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Abstract The computational chemistry and cheminfor-

matics community faces many challenges to advancing the

state of the art. We discuss three of those challenges here:

accurately estimating the contribution of entropy to ligand

binding; reliably estimating the uncertainties in model

predictions for new molecules; and being able to effec-

tively curate the ever-expanding literature and commercial

databases needed to build new models.
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Introduction

The road to predicting future scientific and technological

developments is paved with spectacular failures and

memorable epigrams. Niels Bohr, for example, was fond of

saying, ‘‘Prediction is very difficult, especially about the

future.’’ It is also a corollary of Albert Einstein’s quip that,

‘‘If we knew what it was we were doing, it would not be

called research, would it?’’ Among the most celebrated

examples of erroneous predictions are that flying cars and

personal jetpacks would be common-place by now [1, 2].

The 25th anniversary of an event as notable as the launch

of the Journal of Computer-Aided Drug Design (JCAMD)

compels us to look ahead nonetheless, uncertain though our

vision might be. Fortunately, it is a testament to human

nature that the direction taken by a scientific discipline is

generally foreshadowed by where the barriers to its pro-

gress lie. Here we discuss three of those barriers—under-

standing the role of entropy in ligand binding, dealing with

predictive uncertainty and the difficulty of curating large

amounts of data—in hopes that doing so will provide some

indication of where the field might be headed in the next

25 years. Our goal here is mainly to raise questions; pro-

viding answers to those questions remains for those who

come after.

Entropy

When JCAMD began publication, it was easy to believe

that understanding ligand–protein interactions was pri-

marily a matter of running sophisticated and long enough

molecular dynamics simulations on powerful enough

hardware, constrained only by limits on patience and

resources. It was no accident that three of the early land-

mark papers on scoring functions appeared in the journal in

the mid-1990’s [3–5]. The goal of predicting affinity from

ligand and protein structure on a purely mechanistic basis

seems less attainable today, though. Empirical methods are

often competitive with or superior to mechanistic ones

when it comes to predicting affinity within chemical series.

In some cases and in the hands of some practitioners,

empirical methods are superior, as are some empirical

ligand-based methods that ignore the structure of the target

protein altogether and are completely empirical in nature.

Indeed, the inventor of comparative molecular field anal-

ysis (CoMFA)—arguably the archetypal mechanistic

modeling approach for ligands—now advocates topomeric

alignments that abandon any pretense of relying on realistic

ligand conformations [6].
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There is merit in the argument that the performance of

mechanistic models is limited by the inherent difficulty of

docking a flexible ligand accurately into a flexible protein

target [7], but supplanting a rigid lock and key model of

ligand–protein interaction with one involving induced fit

begs a fundamental question: if the protein is in a lower-

energy state before the ligand inserts itself into the active

site than it is after, then where does the extra energy needed

to ‘‘turn the key’’ and change the shape of the lock after

binding come from? For the process to be spontaneous,

there must be a net decrease in free energy (DG) above and

beyond that gained by the initial insertion of the ligand into

the unoccupied binding site.

Somewhat counterintuitively, a major positive contributor

to the entropy of binding (DS) is increased protein fluidity

after a ligand binds—in particular, an increase in anharmonic,

coupled motions within the complex [8–10]. The coupling is

presumably mediated at least in part by polar interactions

between residues, which may contribute to the apparent

ubiquity of enthalpy-entropy compensation in ligand binding.

The resulting entanglement of enthalpy and entropy is, in turn,

consistent with recent analysis of isothermal calorimetric data

for ligand–protein complexes for which high-resolution

complexes are available, work which underscores just how

tightly DS is connected to the enthalpy of binding (DH): Tang

and Marshall [11] showed that the residual error in models of

the total free energy of formation (DG) for such complexes is

lower than the residual error in models of its DH and -TDS

components (T is the absolute temperature).

The scope of the challenge of fully accounting for the

affinity of a protein for a ligand based on a static structure

of their complex is underscored by the huge difference in

stability observed between complexes of time-dependent

and time-independent inhibitors with prostaglandin H2

synthase (COX-1). Time-independent binding is fast and

readily reversible, whereas time-dependent binding

involves a subsequent slow step (minutes) and is nearly

irreversible. Nonetheless, X-ray analysis of the complexes

shows that the ligands adopt similar conformations and the

enzyme adopts ‘‘identical’’ conformations [12]. It would

seem that some sort of dynamic effect must account for the

differences between the two, and the sort of anharmonic

fluidity cited above is a prime candidate. Accounting for

such dynamic contributions to DS is complicated, however,

by their fractal nature (at least in the case of myoglobin,

lysozyme and bovine pancreatic trypsin inhibitor) [13],

which suggests that they are chaotic or emergent properties

of complex systems [14]. If that is true in general, the

dynamic contributions will be difficult to deal with using

existing mechanistic methodology. Appreciating the cha-

otic nature of the interaction could, however, help molec-

ular designers understand what makes slow, tight-binding

(‘‘time dependent’’) inhibitors special.

Uncertainty

Regression models of all types have historically been

characterized in terms of how well they fit the data upon

which they are based, usually by the root mean square error

(RMSE), where ‘‘error’’ corresponds to the difference

between the observed and predicted response. Prospec-

tively estimating how much the predicted response for a

new point in the model’s descriptor space is likely to

deviate from the observed response—the predictive

uncertainty—has proven far more difficult. If a model is

based on linear regression and the descriptors are statisti-

cally independent variables, classical statistical theory

provides tools for calculating how large the deviation from

prediction is expected to be for a new observation.

Unfortunately, those tools are inadequate when the model

is non-linear or the descriptors are correlated, and one of

those conditions almost always holds when drug molecules

and biological responses are involved.

The desire for a quantitative estimate of predictive

uncertainty is not diminished simply because statistical

theory fails to provide rigorous tools for providing one,

however. Until fairly recently, the only way this need was

addressed in quantitative structure–activity relationship

(QSAR) analysis was a pragmatic one in which a test set

was held back from the model building process and the root

mean square error of prediction (RMSEP) was calculated

across the compounds in the test set. The QSAR commu-

nity has recently come to realize that this approach is

inadequate when the compound for which a prediction is

desired differs too greatly from the compounds in the

training set used to build a model or the test set used to

evaluate its predictive reliability. That realization has led to

the definition of ‘‘applicability domains,’’ ranges of

descriptors (or, in a few cases, combinations of descriptors)

outside of which a model cannot be relied upon to accu-

rately predict responses or properties. The need for a

specified and well-defined applicability domain has even

moved into the regulatory realm, at least in Europe [15].

Unfortunately, the need to establish explicit measures of

predictive reliability has yet to penetrate mechanistic

approaches to activity prediction, i.e., ‘‘structure-based’’

molecular design. Perhaps it goes without saying that the

absence of appropriate force field parameters for a silicon

atom would compromise the predictions produced by a

mechanistically based docking program. There also seems

to be an implicit assumption in the field, however, that

exactly how a given set of carbon, hydrogen, nitrogen,

oxygen, sulfur, phosphorous and halogen atoms are

assembled to form a new compound is at most incidental to

predictive success, and that aggregate measures of retro-

spective performance on test sets are all that is needed. At

the extremes this is clearly an absurd assumption,
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especially for methods that have any empirical component

at all. It is unlikely that a program trained solely on pro-

teases will accurately dock a steroid into the estrogen

receptor, for example, or that a program that has never

‘‘seen’’ a sulfonamide will handle one correctly.

One response to these concerns is that the current pool

of known structures for ligand–protein complexes is now

so large that it represents a broad enough (albeit markedly

biased) sampling of biochemically relevant space that

addition of a few new chemical classes or new targets is

unlikely to affect the overall performance significantly.

Even were this so, it overlooks the point that the value of a

prediction is a direct function of the novelty of the structure

for which the prediction is being made, regardless of

whether the ‘‘value’’ in question is social or commercial.

Hence, the predictive uncertainty at the edge of the training

and test set space is more relevant than the average

uncertainty across the entire retrospective structural space.

This is one reason that many in industry are turning to

rolling tests sets—blocks of compounds assayed since the

model was built—to assess the predictive performance of

models. The synthetic culture and target areas of interest at

a company change over time but they do so fairly slowly,

so the compounds made in the last 3 months tend to be

different than those made a year ago; not enormously so,

but enough that some will lie at the edge of the historical

applicability domain. This approach also helps address the

point that there may be some combinations of descriptors

that are relevant for new chemistry but which were inad-

equately explored in the training and test sets.

The ultimate goal should be making reliable predictive

uncertainty estimates for individual new compounds. Some

exploratory work has already been done in this area uti-

lizing sampling and the variance of ensemble predictions

[16, 17], but more is sorely needed if modeling is going to

remain relevant to drug discovery. Most of what has been

done to date assumes (explicitly or implicitly) that the

more similar a candidate molecule is to a molecule from

the training set, the smaller the uncertainty in the prediction

will be, or that the uncertainty in the prediction is directly

related to the prediction errors of training (or test set)

molecules that are ‘‘similar’’ to the candidate molecule.

The exact meaning of ‘‘molecular similarity’’ can be very

sensitive to context however. Molecular similarity, like

beauty, is in the eye of the beholder, and the key beholder

in this case is a target receptor, not a medicinal chemist and

not a computer model.

All similarity-based approaches are prone to failure

when presented with what might aptly be called a ‘‘phan-

tom variable.’’ Consider, for example, the case of a protein

like the PepT1 transporter, which has a strong preference

for binding di- and tri-peptides composed entirely of

L amino acids (‘‘L-peptides’’) over peptides that include one

or more D amino acid residues; enantiomeric peptides

composed entirely of D amino acids (‘‘D-peptides’’) bind

even less well [18]. Hence a 2D QSAR model built using

data only for L-peptides is unlikely to correctly predict the

behavior of D-peptides. The model will ‘‘see’’ a D-peptide

as being within its applicability domain if the enantiomer

is, however, and will predict it with confidence just as high

(or low) as for the corresponding L-peptide. The same holds

true if similarity is based on ‘‘independent’’ descriptors not

used to build the model. Fingerprint-based measures of

similarity, for example, might place a new D-peptide within

the applicability domain of the model, but the transporter is

likely to see the situation differently. Nor is the problem

limited to 2D QSAR; it extends to 3D methods as well.

There will almost always be something that distinguishes a

given new candidate molecule from the molecules in the

training set, and the target may turn out to be sensitive to

that difference. Just this sort of situation doubtless accounts

for some of the activity cliffs that have received so much

attention in the recent literature [19–21]. The problem is

further exacerbated for applicability domains by the need

to use many descriptors to model target properties for very

large data sets. The more descriptors are used, the greater is

the likelihood that a candidate molecule will fall outside

the limits of one or more of these descriptors—the ‘‘curse

of dimensionality.’’ This is the reverse of the (reasonable)

expectation that the larger the training set, the larger a

model’s applicability domain should be! It would seem that

some measure of molecular similarity that is sensitive to

context is needed, as well as recognition that the descrip-

tors needed to construct a model may not always provide

enough information to reliably estimate that model’s pre-

dictive uncertainty for all new candidates.

Curating oceans of data

The rapid increase in computing power since 1986, coupled

with the ease of access provided by the World Wide Web

and digitization of data sources, has made it easier than

ever before to quickly obtain information on an enormous

range of topics. Indeed, the authors drew heavily on

Internet resources to put together this paper. That data is

spread thin, however, in the sense that any single primary

source generally contains only a few items relevant to any

particular topic. The task of pulling dispersed data together

once fell to people who wrote review articles. In many

areas, that function has been supplanted by databases

generated using computer programs. Unlike the authors of

review articles—unlike the conscientious authors, at any

rate—databases generated by unsupervised search pro-

grams tend to agglomerate data rather indiscriminately.
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Much of the data contained in any single database is, by

its nature, derivative. In many cases, it has been copied

over several times since its original abstraction from some

primary source. This makes the potential for rapid and

broad dissemination of errors enormous. The lack of dis-

crimination involved in automated database construction

may be a virtue when it preserves data that might not fit

neatly into a human reviewer’s preconceptions or might

evade their notice, but it becomes a vice when erroneous

data fails to be recognized and labeled as such.

The structure of gallamine triethiodide is a good illus-

trative example where many major databases ended up

containing the same mistaken datum. Until mid-2011,

anyone relying on an internet search would have errone-

ously concluded that gallamine triethiodide is a tribasic

amine. The error resulted from mis-parsing the common

name at some point as meaning that the compound is a salt

of gallamine and ‘‘ethiodidic acid,’’ identifying gallamine

as the active component and retrieving the relevant struc-

ture. In fact, gallamine triethiodide is what you get when

you react gallamine with three equivalents of ethyl iodide

(Fig. 1).

It is easy for a name-to-structure conversion program to

make this mistake with a common name rather than ‘‘the’’

systematic one, but the ‘‘triethiodide’’ usage is systematic

in its own context. It is also arguably quite reasonable—

provided one already knows what gallamine is. The same is

true for stearates, acetates, palmitates, etc., where esters

often get mixed up with salts. When correctly used, such

names are correct and unambiguous in context: 4-andros-

tendiol has no basic centers to form a salt with acetic acid,

so ‘‘4-androstendiol diacetate’’ has to be an ester. The

problem is that the usage does not conform to the universal

standard expected by software that ignores chemical

context.

(As it happens, a simple Web search fails to make it clear

what the ‘‘correct’’ IUPAC name for gallamine triethiodide

actually is. Several sites, including Wikipedia, [22] give it as

‘‘2,20,200-[benzene-1,2,3-triyltris(oxy)]tris(N,N,N-triethyle-

thanaminium) triiodide,’’ whereas WolframAlpha gives it

as ‘‘2-[2,6-bis(2-triethylammonioethoxy)phenoxy]ethyl-tri-

ethyl-azanium triiodide’’[23]. The simpler ‘‘1,2,3-tris-

(2-triethylammonioethoxy)benzene tri-iodide’’ is more

informative and fully consistent with the example provided

as part of IUPAC Rule C-816.3 [24] but is unlikely to be

produced by any automated name generation program that

starts by searching for a base name using a prioritized look-

up table.)

The authors have been particularly sensitized to this issue

by time recently spent curating a data set of cytochrome P450

(CYP) reactions, where typographical errors and misinter-

pretation of semi-systematic drug metabolite names were all

too common. Ironically, the use of such names in the liter-

ature (as opposed to fully systematic IUPAC nomenclature,

which is more prone to interpretive and typographical errors)

often makes it easier to determine the actual structure of

substrates and their metabolites. That said, it is the authors’

experience that there is no substitute for explicit structural

depiction in facilitating validation, something which should

be strongly encouraged in all publications, especially when

new compounds are introduced.

It is tempting to automate curation itself by accepting

the version of any given factoid that appears most fre-

quently on the Web as the correct one. The ease of

implementation seems to make the use of such methods

inevitable, but the potential for (false) positive reinforce-

ment in such a system may do more harm than good.

Indeed, the origin of the quote attributed to Niels Bohr at

the start of this article has been addressed in just this way—

a process which readily yields the wrong answer [25–27].

Mis-attribution of a quote is arguably inconsequential,

but misassignment of structures—either base structures (as

for gallamine triethiodide) or tautomeric and protonation

states—can severely compromise a model or simulation.

This is especially so when the error is systematic, as in the

case of steroid esters or ethiodide salts. The extensive use

of automated systems for populating public and private

databases with standardized structures can severely exac-

erbate the problem. Misprotonation examples include the

misrepresentation of piperazines as diprotonated rather

than as monoprotonated species and the conversion of

amidinium ions into diprotonated aminals (Fig. 2).

Such unlikely proximal dications are generated when

proximity effects—context—are ignored, and docking such

species into a binding site that bears a net negative charge

will wildly exaggerate the affinity of the compound in most

cases.

Typographical and incidental analytical errors creep into

databases as well. So long as science progresses at least in

part by making constructive mistakes, there will always be

a considerable amount of bad data mixed in with the good.

Curating such large databases effectively is, however,

extraordinarily difficult—and only rarely appreciated when

it does get done. The problem is exacerbated by three facts

of grant application life in 2011: that support is relatively

easy to obtain for compiling new cross-linked databases;Fig. 1 Conversion of gallamine to gallamine triethiodide
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that the perceived value of such databases is based more on

the amount of data they include than on the reliability of

that data; and that it is very difficult to obtain funding for

maintenance or manually supervised curation of existing

databases.

This is a remarkable state of affairs for a discipline still

recovering from the damage inflicted by the notion that

high-throughput screening and combinatorial chemistry

programs would produce a groundswell of new drugs by

sheer force of numbers. That experience showed clearly

that the quality of data is more critical than how much of it

there is and underscored the sharp differences in value

between data, information and knowledge. One hopes that

new compilations will soon be expected to provide an

indication of where each datum came from, if not the

ultimate primary source. The CYP curation effort alluded

to above was greatly facilitated by the data sets being well

documented in terms of citation of primary sources. It is

also important to cite the actual source from which data

was obtained, however. One often finds examples in the

literature (and even more often on web pages) where a

primary source C is cited, when, in fact, a secondary source

B was used which cited source C. Failing to acknowledge

such use of indirect data sources readily propagates errors,

e.g., when source B incorrectly copies or misinterprets the

information in source C.

Conclusion

When Garland Marshall, Andy Vinter and Hans-Dieter

Höltje launched this Journal 25 years ago, it was believed

by some in the community that computers would ulti-

mately—perhaps sooner rather than later—displace human

beings from the drug discovery process entirely. Given that

fact, they might well have named it the ‘‘Journal of Com-

putational Molecular Design.’’ They opted instead for the

‘‘Journal of Computer-Aided Molecular Design,’’ which

proved a prescient choice. It is easier now to appreciate the

inherent limitations of computer programs as well as their

potential for augmenting and extending the reach of

molecular designers. The three hurdles highlighted here—

understanding entropy, estimating uncertainty and effective

curation of large databases—are daunting but not techni-

cally insurmountable. But the psychological and institu-

tional challenges they represent are perhaps equally

forbidding: people naturally tend to focus on the direct and

familiar (enthalpy) rather than on the subtle (entropy); they

resist quantifying how much they do not know (uncer-

tainty); and they tend to favor increasing quantity at the

expense of quality (curation). Those aspects of the chal-

lenges, too, can be overcome. If the community does so,

the fruit of our labors will be evident to our successors

25 years from now when they read the Journal of Com-

puter-Aided Molecular Design as their cars cruise through

the air on autopilot. Or perhaps they will prefer to hear it

spoken directly into their minds through their brain chip

implant as they try out the latest jet-pack.
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