are indicated with the dashed lines. Values within these cutoff points have
(blue) circles, those outside (red) squares.
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low for models without or ‘‘small’’ misspecification and high for models with

‘‘large’’ misspecification.

ppp and p Value. As sample size increased the ppp moved toward 0, except for the

condition with Specification A. The move toward 0 occurred ‘‘faster’’ if the factor

loadings were larger, if the misspecification was larger, or the wrong prior varia-

tion was used (Figures 2 and 3). The ‘‘dip’’ in the average ppp of the two-factor

reference model with the wrong prior variation was, furthermore, noteworthy.

Regardless of the priors and the condition, however, the ppp reached zero when

sample size increased toward 10,000 for any level of misspecification. This find-

ing was also supported by the implementation of the cutoff point (.05) for the ppp

(Table 5).

These findings for the ppp also hold, as expected, for the x2-based p value

(Figures 2-4). It has to be noted however that while the ppp had the same pattern as

Figure 4. Mean values of the 500 replications for the 90% posterior probability interval
(PPI) of the Bayesian root mean square error of approximation (BRMSEA) and the posterior
predictive p value (ppp) for the Bayesian structural equation modeling (BSEM) models, both
with informative, diffuse, and wrong priors, and for the 90% confidence interval (CI) RMSEA
and p value for the frequentist CFA models of the second section, with the two-factor model
as reference (ref) model, for each sample size (as ordinal variable) and specification condition.
Cutoff values for the BRMSEA and RMSEA (.05 for the lower limit and .08 for the upper
limit) and for the posterior predictive p value and p value (.05) are indicated with the dashed
lines. Values within these cutoff points have (blue) circles, those outside (red) squares.
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Table 2. Proportion of Rejected Models With Six Indicators of the First Section, With the
One-Factor Model as Reference Model, Using a Cutoff Point for the 90% Confidence Interval
and 90% Posterior Probability Intervals of the Root Mean Square Error of Approximation
(RMSEA) and BRMSEA for the Upper Limit of .08 and for the Lower Limit of .05 and of .05 for
the Posterior Predictive p Value and p Value for the Bayesian Confirmatory Factor Analysis
(CFA), With Diffuse Priors, and Frequentist (CFA).

Factor loadings = .5 Factor loadings = .7

N Model BRMSEA ppp RMSEA p BRMSEA ppp RMSEA p

50 A (ref) .92 .01 .90 .09 .90 .01 .90 .10
B .93 .01 .91 .11 .92 .01 .91 .13
C .96 .01 .95 .16 .98 .07 .98 .33
D .98 .02 .96 .20 1 .51 1 .84
E .95 .02 .96 .12 1 .61 1 .91

100 A (ref) .72 .01 .80 .07 .67 .01 .80 .07
B .78 .01 .83 .11 .79 .03 .87 .17
C .91 .05 .94 .23 .97 .20 .99 .52
D .96 .11 .97 .39 1 .95 1 1.00
E .94 .1 .98 .37 1 .99 1 1

250 A (ref) .08 .00 .36 .06 .07 .00 .34 .07
B .20 .02 .57 .18 .38 .08 .75 .35
C .66 .23 .90 .62 .96 .77 1.00 .95
D .84 .51 .97 .81 1 1 1 1
E .93 .68 1.00 .93 1 1 1 1

500 A (ref) 0 .01 .03 .08 0 .01 .50 .08
B .01 .08 .18 .31 .13 .31 1 .65
C .46 .69 .81 .90 .98 1.00 1 1
D .81 .93 .97 .99 1 1 1 1
E .97 1 1 1 1 1 1 1

1,000 A (ref) 0 .00 0 .07 0 .00 0 .06
B 0 .22 .00 .58 .02 .74 .20 .93
C .33 .99 .74 1.00 1.00 1 1 1
D .89 1 .99 1 1 1 1 1
E 1.00 1 1 1 1 1 1 1

5,000 A (ref) 0 0 0 .06 0 0 0 .06
B 0 1.00 0 1 .20 1 .10 1
C 1 1 1.00 1 1 1 1 1
D 1 1 1 1 1 1 1 1
E 1 1 1 1 1 1 1 1

10,000 A (ref) 0 .00 0 .04 0 0 0 .05
B 0 1 0 1 .33 1 .16 1
C 1 1 1 1 1 1 1 1
D 1 1 1 1 1 1 1 1
E 1 1 1 1 1 1 1 1

Note. RMSEA = root mean square error of approximation; BRMSEA = Bayesian root mean square error

of approximation; ppp = posterior predictive p value; p = p value; ref = reference model.
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Table 3. Proportion of Rejected Models With 12 Indicators of the First Section, With the
One-Factor Model as Reference Model, Using a Cutoff Point for the 90% Confidence Interval
and 90% Posterior Probability Intervals of the Root Mean Square Error of Approximation
(RMSEA) and BRMSEA for the Upper Limit of .08 and for the Lower Limit of .05 and of .05 for
the Posterior Predictive p Value and p Value for the Bayesian Confirmatory Factor Analysis
(CFA), With Diffuse Priors, and Frequentist CFA.

Factor loadings = .5 Factor loadings = .7

N Model BRMSEA ppp RMSEA P BRMSEA ppp RMSEA p

50 A (ref) .00 .04 .82 .21 0 .03 .82 .22
B .00 .04 .84 .22 .00 .05 .85 .23
C .02 .09 .90 .31 .03 .17 .96 .45
D .04 .19 .96 .51 .74 .94 1 .99
E .09 .28 .98 .64 .99 1.00 1 1

100 A (ref) 0 .02 .25 .10 0 .02 .26 .10
B 0 .02 .30 .13 0 .04 .35 .17
C 0 .10 .56 .31 .01 .33 .86 .65
D .02 .42 .87 .71 .97 1 1 1
E .15 .76 .98 .93 1 1 1 1

250 A (ref) 0 .01 0 .08 0 .01 0 .08
B 0 .03 0 .13 0 .07 .00 .23
C 0 .38 .02 .66 0 .93 .51 .98
D .01 .97 .73 1.00 1 1 1 1
E .37 1 1.00 1 1 1 1 1

500 A (ref) 0 .01 0 .06 0 .00 0 .05
B 0 .07 0 .18 0 .23 .00 .42
C 0 .92 .01 .97 .05 1 .61 1
D .27 1 .88 1 1 1 1 1
E .98 1 1 1 1 1 1 1

1,000 A (ref) 0 .02 0 .06 0 .02 0 .06
B 0 .20 0 .41 0 .63 0 .84
C 0 1 .00 1 .47 1 .92 1
D .88 1 .99 1 1 1 1 1
E 1 1 1 1 1 1 1 1

5,000 A (ref) 0 .01 0 .05 0 .01 0 .05
B 0 1 0 1 0 1 0 1
C 0 1 0 1 1 1 1 1
D 1 1 1 1 1 1 1 1
E 1 1 1 1 1 1 1 1

10,000 A (ref) 0 .00 0 .05 0 .00 0 .05
B 0 1 0 1 0 1 0 1
C 0 1 0 1 1 1 1 1
D 1 1 1 1 1 1 1 1
E 1 1 1 1 1 1 1 1

Note. RMSEA = root mean square error of approximation; BRMSEA = Bayesian root mean square error

of approximation; ppp = posterior predictive p value; p = p value; ref = reference model.
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the x2-based p value for large samples, the ppp showed to be superior for the smal-

lest samples (N = 50) compared with the x2-based p value (Tables 2-4). Using the x2

for the reference models in the largest samples within frequentist CFA, furthermore,

resulted in a rejection rate of ~5%. This corresponds with the type I error induced by

the nominal a (.05).

Table 4. Proportion of Rejected Models of the Second Section, With the Two-Factor Model
as Reference Model, Using a Cutoff Point for the 90% Confidence Interval and 90% Posterior
Probability Intervals of the Root Mean Square Error of Approximation (RMSEA) and BRMSEA
for the Upper Limit of .08 and for the Lower Limit of .05 and of .05 for the Posterior
Predictive p Value and p Value for the Bayesian Confirmatory Factor Analysis (CFA), With
Diffuse, Informative, and Wrong Priors, and Frequentist CFA.

Bayesian CFA (priors) Frequentist CFA

Diffuse Conservative Wrong —

N Model BRMSEA ppp BRMSEA ppp BRMSEA ppp RMSEA p

50 D (ref) .00 .03 0 .01 0 .11 .82 .21
E .67 .90 .45 .90 .93 1 1 .98
F1 .00 .03 0 .01 0 .11 .84 .21
F2 .03 .12 .00 .10 .02 .40 .94 .45

100 D (ref) 0 .01 0 .01 0 .14 .26 .09
E .96 1 .94 1 1 1 1 1
F1 0 .01 0 .01 0 .15 .30 .11
F2 .00 .26 .00 .24 .02 .80 .83 .62

250 D (ref) 0 .02 0 .01 0 .38 0 .09
E 1 1 1 1 1 1 1 1
F1 0 .03 0 .01 0 .46 0 .12
F2 0 .91 0 .90 .01 1 .51 .97

500 D (ref) 0 .01 0 .01 0 .50 .00 .05
E 1 1 1 1 1 1 1 1
F1 0 .03 0 .03 0 .64 0 .10
F2 .02 1 .02 1 .13 1 .53 1

1,000 D (ref) 0 .02 0 .02 0 .30 0 .06
E 1 1 1 1 1 1 1 1
F1 0 .08 0 .08 0 .61 0 .23
F2 .32 1 .29 1 .48 1 .79 1

5,000 D (ref) 0 .02 0 .02 0 .04 0 .04
E 1 1 1 1 1 1 1 1
F1 0 .87 0 .88 0 .95 0 .96
F2 1 1 1 1 1 1 1 1

10,000 D (ref) 0 .01 0 .00 0 .01 0 .05
E 1 1 1 1 1 1 1 1
F1 0 1 0 1 0 1 0 1
F2 1 1 1 1 1 1 1 1

Note. RMSEA = root mean square error of approximation; BRMSEA = Bayesian root mean square error

of approximation; ppp = posterior predictive p value; p = p value; ref = reference model.
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Empirical Illustration

Method

The goal of the empirical illustration was to demonstrate what happens if different

sample sizes, from the same population, are used. For this illustration, the proposed

factor structure of the skill discretion subscale of the Job Content Questionnaire

(Karasek, 1985) was examined. This section provides, however, by no means a com-

prehensive overview of an actual Bayesian CFA analysis.

Data from the ongoing Maastricht Cohort Study on fatigue at work was used (see,

Kant et al., 2003). The longitudinal study gathers data of employees from 45 compa-

nies by means of self-administered questionnaires. The baseline questionnaires in

May 1998 were sent together with an invitation letter to the participants. 26,978

Employees received the baseline questionnaire, of which 12,161 responded. Twenty-

one participants were excluded due to technical reasons, resulting in a baseline popu-

lation of 12,140. The skill discretion subscale of the JCQ was used for the factor

model. This subscale assesses the level of skill and creativity required on the job and

the flexibility permitted in deciding what skills to use. This subscale included six

items (e.g., ‘‘My job requires that I learn new things’’) which were answered on a 4-

point Likert-type scale (strongly disagree to strongly agree).

Analytic Strategy

All items were hypothesized to load on a single factor reflecting skill discretion.

Preliminary analyses showed however a strong dependency between the second and

fourth item. Therefore, a residual covariance between these items was modelled. The

structure of the hypothesized model reflected the model in Figure 1B, except that the

residual covariance was not fixed to .1 but was freely estimated. To illustrate the

effect of sample size on the estimation of such a factor model within Bayesian and

frequentist CFA random samples of various sizes were extracted from the original

data. The selected sample sizes were equal to the ones used in the simulation study

(50, 100, 250, 500, 1,000, 5,000, and 10,000). To control for a possible difference

between the samples regarding the overall score on skill discretion, the caret

(Version 6.0-41; Kuhn, 2015) package was used to extract training sets which were

matched on the sum score of the skill discretion subscale. There were, therefore, no

differences expected between the samples regarding their average skill discretion

score. The model was tested for each data set using the same three estimation proce-

dures as in the first section of the simulation study.

Information from three articles, investigating the factor structure of the skill dis-

cretion subscale, were used for the Bayesian analysis using conservative priors

(Cheng, Luh, & Guo, 2003; De Araújo & Karasek, 2008; Pelfrene et al., 2003). The

mean values of the factor loadings of the three articles were Item 1 (Develop own

abilities) = .68, Item 2 (Requires creativity) = .67, Item 3 (Variety) = .54, Item 4

(High skill level) = .57, Item 5 (Learn new things) = .50, and Item 6 (Repetitive
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work) = .39. These articles used, however, exploratory factor analysis and the lan-

guage of the questionnaires differed. Therefore, a conventional prior mean of 0.4

was chosen with a variance of 0.1 for all factor loadings. Priors for other parameters

were not specified.

Results

Table 6 shows that for large samples the RMSEA indicated adequate model fit. For

small samples, in contrast, the upper limit exceeds the cutoff point of .08. The same

pattern emerges for the BRMSEA, both with conservative and diffuse priors. The ppp

rejected the model for the largest sample sizes (N� 5,000), whereas it accepted the

model when sample size was small to moderate (N� 1,000). Parameter estimates

were nearly identical when sample size was N� 5,000. If the sample size was 10,000

the factor loading for the first item was .40 (95% PPI = [.38, .41]) in the Bayesian

CFA model with conservative priors, .40 (95% PPI = [.38, .41]) with diffuse priors,

and .40 (95% CI = [.38, .41]) in the frequentist CFA model, showing comparability

of parameter estimates (see also Scheines et al., 1999).

Conclusion

At the moment, there is no appropriate summary statistic within Bayesian CFA pro-

tecting against an undesirably high sensitivity to detect negligible differences within

large samples. The present article confirms that such a statistic is needed as the pos-

terior predictive p value (ppp) rejects models with only a ‘‘small’’ deviation from the

hypothesized model within such large samples, in accordance with previous studies

(e.g., Asparouhov & Muthén, 2010). Our (simulation) study shows that the newly

proposed Bayesian root mean square error of approximation (BRMSEA; Equation

7), inspired on the rationale of RMSEA (Equation 4; Browne & Cudeck, 1992), is a

valid fit index for these large sample studies. As such the credibility of large sample

Bayesian CFA models can be evaluated with this new BRMSEA which adjusts the

model fit for model complexity and, most important, sample size. This enhances

application of the Bayesian framework within CFA to assess the validity and reliabil-

ity of (educational and psychological) measures (DiStefano & Hess, 2005).

Cutoff points were used to aid the evaluation of the BRMSEA and assess its

validity. It seems that these cutoff points are fruitful for successful model selection

using the 90% PPI of the BRMSEA within Bayesian CFA when investigating large

samples. The BRMSEA could be facilitated with a cutoff value of .05 for the lower

limit in conjunction with a cutoff value of .08 for the upper limit as an indication of

‘‘good’’ fit. In the present simulation study these cutoff points resulted in the accep-

tance of models with none or ‘‘small’’ amounts of misspecification whereas

‘‘strongly’’ misspecified models were mostly rejected. The findings with respect to

the cutoff points hold for models in which the sample size surpasses 1,000. This reli-

ance on large samples is not regarded as a shortcoming of the BRMSEA. It is, after
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all, for these large sample sizes that a fit index was sought as within these samples

the ppp is too sensitive for ‘‘trivial’’ misspecifications. As previous and the current

simulation studies show, however, characteristics of the (B)RMSEA depend on a

wide variety of model and data characteristics (Savalei, 2012). Researchers should

therefore use cutoff points as a supportive guideline for interpretation of the quality

of the model in conjunction with aspects such as, substantive theory, parameter esti-

mates, cross-validation, and predictive quality (e.g., Bentler, 2007; Kaplan &

Depaoli, 2012; Marsh et al., 2004; Millsap, 2007; Steiger, 2007; Yuan, 2005). As

such, fit indices are not a panacea for the assessment of model quality (e.g., Marsh et

al., 2004; Millsap, 2007; Steiger, 2014), nor should a low ppp be outrightly ignored

simply because the sample size is large. A promising approach to use more informa-

tive cutoff points is the use of equivalence testing (Yuan, Chan, Marcoulides, &

Bentler, 2016). This method takes into account the minimum tolerable size (T-size)

of misspecification for fit indices (i.e., RMSEA). This approach could also be fruitful

for further development of the BRMSEA and its cutoff points. Within the current

study this method was, however, not taken into account to limit the number of

‘‘moving-parts’’ within the simulation. That is, the primary goal of this study was to

demonstrate the validity of the BRMSEA as such, not to establish ground-truth for

specific cutoff points. For a more informative selection of cutoff points, however,

implementation of the equivalence testing approach would be recommended

(Marcoulides & Yuan, 2017). Still, the cutoff points used in the current study seem

to provide a valid first step for applied researchers for accessible and transparent

assessment of overall model quality within Bayesian CFA models.

Table 6. Results of the Empirical Illustration for the Different Sample Sizes With the 90%
Confidence Interval of the Root Mean Square Error of Approximation (RMSEA) and p Values
for the Frequentist Confirmatory Factor Analysis (CFA) Models and 90% Posterior Probability
Intervals of the Bayesian RMSEA (BRMSEA) and Posterior Predictive p Value for the Bayesian
CFA Models With Diffuse and Informative Priors.

Bayesian CFA (diffuse priors) Bayesian CFA (informative priors) Frequentist CFA

N BRMSEA90 ppp BRMSEA90 ppp RMSEA90 p value

50 [.000, .206] .15 [.000, .189] .16 [.053, .254] .02
100 [.000, .114] .40 [.000, .109] .42 [.000, .136] .25
250 [.000, .065] .45 [.000, .063] .46 [.000, .078] .36
500 [.000, .055] .31 [.000, .055] .31 [.000, .066] .15
1,000 [.000, .046] .15 [.000, .046] .15 [.012, .057] .02
5,000 [.039, .048] .00 [.039, .048] .00 [.038, .055] \ .01
10,000 [.043, .047] .00 [.043, .047] .00 [.039, .051] \ .01

Note. RMSEA = root mean square error of approximation; BRMSEA = Bayesian root mean square error

of approximation; ppp = posterior predictive p value. Boldfaced BRMSEA and RMSEA intervals have a

lower limit below .05 and an upper limit below .08; Boldfaced p values and posterior predictive p values

are greater than .05.
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The current analyses again illustrate the sensitivity of the ppp for any form of mis-

specification when sample size increases. These findings with respect to the ppp are

important for an improved understanding of model diagnostics within Bayesian CFA,

and Bayesian structural equation modeling in general (Levy, 2011; MacCallum,

Edwards, & Cai, 2012; Rindskopf, 2012). Although the quantification of misspecifi-

cation remains subjective, the main rationale entails that even the most marginal

deviations eventually lead to a deterioration of the ppp when the sample size

increases. While this enhanced precision is informative, it can also hinder the practi-

cal application within large samples. Within large samples the BRMSEA can, there-

fore, be seen as complementary to the ppp. While the BRMSEA provides an

indication of overall model fit, it does not provide information regarding the source

and form of misspecification. To gain such insights the method proposed by Muthén

and Asparouhov (2012) can be used. Leaving aside the possible threats of post hoc

model tinkering this method provides valuable information for researchers regarding

the model as it quantifies the (marginal) deviations of the model (e.g., Bentler, 2007;

McDonald & Ho, 2002; Stromeyer, Miller, Sriramachandramurthy, & DeMartino,

2015). Even these ‘‘enhanced’’ models will, however, be rejected on the basis of the

ppp with increasing sample sizes. Specification F1 in the second section, for exam-

ple, would eventually have been rejected even if informative priors were used for the

cross-loadings. Further development of the BRMSEA is therefore recommended, as

is the development of fit indices within Bayesian CFA in general. The comparative

fit index (CFI) and Tucker–Lewis index (TLI) would seem to be good candidates,

based on their implementation within frequentist CFA (e.g., Hu & Bentler, 1999). As

indicated in the Introduction section, however, defining an independence model

within a Bayesian framework could be difficult. That is, if prior information is pro-

vided an empty model would be difficult to define. Within a frequentist framework

such a model is simply a model without any relation between any of the variables.

Such an absence of relation contradicts with the inclusion of prior knowledge.

Estimating the CFI and TLI within a Bayesian framework would, therefore, require a

theoretical discussion and examination of an independence model within Bayesian

CFA.

The parameter estimates of the empirical illustration in the present study show the

approximate equivalence between Bayesian and frequentist CFA models within large

samples for equivalent models. There are, however, specific models that are only

possible within Bayesian CFA and therefore have no equivalent within frequentist

CFA. An example of such a Bayesian CFA model, compared with frequentist CFA,

concerns the possibility to assess approximate measurement invariance (Muthén &

Muthén, 2013; Van de Schoot et al., 2013). Currently, however, it appears that for

large samples it seems impossible to reach a satisfactory ‘‘baseline’’ model as it is

likely that almost all models will be rejected based on the ppp. The empirical illustra-

tion shows that the ppp approaches zero when the sample size is large even while the

model seems credible. In conclusion, researchers are ‘‘penalized’’ too much when

investigating a large sample. In contrast to ppp, the BRMSEA does not receive this
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‘‘penalty’’ when assessing model fit within large samples (Steiger, 2000). Within the

empirical illustration, for example, the BRMSEA indicated a satisfactory model fit

for the large samples which could enable specific analysis such as the assessment of

approximate measurement invariance.

Some limitations of the current study and the BRMSEA as a fit index in general

should be addressed. It remains, foremost, important to test alternative models even

if the model fit is satisfactory (Kline, 2011). As indicated by Browne and Cudeck

(1992), model fit does not provide a measure of plausibility but merely indicates the

lack of fit within a model. Researchers should remain critical if there are alternative

models that could better describe the data, or that the good fit is a result of overfit-

ting. The assumptions regarding the level of misspecification could, furthermore, be

debated and are always subject to ‘‘substantive and theoretical issues that are likely

to be idiosyncratic to a particular study’’ (Marsh et al., 2004, p. 340). As with each

simulation study, the number of conditions is limited. The BRMSEA is, furthermore,

not applicable to models with categorical indicators due to constraints on the evalua-

tion of the likelihood in such models (Asparouhov, 2010). For a valid BRMSEA, it

is vital that the model shows adequate convergence and adheres to all other assump-

tions within Bayesian CFA (e.g., Depaoli & Van de Schoot, 2017). The finding that

the BRMSEA is susceptible for prior information supports its embedding within the

Bayesian framework (Rupp et al., 2004). It should be noted, however, that the

BRMSEA, as the ppp, is by no means designed to evaluate prior specifications. This

first introduction of the BRMSEA shows that all bodes well for its application within

large sample Bayesian CFA studies. Such empirical studies have to prove the actual

value of the BRMSEA in the evaluation of model fit. The proof of the pudding is,

after all, in the eating.

The assessment of model fit within Bayesian CFA using the new BRMSEA could

be seen as contradictory to a ‘‘true’’ Bayesian approach (Kaplan & Depaoli, 2012).

To cite Spiegelhalter et al. (2002): ‘‘In conclusion, it is clear that our pragmatic aims

are muddying otherwise pure Bayesian waters’’ (p. 637). The BRMSEA is however

embedded within the Bayesian framework as it includes the observed and replicated

x2 and the (effective) number of parameters. As such the BRMSEA is not directly

derived from the RMSEA but inspired on its notion that a general fit statistic can be

rescaled taking into account the sample size and model complexity (Steiger, 2000).

As such the BRMSEA resolves the sensitivity of the current Bayesian CFA summary

statistics for negligible differences within large samples. The BRMSEA will, there-

fore, result in a more accessible and transparent application of Bayesian CFA within

large sample models. An area in which, at the moment, it is only sporadically applied

compared with small sample models (Muthén & Asparouhov, 2012; Rupp et al.,

2004). It is probably through this focus on small samples and adjoining exploration

of the properties of the summary statistics, that the properties of these summary sta-

tistics received less attention for large samples (Lee & Song, 2004). With the grow-

ing interest and usage of Bayesian theory within the field of CFA and the growing

number of large data sets (e.g., Cieciuch et al., 2014; Lung et al., 2011; Milojev et
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al., 2013), however, the need for a valid fit statistic within such conditions is evident

and cannot be ignored. The data used for the empirical illustration are a clear exam-

ple as many studies within the field of educational and psychological measurement

use large samples in which oversensitivity for negligible deviations is a legitimate

issue. The BRMSEA, with accompanying cutoff points for its 90% PPI, is a valid

and intelligible fit index, which can be used to evaluate model fit within large sample

size Bayesian CFA models.
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