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Abstract

Granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage

colony-stimulating factor (GM-CSF) modulate progression of certain solid

tumors. The G-CSF- or GM-CSF-secreting cancers, albeit not very common

are, however, among the most rapidly advancing ones due to a cytokine-medi-

ated immune suppression and angiogenesis. Similarly, de novo angiogenesis

and vasculogenesis may complicate adjuvant use of recombinant G-CSF or

GM-CSF thus possibly contributing to a cancer relapse. Rapid diagnostic tools

to differentiate G-CSF- or GM-CSF-secreting cancers are not well developed

therefore hindering efforts to individualize treatments for these patients. Given

an increasing utilization of adjuvant G-/GM-CSF in cancer therapy, we aimed

to summarize recent studies exploring their roles in pathophysiology of solid

tumors and to provide insights into some complexities of their therapeutic

applications.

Introduction

Granulocyte and granulocyte-macrophage colony-stimulat-

ing factors (G-CSF and GM-CSF, respectively) regulate

maturation of progenitor cells in the bone marrow into

differentiated granulocytes, macrophages, and the T cells.

In clinical oncology, recombinant G- or GM-CSFs are

routinely used to correct neutropenia subsequent to

chemotherapy and radiation. However, adjuvant

G-/GM-CSF treatments have been suggested to occasionally

enable tumor growth. Such adverse treatment outcomes are

thought to occur due to certain solid tumors being

addicted to G-/GM-CSF-dependent signaling by expressing

endogenous cytokines and/or their cognate receptors

(G-/GM-CSFR). Clinical case reports reveal that newly

diagnosed patients with G-/GM-CSF(R)-positive tumors
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present with an advanced often metastatic disease suggest-

ing an accelerated progression of such cancers. The putative

mechanisms of progression bear similarities to those

observed with an adjuvant use of recombinant cytokines,

that is, induction of immune tolerance and angiogenesis. It

is therefore an imperative to explore roles of G-CSF and

GM-CSF in cancer in order to improve treatment outcomes

and to better define eligible patients’ cohorts. In this review,

we aimed to present recent advances in studies addressing

putative mechanisms and therapeutic uses of G-CSF and

GM-CSF in several cancers of a nonmyeloid origin.

Molecular mechanisms of G-CSF and
GM-CSF signaling

G-CSF and GM-CSF receptor–ligand
complexes

The G-CSF and GM-CSF are glycoproteins with molecu-

lar weights of 30 kDa and 22 kDa, respectively, secreted

by the cells of the immune system, fibroblasts, and endo-

thelium. They function to stimulate granulopoiesis, the

innate immunity, and the differentiation of neural pro-

genitor cells [1–5]. Both cytokines require presence of

their specific receptors to initiate intracellular signaling.

Crystallographic studies depict activated G-CSFRs as tet-

ramers where two receptor–ligand dimers form a complex

on plasma membranes via Ig-like domains (Fig. 1A) [6].

In contrast, an activated GM-CSFR is a hexamer consist-

ing of two ligand-selective a-subunits and the two nonse-

lective bc subunits; each a-/bc-subunits dimer is thought

to bind one ligand molecule (Fig. 1B) [7–9]. Moreover,

activation of downstream signaling requires the two hexa-

mers to form a dodecameric complex, a feature is thought

to be unique to a GM-CSFR [7].

Signal transduction pathways

In physiological conditions, for example, during matura-

tion of granulocyte/macrophage precursors, activated

A

B

Figure 1. (A) The G-GSF receptor monomers (green and blue) consist of an extracellular Ig-like domain (Ig), a cytokine receptor homologous

(CRH) domain, and three fibronectin-type III-like domains followed by a transmembrane region and a cytoplasmic domain. Upon the G-CSF (red)

binding, receptors polymerize via Ig-like domains to form an active signaling complex. (Modified from [6]). (B) The GM-CSF receptor is a complex

of two a-subunits (yellow) and the two bc-subunits (maroon and green). The a-subunits ensure specificity of GM-CSF (purple) binding, whereas

bc-subunits which are shared among GM-CSFR, IL-3R, and IL-5R provide high-affinity binding sites. The GM-CSFR localize extracellularly with

domains of both a- and bc-subunits tethering them to the cell membranes (Modified from [7]).
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G-/GM-CSFR elicit phosphorylation of JAK kinases and

subsequent recruitment of STAT5 transcription factor to

effect cellular differentiation [7, 10, 11]. G-CSF has also

been shown to convey neuroprotection to central neurons

upon increases in phosphorylation of PI3K/Akt pathway

[7, 10, 11]. In cancers of nonmyeloid origin, however, the

G-/GM-CSF signaling cascades are less known. Highly

annotated automatic pathways analysis tools, such as

MetaCoreTM (Thompson Reuters, New York) therefore

may become indispensable in predicting such novel cas-

cades. For example, Figure 2 outlines a map of putative

signal transduction pathways whereby G-CSF or GM-CSF

regulate epithelial to mesenchymal transition (EMT), a

crucial event in malignant transformation. The map sug-

gests that a recruitment of c-jun proto-oncogene may

occur downstream from Lyn/JAK/STAT3 or, alternatively,

MAPK/ERK1/2 pathways upon their activation by

cytokines. Recruitment of c-jun would promote reorgani-

zation of actin cytoskeleton, secretion of matrix metallo-

proteases, and a loss of cell to cell contact to increase cell

motility and hence to facilitate dissemination. Indeed,

G-/GM-CSF-dependent phosphorylation of JAK2 and

recruitment of STAT-3 have previously been reported as

required steps in tumor angiogenesis and vascularization

[12, 13]. Moreover, signaling cascades regulating EMT

have been shown to convey stem cell phenotype to neo-

plastic cells which would account for their ability to

metastasize and for their multidrug resistance [14]. To

date, the contributions of G-/GM-CSF to cancer stem cell

phenotypes are not clearly defined [15]. It is noteworthy

Figure 2. MetaCoreTM pathways analysis has been utilized to generate a map of putative signal transduction pathways for G-CSF or GM-CSF to

regulate epithelial to mesenchymal transition in cancer. The green arrows indicate activated signaling pathways, whereas red arrows depict

inhibited pathways.
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therefore that the MetaCoreTM analysis proposes a role for

G-/GM-CSF in maintaining a pool of stem cells in solid

cancers via c-jun-dependent activation of SLUG, SNAIL1,

or TWIST-1 transcription factors [16, 17]. Given a pro-

pensity of G-/GM-CSF(R)-expressing cancers toward

accelerated growth and an early dissemination, it is feasi-

ble to predict that the experimental evidence will emerge

as to their roles in sustaining a cancer stem cell pheno-

type.

Iatrogenic induction of G-/GM-CSF-
dependent tumor growth

Clinical reports and animal cancer models attest to the

chemo- and/or antiangiogenic therapies or a radiation

treatment inadvertently promoting cancer progression in

part via G-CSF. Shaked et al. demonstrate a G-CSF-

dependent mobilization of endothelial progenitor cells

and a tumor regrowth in murine models of melanoma

and a lung cancer following treatments with vascular dis-

rupting agents (VDA) [18]. Similar increases in plasma

G-CSF levels have been detected in patients with solid

tumors receiving VDA [19]. Remarkably, G-CSF fails to

mobilize endothelial progenitor cells in mice not bearing

tumors suggesting modulatory effects of tumor microen-

vironment on bone marrow responses to cytokines [20].

Gr1+CD11b+ myeloid-derived suppressor cells (MDSC)

recruited to the tumor site may in part mediate these

effects [21]. It has also been proposed that G-CSF, but

not GM-CSF, expression with simultaneous infiltration of

Gr1+CD11b+ MDSC render tumors refractory to the sub-

sequent antiangiogenic treatments [21]. In murine models

of pancreatic adenocarcinoma expressing RAS oncogene,

the G-CSF-mediated resistance to antivascular endothelial

growth factor (VEGF) therapies occurs through activation

of RAS/MEK/ERK pathways and an Ets-induced overex-

pression of G-CSF [22]. Furthermore, studies suggest that

by recruiting MDSC, G-CSF induces a VEGF-independent

angiogenesis in addition to increasing resistance to anti-

VEGF drugs [22]. It becomes apparent therefore that cor-

rection of cancer therapy-related neutropenia using

recombinant G-/GM-CSF carries risks of disease recur-

rence thus necessitating stricter eligibility criteria for

patients requiring these treatments.

Tumors secreting G-/GM-CSF

Lung cancer

Primary and metastatic lung cancers are by far the most

frequently occurring type of malignancy driven by the

ectopically secreted G-/GM-CSF [23–26]. Different histo-
pathological types of a non-small-cell lung cancer

(NSCLC) comprise a majority of cytokine-producing lung

tumors although a case of G-CSF-secreting lung sarcoma

has also been described [27, 28]. At a time of diagnosis,

patients present with an advanced disease and a profound

paraneoplastic leukocytosis. Elevated G-CSF levels have

been proposed as a marker of shorter survival in NSCLC

patients even if a subsequent resection of a cytokine-

secreting tumor has been successful [24, 29].

Various cell types have been proposed as putative

sources of G-/GM-CSF in lung cancers. Specifically,

tumor-associated endothelial cells may secrete cytokines

and thus promote angiogenesis and metastasis via

increases in expression of cell adhesion molecules [30]. In

addition, studies in animal models propose such function

for Gr1+CD11b+ MDSC [31]. Surprisingly, microarray

data reveal augmentations of a GM-CSF gene in small-cell

lung cancers but not in NSCLC possibly suggesting post-

transcriptional mechanisms for an increased secretion of

this cytokine [32]. Given that G-/GM-CSF may accelerate

progression and distant metastases in lung cancers, cau-

tion is warranted when using recombinant cytokines as

an adjuvant treatment in these patients [33].

Glioma

Glioma is the most common type of a primary malignant

brain tumor in adults with universally poor prognosis.

Gliomas more often than other G-/GM-CSF-secreting

cancers also express intratumoral cognate receptors; aug-

mented G-/GM-CSF(R) levels have been found to corre-

late with higher tumor grade [34–36]. In these cancers,

the G-/GM-CSF(R) promote progression possibly using

auto-/paracrine activation of antiapoptotic and pro-angio-

genic pathways via activation of STAT-3 transcription fac-

tor or an increased expression of VEGF/VEGFR [37–41].
The origins of cytokine- secreting cells in glioma are not

completely known. For example, tumor cells and tumor-

associated microglia, but not mesenchymal stromal cells,

have been proposed for this role [42–44]. In experimental

models of glioblastoma, decreasing G-/GM-CSF levels

attenuate invasiveness and cell proliferation thus suggest-

ing modulatory effects of these cytokines on tumor

microenvironment [42]. Consistent with these findings,

accumulation of MDSC concomitant with increases in

G-CSF levels has been shown in patients with glioma

[45]. Remarkably, a combination treatment consisting of

a recombinant G-CSF and an interferon-gamma promotes

maturation of tumor-associated dendritic cells [46, 47].

The induction of immune response by this treatment

shows relative efficacy in prolonging survival in experi-

mental gliomas [46, 47]. However, G-CSF monotherapy

does not provide similar benefits which may be consistent

with the aforementioned oncogenic roles of G-CSF
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[45–48]. The lack of understanding of G-/GM-CSF roles

in gliomas necessitates further research in pursuit of safer

G-/GM-CSF-based therapies for patients with these

cancers.

Bladder cancer

A G-CSF was initially purified from the human bladder

carcinoma cell line 5637 [49] thus implying a role for

this cytokine in progression of bladder malignancies.

Tachibana et al. reported an autocrine growth induction

after heterologous G-CSFR has been engineered into the

G-CSF-secreting tumor cells from a resected bladder

carcinoma [50]. Growth potentiation may have possibly

occurred via beta1-integrin-dependent augmentation of

cell adhesion and invasion [50–52]. In English scientific

literature, clinical cases of bladder cancers secreting

G-/GM-CSF or expressing their cognate receptors are

not common [53–57]. Patients present with an advanced

disease and a marked leukocytosis in the absence of

secondary infection or a myeloproliferative disorder

[53–57]. Peripheral blood smears show an abundance of

differentiated neutrophils without left shift consistent

with an ectopic induction of normal granulopoiesis

[54]. Responses to treatments are noticeably variable.

Normalization of the white blood cell counts and cyto-

kine levels upon successful resection of a tumor has

been reported [53–57]. Conversely, rapid metastatic

spread and patient’s demise despite therapeutic interven-

tions has also been documented [53–57]. Refractory

cases are speculated to reflect possible involvement of

endogenous tumor G-/GM-CSFRs [54]. The microarray

data report small but statistically significant increases in

gene expression for both GM-CSF and a-subunits of

GM-CSFR in bladder cancers compared to normal tis-

sues [58, 59]. To the contrary, changes in G-CSF or its

receptor gene expression have not been found [58, 59].

Given the rarity of G-/GM-CSF-secreting bladder tumors

and an increasing use of recombinant G-/GM-CSF,

appropriate diagnostic approaches are needed to identify

patients to whom such therapies may be detrimental

[60–62].

Colorectal cancers

The elevated GM-CSF plasma levels have been found in

certain patients with colorectal cancers thus implying

this cytokine contributions to a disease progression [63].

Gene expression arrays identified more than one third of

human and murine colorectal cancers as secreting

GM-CSF [64]. Unlike in many other cancers, however,

ectopic secretion of GM-CSF driven by demethylation of

its gene promoter conveys antitumor effects that are

both immune mediated and immune independent [64].

The immune-independent effects require GM-CSFR

which upon ligand binding significantly attenuates tumor

formation [64]. Moreover, patients with colorectal can-

cers whose tumors test positive for GM-CSF/GM-CSFR

show improved overall 5-year survival [64]. In contrast,

clinical case reports of G-CSF-secreting cancers of colon

and rectum describe patients presenting with large

tumors and distal metastases [65, 66]. Despite surgical

resection resulting in reduced G-CSF plasma levels, the

overall survival of these patients is poor implying onco-

genic functions for G-CSF [65, 66]. The aforementioned

studies thus propose differential roles for GM-CSF and

G-CSF in cancers of colon and rectum. This knowledge

would undoubtedly translate into the individualized use

of (neo)adjuvant cytokines depending on a molecular

profile of a particular tumor.

Melanoma and skin carcinoma

Melanoma is a rapidly progressing incurable skin cancer

with a propensity to metastasize early due to immuno-

suppression and growth induction in part occurring via

G-/GM-CSF. Clinical case studies report existence of are

albeit severe G-CSF-secreting melanomas [67, 68]. That

necessitates their consideration in a differential diagnosis

given the use of adjuvant GM-CSF in these patients [67,

68]. Melanoma cells in vitro have been found to express

G-CSFR transcript; increases in cell proliferation, how-

ever, do not occur upon G-CSF stimulation possibly

reflecting an absence of a G-CSFR protein [69]. In con-

trast, a role of GM-CSF in dissemination of melanoma is

controversial. Studies using a murine model indicate that

under hypoxic conditions tumor-associated macrophages

upon stimulation with GM-CSF secrete a soluble VEGF

receptor [70]. The receptor inactivates VEGF and thus

exerts antiangiogenic effects [70]. A simultaneous stabil-

ization of a hypoxia-induced transcription factor HIF-2a
augments transcription of a VEGF receptor gene and

enhances the antiangiogenic actions of GM-CSF in this

model [70]. In agreement with these observations, clinical

trials of adjuvant GM-CSF monotherapy in patients with

locally advanced melanoma demonstrate a decrease in the

melanoma-specific deaths without improvements in a dis-

ease-free survival [71]. However, other studies also utiliz-

ing murine models of melanoma have found positive

correlations between increased GM-CSF levels and growth

of lesions [72]. Furthermore, a cytokine-dependent infil-

tration of tumors with Gr1+CD11+ MDSC consistent

with tumorigenic effects of GM-CSF has also been docu-

mented [72]. Controversies concerning the roles of

G-/GM-CSF in melanoma may arise in part due to their

complex synergistic inputs into a disease progression
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similar to those found in skin carcinoma [73]. Authors of

this study demonstrate that synergy between G-CSF and

GM-CSF augments cell proliferation and invasiveness in

addition to an early recruitment of tumor-associated

macrophages to a tumor site [73]. Thus, G-CSF in mela-

noma and skin carcinomas exacerbates disease progres-

sion due to pro-angiogenic and immunosuppressive

actions. To the contrary, GM-CSF may demonstrate anti-

tumor activity via modulating recruitment of tumor-asso-

ciated macrophages and their VEGFR secretion.

Bone metastases in cancers of prostate and
breast

A role for G- or GM-CSF in cancers of prostate is less

defined. Reports of G-/GM-CSF-secreting prostate tumors

in English scientific literature are uncommon thus imply-

ing lesser significance of these cytokines for a prostate

cancer progression. However, in vitro and animal models

of this disease implicate G-/GM-CSF in promoting dis-

semination and bone metastasis. Namely, costimulation

with G-CSF and a stem cell factor enhances cancer stem

cell phenotype via upregulation of Oct3/4 transcription

factor, NANOGP8 pseudogene and ABCG2 transporter

[74]. In murine xenograft models, GM-CSF has been

found to facilitate metastatic seeding of prostate cancer

cells in the bone by enhancing osteoclastic activity [75].

Interestingly, this phenomenon has been observed while

animals were undergoing a treatment with GM-CSF for a

chemotherapy-induced leukopenia hence suggesting

growth-promoting effects of a therapeutic GM-CSF [75].

Similar exacerbation of an osteoclastic bone resorption

has been reported in patients with breast cancer that

metastasized to the bone [76]. Specifically, in metastatic

tissues the NF-kappaB transcription factor has been found

to target GM-CSF gene to activate osteoclastogenesis and

thus to facilitate homing of malignant cells in bone tis-

sues. Given that cancer dissemination reflects a presence

of cancer stem cells, their activation via administration of

G-CSF has been proposed as a therapeutic strategy to

augment their chemosensitivity [77]. In this study,

authors speculate that an increased relapse-free survival of

breast cancer patients who received an adjuvant G-CSF is

due to a diminished drug resistance of neoplastic cells

populating bone micrometastases.

Conclusions

Solid tumors of every origin present with many dissimi-

larities in their cellular composition and the molecular

mechanisms of progression. Tumors addicted to

G-/GM-CSF(R) signaling represents a very distinct

molecular subset among other malignancies. For exam-

ple, they utilize signaling pathways of normal hemato-

poiesis and the cytokine-mediated auto-/paracrine

growth augmentation in addition to immune suppres-

sion. The aforementioned signaling modalities albeit not

common in solid neoplasms contribute to some of the

most advanced cases. Table 1 briefly summarizes the

pro- and antitumorigenic roles of G-/GM-CSF in can-

cers of different origins. Prompt diagnosis based on a

tumor cytokine/receptor profile would aid in individual-

izing the anticancer treatment choices for these patients.

In particular, stricter eligibility criteria for adjuvant use

of G-/GM-CSF would prevent certain adverse effects, for

example, exacerbation of tumor growth in cancers

addicted to G-/GM-CSF.
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Table 1. Summary of pro- and antitumorigenic roles of G-CSF and

GM-CSF.

Tumor type G-CSF GM-CSF

NSCLC Angiogenic, immunosuppressive via MDSC

Glioma Auto-/paracrine growth stimulation

Bladder

carcinoma

Auto-/paracrine growth

stimulation

?

Colorectal

cancer

Tumorigenic Immune-mediated and

immune-independent

tumor

suppression

Melanoma Tumorigenic Antiangiogenic via soluble

VEGFR Tumorigenic

via MDSC

Skin cancer Synergistically tumorigenic and angiogenic

Bone

metastases

Sustain cancer stem cell phenotype

G-CSF and GM-CSF differentially regulate tumor growth and metasta-

sis in solid cancers. NSCLC, non-small-cell lung cancer; VEGFR, vascu-

lar endothelial growth factor receptor; MDSC, myeloid-derived

suppressor cells; ?, no discernible evidence of an oncogenic or a

tumor suppressor role has been found.
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