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A B S T R A C T   

Applying Deep Learning (DL) in radiological images (i.e., chest X-rays) is emerging because of the necessity of 
having accurate and fast COVID-19 detectors. Deep Convolutional Neural Networks (DCNN) have been typically 
used as robust COVID-19 positive case detectors in these approaches. Such DCCNs tend to utilize Gradient 
Descent-Based (GDB) algorithms as the last fully-connected layers’ trainers. Although GDB training algorithms 
have simple structures and fast convergence rates for cases with large training samples, they suffer from the 
manual tuning of numerous parameters, getting stuck in local minima, large training samples set requirements, 
and inherently sequential procedures. It is exceedingly challenging to parallelize them with Graphics Processing 
Units (GPU). Consequently, the Chimp Optimization Algorithm (ChOA) is presented for training the DCNN’s fully 
connected layers in light of the scarcity of a big COVID-19 training dataset and for the purpose of developing a 
fast COVID-19 detector with the capability of parallel implementation. In addition, two publicly accessible 
datasets termed COVID-Xray-5 k and COVIDetectioNet are used to benchmark the proposed detector known as 
DCCN-Chimp. In order to make a fair comparison, two structures are proposed: i-6c-2 s-12c-2 s and i-8c-2 s-16c- 
2 s, all of which have had their hyperparameters fine-tuned. The outcomes are evaluated in comparison to 
standard DCNN, Hybrid DCNN plus Genetic Algorithm (DCNN-GA), and Matched Subspace classifier with 
Adaptive Dictionaries (MSAD). Due to the large variation in results, we employ a weighted average of the 
ensemble of ten trained DCNN-ChOA, with the validation accuracy of the weights being used to determine the 
final weights. The validation accuracy for the mixed ensemble DCNN-ChOA is 99.11%. LeNet-5 DCNN’s 
ensemble detection accuracy on COVID-19 is 84.58%. Comparatively, the suggested DCNN-ChOA yields over 
99.11% accurate detection with a false alarm rate of less than 0.89%. The outcomes show that the DCCN-Chimp 
can deliver noticeably superior results than the comparable detectors. The Class Activation Map (CAM) is another 
tool used in this study to identify probable COVID-19-infected areas. Results show that highlighted regions are 
completely connected with clinical outcomes, which has been verified by experts.   

1. Introduction 

Early diagnosis of COVID-19 positive cases is essential to keep the 
infected person isolated and lower the risk of spreading the virus to 
others in the community (Zhaowei Zhang et al., 2022b). Blood samples, 
respiratory gene sequences, and reverse transcription-polymerase chain 
reactions (RT-PCR) have all been suggested as the three main screening 

modalities for COVID-19 (Zhuo et al., 2020). On the other hand, it is 
reported that between 30 % and 60 % of throat swab cases are positive 
on the RT-PCR test, meaning that many healthy persons are infected by 
patients who go untreated. Because of its convenience and speed, chest 
radiography imaging (including CT and X-ray pictures) is a common 
technique for diagnosing pneumonia. The fundamental flaw of chest CT 
has been demonstrated to be its high sensitivity for COVID-19 diagnosis, 
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whereas COVID-19-related visual indexes are visible on X-ray pictures 
(Nilashi et al., 2020). 

It should be stated that peripheral airspace opacities and multi-lobar 
involvement are reported in chest imaging. In these cases, ground-glass 
and mixed consolidation (i.e., lobar and patchy) with 57 % and 29 % are 
the most frequently reported opacities. In the early stages of COVID-19, 
regions that border the pulmonary arteries can be seen to have a ground 
glass appearance; however, this kind of symptom is difficult to diagnose 
visually (K. Zhang et al., 2021). Clinical studies also report diffuse 
airspace or asymmetric patchy opacities as other frequent COVID-19 
symptoms (Cao et al., 2022). It must be noted that only expert radiol-
ogists can interpret those mentioned subtle abnormalities (Jin et al., 
2022; Xu et al., 2020). Because of the high volume of suspicious cases 
and the scarcity of qualified radiologists, automatic diagnostic methods 
can assist radiologists in identifying such subtle abnormalities and in-
crease the early diagnosis rate with high accuracy. 

Considering the reliability (Liao et al., 2021), accuracy (Ban et al., 
2022), buildability (Zhu et al., 2022), easiness to use (Liao et al., 2021), 
stability (Luo et al., 2022a; Luo et al., 2022b), machine learning and 
deep learning techniques are two effective solutions for addressing these 
image processing issues (J. Li et al., 2022; Y. Zhang et al., 2022a; Zhao & 
Wang, 2022); therefore, a reliable dataset is absolutely necessary to have 
an authentic experiment (Y. Li et al., 2021; Liao et al., 2021). Recently, 
several X-ray Covid 19 datasets have been presented by researchers. 
Despite the usefulness of this data set for artificial intelligence special-
ists, they have not been approved by board-certificate radiologists. Re-
searchers extract these images from research papers reporting the 
COVID-19 studies based on CT and X-ray images. However, for the 
sake of having an authentic experiment and keeping the power of sample 
size, we use COVID-Xray-5 k (Minaee et al., 2020) and the COVIDe-
tectioNet dataset (Turkoglu, 2021), in which a trained radiologist 
changed the labels on the X-rays so that only the ones showing evidence 
of the COVID-19 would be retained. 

As the requirement of introducing an accurate and fast detector and 
considering DL’s remarkable capability in this application (Mohammad 
Khishe et al., 2021; Pan et al., 2020; Wu et al., 2021), this paper proposes 
to use DCNN as a COVID-19 detector. Since the beginning of 2020, some 
research papers have been conducted to develop models to recognize 
positive Covid-19 cases (Arnal et al., 2020; Hu et al., 2021a; Rodriguez 
et al., 2020; K. Zhang et al., 2021). 

To overcome the aforementioned drawbacks, our proposed strategy 
involves training a DCNN from a draft on Data 1; then, the final fully- 
connected layer of the pre-trained DCNN is substituted with a new 
fully-connected layer that has been fine-tuned by the ChOA (M. Khishe 
& Mosavi, 2020). In this case, a specific network structure will be pro-
posed by Chimps. 

The main contributions of this paper are as follows:  

• An end-to-end nature-inspired DCNN is provided to effectively 
diagnosis COVID-19-positive cases.  

• The chimp Optimization Algorithm is used for the first time in this 
paper to tune the DCNN’s parameters. 

• The proposed method’s parallel structure causes its easy imple-
mentation on the GPU substrate.  

• Detailed experimental analysis of the models’ performance in terms 
of specificity, sensitivity, Receiver Operating Characteristic (ROC), 
and the precision-recall curves is provided.  

• The paper also exploits the CAM concept to detect the areas probably 
infected by the Covid-19 virus. 

The remainder of the paper is structured as follows. In Section 2, 
mostly related research works are reviewed. Background materials, 
including DCNN, ChOA, and COVID19-X-ray datasets, are presented in 
Section 3. Section 4 introduces the proposed ChOA fine-tuning scheme. 
Section 5 represents the simulation results and discussion, and conclu-
sions are finally described in Section 6. 

2. Related works 

The early identification and diagnosis of COVID19-positive patients 
and other difficult image detection and analysis tasks have benefited 
from the use of DL models. Deep-COVID was nearly the first to use DL 
models to identify COVID19. SqueezeNet, ResNet18, SqueeezeNet, 
ResNet50, and DenseNet-121, four well-known DCNNs, were suggested 
to detect COVID19-positive patients in the studied chest X-ray photos in 
this research. There is a unique dataset (COVID-Xray-5 k) that clinicians 
confirmed in the reference (Minaee et al., 2020). We chose this dataset 
because of its unique character as a benchmark. 

An autonomous DarkNet system was demonstrated to be able to 
categorize items into multiclass and binary categories in reference 
(Ozturk et al., 2020). Although this model included Seventeen convo-
lution layer and several filtering on each layer, which made it fairly 
complex, it was intended to achieve accuracy of up to 98 percent. A 
special DCNN called CoroNet (A. I. Khan et al., 2020) was proposed to 
automatically identify COVID19-positive individuals from chest X-ray 
images. CoroNet was developed utilizing the COVID19 and other pul-
monary pneumonia X-ray images from two other publicly accessible 
sources after training on the ImageNet dataset. Despite the proposed 
model being straightforward and effective, the accuracy and depend-
ability of the results were satisfactory. Reference (Wang et al., 2020) 
advocated using a COVID-Net DCNN to detect COVID19-positive in-
stances. The X-ray imagery of the chest was divided into two categories 
using this model: normal and COVID19. Two publicly accessible datasets 
were used to evaluate the performance of the COVID-Net model. COVID- 
Net had the greatest average accuracy of 92.4 percent, which is not at all 
remarkable. COVIDX-Net (Hemdan et al., 2020) is a DL model designed 
to diagnose COVID19-positive individuals by analyzing chest X-ray 
images. A new dataset of fifty X-ray images was used to test this model 
against several well-known pre-trained models, including DenseNet201 

Table 1 
The detailed information for the resources datasets.  

Dataset COVID-19 Pneumonia Normal Total 

Source datasets 
COVID-19 Radiography Database1 219 1345 1341 2905 
covid-chestxray-dataset2 76 17 – 93 
Pneumonia3 – 4273 1583 5856  

Used datasets 
COVIDetectioNet 219 4290 1583 6092 
COVID-X-ray-5 k 520 – 5000 5520  

1 https://https://www.kaggle.com/tawsifurrahman/covid19-radiography- 
database. 

2 https://github.com/tawsifur/COVID-19-Chest-X-ray-Detection. 
3 https://https://www.kaggle.com/paultimothymooney/chest-xray- 

pneumonia. 

Table 2 
The combination of photos in different datasets.  

Category Normal COVID19  

COVID-X-ray-5 k  
Training Set 2000 420 (84 before augmentation) 
Test Set 3000 100   

COVIDetectioNet  
Training Set 2873 150 
Test Set 3000 69  

Total 
Training Set 4873 570 
Test Set 6000 169  

C. Cai et al.                                                                                                                                                                                                                                      
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and VGG19. The DenseNet201 had the best accuracy (91 percent) in this 
trial. Using the Entropy technique and twelve ML algorithms, reference 
(Mohammed et al., 2020) suggested a unique approach for selecting the 
optimal COVID19 detector. The linear SVM model was the most accu-
rate, with a 98.99 percent accuracy rate. The model had a very high level 
of spatial and temporal complexity despite having great classification 
accuracy. 

The input image was converted into lower-dimensional retrieved 

features using DCNNs as feature extractors as well (Hu et al., 2021b; Lu 
et al., 2022). In order to arrive at the final choice, these output feature 
vectors were put into a variety of classification algorithms (Feng et al., 
2022). Manual parameter setup and matching of feature extraction and 
classifier sections are required despite the approaches’ high classifica-
tion accuracy (98–99 %). In addition, the final model’s complexity is 
rather significant (Dai et al., 2022). 

Classifier performance may be improved by using preprocessing 

Fig. 1. Typical Chest X-ray images, showing ground-glass opacification (blue rectangles) as well as lobar and patchy consolidation (red ellipses).  

Fig. 2. Allocating the parameters of DCNN as the chimps (candid solutions) of ChOA.  

C. Cai et al.                                                                                                                                                                                                                                      
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Fig. 3. The flowchart for the DCNN-ChOA.  

Fig. 4. Precision-recall and ROC curves.  
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approaches, on the other hand (Xie et al., 2022; Zhou et al., 2019). Three 
preprocessed images were produced by researchers (Heidari et al., 2021) 
using preprocessing techniques such diaphragm removal and adjusting 
image contrast. These images were then applied to a transfer learning 
technique (i.e., VGG16) to categorize chest X-ray images into three 

categories: normal, pneumonia, and COVID-19. This machine learning 
technique was able to get a classification accuracy of 93,9%. A binary 
classifier was developed by comparing Inception V2, VGG-19, and the 
clustering algorithm (Dansana et al., 2020). Images with a high degree 
of noise were reduced by employing a features extraction kernel to build 
compact feature maps. The DL models used these feature maps as input. 
Inception V2 had a 60 % accuracy rate, while the decision tree approach 
had a 91 % accuracy rating, with VGG-19 coming in second with a 78 % 
accuracy rate. Prior to using a preprocessing approach to identify and 
remove diaphragm regions from photos, a bilateral filter and histogram 
equalization technique are used to create two groups of filtered images 
(Heidari et al., 2020). With these three photos as inputs, we can improve 
the depth of our DCNN model’s learning capabilities by adding even 
more data to it. These methods may improve the performance, but they 
will almost certainly increase the overall system’s complexity. 

There are many learning problems that can be solved using DL due to 
its impressive properties, however training is difficult (Afrakhteh et al., 
2020; M. R. Mosavi et al., 2017a; Mohammad Reza Mosavi et al., 
2017b). By reviewing the literature, it can be realized that eminent al-
gorithms for training DL are GD (Afrakhteh et al., 2020), CG (Shewchuk, 
1994), HFO (Martens, 2010; Yin et al., 2021), and KSD (Vinyals & 
Povey, 2012). GDB techniques require extensive manual parameter 
adjustment for best performance. Their sequential design makes it 
difficult to parallelize them using GPUs. However, despite being stable 
for training, CG approaches are also incredibly sluggish, requiring 
numerous CPUs and a lot of memory (Zhenhao Zhang et al., 2020). HFO 
was used to train the weights of a conventional CNN by deep auto- 
encoders (Martens, 2010), and this method is more efficient for the -
fine-tuning of deep auto-encoders than the model developed by refer-
ence (Hinton & Salakhutdinov, 2006). In addition, KSD is less 
complicated and more stable than HFO. As a result, it offers faster 

Fig. 5. Accuracy and STD for the i-2 s-6c-2 s-12c structure.  

Fig. 6. Computation time for the i-2 s-6c-2 s-12c structure.  

Fig. 7. Accuracy and STD for the i-2 s-8c-2 s-16c structure.  

Fig. 8. Computation time for the i-2 s-8c-2 s-16c structure.  

Table 7 
The comparison of the DCNN-ChOA and other DL models, which have used the 
COVID-Xray-5 k dataset.  

No. model Sensitivity 
(%) 

Specificity 
(%) 

Accuracy 
(%) 

1 ResNet18 (Minaee et al., 
2020) 

98  90.7 – 

2 ResNet50 (Minaee et al., 
2020) 

98  89.6 – 

3 SqueezeNet (Ucar & 
Korkmaz, 2020) 

98  92.9 – 

4 DenseNet-121 (Sarker et al., 
2020) 

98  75.1 – 

5 ResNet-101 (Tahir et al., 
2021) 

77.3  71.8 71.9 

6 CB-STMRENet (Che Azemin 
et al., 2020) 

–  – 93 

7 VGG16 (I. U. Khan & Aslam, 
2020) 

99.28  99.38 99.33 

8 VGG19 (I. U. Khan & Aslam, 
2020) 

100.00  98.78 99.33 

9 OptiCNN (Mohammad  
Khishe et al., 2021) 

–  – 99.11 

10 CNN (Ahammed et al., 
2020) 

94.03  97.01 94.03 

11 Deep Decision Tree (Yoo 
et al., 2020) 

–  – 95 

12 Support Vector Machine ( 
Yoo et al., 2020) 

–  – 96 

13 K-Nearest Neighbors ( 
Iwendi et al., 2020) 

–  – 92 

14 Random Forest (Iwendi 
et al., 2020) 

–  – 92 

15 Naïve Bayes algorithm ( 
Mansour et al., 2021) 

–  – 90 

16 Decision Tree (Yoo et al., 
2020) 

–  – 82 

17 Our i-2 s-8c-2 s-12c model –  – 99.38 
18 Our i-2 s-8c-2 s-16c model –  – 100.00  

C. Cai et al.                                                                                                                                                                                                                                      
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optimization and classification rates than HFO. On the other hand, KSD 
has higher memory requirements than HFO. 

Recently, evolutionary and metaheuristic algorithms have been 
widely applied to optimize different engineering optimization tasks (M. 
Khishe & Mosavi, 2019; Qiao et al., 2021). The hybrid GA and DCNN 
model described in (Chhikara et al., 2020) was the first study to employ 
metaheuristic optimization techniques for this type of optimization 
model. The Harmony Search (HS) technique was proposed by Rosa et al. 
(Rosa et al., 2015) as an evolutionary fine-tuning strategy for maxi-
mizing the DCNN’s potential. 

A PUL is introduced by (Fan et al., 2018) to utilize pre-trained DCNN. 
An automatic DCNN architecture using GA is introduced by (Fan et al., 
2018) to optimize image classification problems. Nevertheless, this 
automatic GA-based method’s primary shortcoming is that large DCNNs 
cause GA to slow down as its chromosomes grow too large. Other pop-
ular research works in this field are improved evolutionary clustering 
algorithm star (Hassan et al., 2021), hybrid genetic algorithm and ma-
chine learning method (Zivkovic et al., 2021), and hybrid Gabor filter 
and convolutional deep learning classification method (Barshooi & 
Amirkhani, 2022). 

3. Background materials 

The background information, including the COVID-X-ray datasets, 
the DCCN model, and ChOA, is presented in this section. 

3.1. The mathematical model of ChOA 

The ChOA is an innovative optimization technique that takes inspi-
ration from the chimpanzees’ foraging behavior. There are four different 
kinds of chimps in their community: drivers, chasers, barriers, and at-
tackers. Following are main mathematical models of ChOA (M. Khishe & 
Mosavi, 2020): 

LOCchimp(k + 1) = LOCprey(t) − b⋅
⃒
⃒d⋅LOCprey(k) − ch⋅LOCchimp(k)

⃒
⃒ (1)  

b = 2⋅N⋅r1 − N (2)  

d = 2r2 (3) 

ch = Chaotic − vector (4) 
Where k denotes the number of iterations, LOCchimp is the best 

location for the chimpanzee, LOCprey is the best location (solution) so 
far, and d, b, and ch denote the coefficients’ vectors. Additionally, r1 and 
r2 are randomly chosen values in the range (0,1], and N is a vector that is 
non-linearly decreased from 2.5 to 0 during the iterations; ch is a vector 
created from a number of chaotic mappings. 

The most effective chimpanzees are used as prey in order to quan-
titatively replicate chimpanzee behavior because it is uncertain where 

the first prey was situated in the environment. As a result, additional 
individuals will be required to migrate proportionally to the new loca-
tions of the top four chimps, which ChOA will maintain according to the 
Eqs. (5) and (6). 

LOC(k + 1) =
1
4
× (LOC1 + LOC2 + LOC3 + LOC4) (5)  

Where 

LOC1 = LOCAttacker − b1.|d1⋅LOCAttacker − ch1⋅LOC|
LOC2 = LOCBarrier − b2.|d2⋅LOCBarrier − ch2⋅LOC|
LOC3 = LOCChaser − b3.|d3⋅LOCChaser − ch3⋅LOC|
LOC4 = LOCDriver − b4.|d4⋅LOCDriver − ch4⋅LOC|

(6) 

As shown by Eq. (7), chaotic values can be used to imitate traditional 
ChOA social motivational behavior. 

LOCchimp(k + 1) =
{

Eq. (5) λm < 0.5
Chaotic − value λm⩾0.5 (7)  

where λm stands for a random number between (0, 1]. An immature or 
gradual convergence rate may occur from the use of such a condensed 
learning model. 

3.2. Convolution neural network 

DCNNs are a type of neural network used most frequently in deep 
learning to evaluate visual data. DCNNs are sometimes referred to as 
Shifting Invariant or Spatial Invariant neural networks (LeCun, 2015). 
These ideas are organized by DCCNs into two main groups of layers, 
such as the pooling (sub-sampling) and convolution layers. The 
connection weights θkψ and biases φkψgenerate the kth fearture map 
(FEMA) FEMAk

ij using the tanh function, which is defined by Eq. (10) 
(LeCun, 2015). 

FEMAk
ij = tanh((θk × x)ij + φk) (10) 

The sub-sampling layer produces spatial invariance by lowering the 
resolution of FEMAs, where each FEMA corresponds to the FEMA of the 
preceding layer. Eq. (11) is used to define the pooling mechanism 
(LeCun, 2015). 

ψj = tanh(W
∑

N×N
ψn×n

i + ω) (11)  

Where ψn×n
i denotes the inputs,W and ω are trainable scalar and bias, 

respectively. 

3.3. COVID-X-ray datasets 

It was hypothesized that COVID-19′s sensitivity would be similar to 

Fig. 9. An illustration of a feature map, (a) COVID19 and (b) Non-COVID19.  
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that of chest X-rays (56 %), based on the lower confidence range for X- 
ray sensitivity stated in reference (Wong et al., 2020). The required 
sample size was determined by multiplying the desired level of sensi-
tivity (56 %) with the desired level of specificity (0.05) to get an overall 
power of 80 %. As a result, we calculated that there were around 165 
individuals in the both positive and negative groups (a total of 330 
sample). 

In order to have enough test samples, this paper exploits two chest X- 
ray datasets to investigate the performance of the proposed model. The 

first utilized dataset is called COVID X-ray-5 k (Minaee et al., 2020). The 
COVID X-ray-5 k comprises of 3,100 testing set and 2,084 training set 
from two datasets of X-ray images. The initial dataset, known as Covid- 
Chestxray, was compiled by reference (Cohen et al., 2020) and included 
both chest X-ray and CT-scans COVID-19 images. There are 250 COVID- 
19 X-ray images in this dataset, 203 of which are anterior-posterior 
views. Additionally, it contains some meta-data about each photo, 
such as the gender and age. Given the board-certified radiologist’s 
advice, all COVID-19-positive cases were selected from anterior- 

Fig. 10. Typical example of masked images.  
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posterior cases in this dataset. In the COVIDXray-5 k dataset, the board- 
certified radiologists investigated the anterior-posterior images to 
remove the images without the COVID-19 signs from the dataset. As a 
result, radiologists kept 184 images out of 203 interior-exterior X-rays 
with obvious signs of COVID-19 and eliminate 19 of them, of which their 
COVID-19 signs were not approved. This strategy introduced a new class 
with a more precisely classified dataset. In a total of 184 pictures, 100 
are candidates for the test set, while the remaining 84 will serve as ex-
amples for the training set. 

Data augmentation is used to bring the total number of confirmed 
cases up to 420. The additional ChexPert dataset (Irvin et al., 2019) was 
included as there were few normal instances in the covid-chestxray- 
dataset (Asif et al., 2020). This data set contains 224,316 images from 
65,240 patients, organized into 14 subcategories (non-finding, Pneu-
monia, etc.). The 2,000 non-COVID photos used in the training set all 
came from the same category, with 700 coming from the non-finding 
sub-category and 100 from the other thirteen sub-categories. In 
conclusion, 2000 and 3000 non-COVID photos were selected for the test 
and training sets, respectively, from this dataset. Note that all of the 
photos have been evaluated by a radiologist, regardless of their 
reference. 

It should be noted that images in this dataset have different resolu-
tions, including high-resolution images, i.e., more than 1900×1400, and 
some low-resolution images, i.e., below 400×400. This is a positive 
point for the model evaluation because it can obtain a reasonable ac-
curacy with variable imagery methodology and different image resolu-
tions. In fact, if all the images have a high resolution, the model may 
achieve an acceptable result, but it certainly does not achieve acceptable 
results for real datasets with various resolution images. In this case, the 
results are actually biased. In other words, although it is desired to 

gather all COVID-19 images in completely controlled conditions, which 
causes super-clean and high-resolution images, It is not appropriate as 
the field of machine learning advances. Also, the COVID-19 images 
collected from various sources result in different dynamic ranges (also 
from ChexPert); therefore, In order to reduce the model’s sensitivity to 
dynamic ranges during the training phase, all photos are scaled to the 
same distribution. 

The name of the second dataset is the COVIDetectioNet dataset 
(Turkoglu, 2021), which is generated from publicly available X-rays. 
This dataset is a combination of three different chest X-ray datasets that 
were previously published on Kaggle and Github. This dataset includes 
4290 chest X-rays of pneumonia, 219 COVID-19, and 1583 normal chest 
X-rays image. Table 1 provides detailed information about the resource 
datasets, and Table 2 lists the final datasets utilized in this investigation. 

Typical images are displayed in Fig. 1 together with the appropriate 
marked areas. There are 2,000 training samples and 3,000 test samples 
in COVID-Xray-5 k. This dataset also includes COVID-19 positive cases, 
while the negative cases are drawn from a portion of the ChexPert 
dataset (Irvin et al., 2019). 

4. Methodology 

In this section, the searching agent of ChOA (i.e., chimps) and loss 
(fitness) function, which are the main concepts for introducing a prob-
lem for a metaheuristic algorithm, will be discussed. 

4.1. Presentation of chimps 

When utilizing optimization techniques to tune a deep network, 
there are ty-pically-two basic problems. The Chimps must first 

Fig. 11. The CAM demonstration for COVID19.  

Fig. 12. The CAM demonstration for Non-COVID19.  
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accurately describe the parameters of the structure. The fitness function 
must then be defined in terms of the problem under consideration. A 
separate step in tuning a DCNN with ChOA is the presentation of the 
network parameters. As a result, in order to achieve the best detection 
accuracy, key DCNN parameters, such as the biases and connection -
weights of FCL, should be precisely defined. To summarize, ChOA op-
timizes the weights and bias of the final layer, which is used to 
determine the fitness function for the loss function. Actually, the ChOA 
uses chimps to represent the bias and weight values from the final layer. 

In general, the vector, matrix, and binary configurations are used to 
display the biases and weights of a DCNN as individuals of the meta- 
heuristic algorithms. The ChOA requires the parameters for a vector- 
based model, hence in this research, the individual is displayed in Eq. 
(12) and Fig. 2. 

Chimps = [W11,W12, ...,Wnh, b1, ..., bh,M11, ...,Mhm] (12) 

In this equation, Wij denotes the weight between the ith input neuron 
and the jth hidden node, n indicates the input neurons’ number, bj shows 
the jth bias of hidden neurons, and Mjo denotes the weight from the jth 
hidden to the oth output neurons. As indicated previously, the suggested 
design consists of a straightforward LeNet-5 framework. In this section, 
two network structures, i.e., i-6c-2 s-12c-2 s and i-8c-2 s-16c-2 s, are 
utilized, in which the pooling and convolution layers are denoted by C 
and S, respectively. Also, t he kernel size of the convolution layer is 5x5, 
and the down sampling scale is 2. 

4.2. Loss function 

DCNN is trained using the ChOA algorithm (i.e., DCNN-ChOA) to 
achieve the best accuracy and reduce evaluated classification errors. In 
this regard, the loss function utilized in DCNN-ChOA is as follows: 

y =
1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=0
(o − d)2

N

√
√
√
√
√

(13)  

Where N indicates the number of training samples, d stands for the 
intended output, and o is the computed output. The ChOA has two 
termination criteria, either achieving maximum iteration or a preset loss 
function. Consequently, Fig. 3 exhibit the block diagram of DCNN- 
ChOA. 

5. Simulation results and discussion 

The effectiveness of the classifier was shown using ROC curves on 
each sample in the testing dataset. The probability of accurate detection 
is generally represented by the area under the ROC curve (AUC). LeNet- 
5, DCNN-GA, and MSAD are only a few of the benchmark models that 
are used to assess the effectiveness of DCNN-ChOA. The ROC and 
precision-recall curves for the i-6c-2 s-12c-2 s and i-8c-2 s-16c-2 s 
structures, respectively, are shown in Fig. 4a and b. 

Training was repeated 10 times for a total of 5 to 12 min, and the 
developed DCNN-ChOA achieved a detection accuracy of 98.11 percent 
or higher on the validation dataset. Since there is such a large discrep-
ancy between the outcomes, we utilize a weighted average of the Ten 
trained DCNN-ChOA and validate the accuracy of the weights to create 
an ensemble. The validation accuracy for the mixed ensemble DCNN- 
ChOA is 99.11 %. LeNet-5 DCNN obtained an accuracy between about 
73.58 % and 87.31 % at the same time, while the resulting ensemble 
achieved a accuracy of 84.58 % on the validation dataset. These 
numbers demonstrate the remarkable detection performance of the 
DCNN-ChOA detector when compared to other benchmarks. The sug-
gested DCNN-ChOA, for contrast, offers over 99.11 % accurate detection 
with less than 0.89 % false alarm rate. The precision-recall figure, in 
general, shows how recall and accuracy are traded off at different 
threshold values. Fig. 4a and b clearly indicate that DCNN-ChOA has a 

larger AUC than other models. As a result, compared to other benchmark 
detectors, it reveals a reduced rate of false negative and false positive 
results. 

Fig. 5 displays the accuracy and Fig. 6 displays the computing time 
for the i-6c-2 s-12c-2 s structure. In Figs. 7 and 8, in descending order, 
are summarized the results for accuracy and computation time for the i- 
8c-2 s-16c-2 s structure. The simulations generally showed that the 
outcomes were improved with increasing epoch values. It should be 
mentioned that errorbars are used to depict the standard deviation (STD- 
DEV). 

Finally, a comprehensive comparison between the DCNN-ChOA and 
other existing methods using the COVID-Xray-5 k dataset is tabulated in 
Table 7. The COVID-Xray-5 k introduced in (Minaee et al., 2020), which 
is the baseline dataset and method for the COVID-19 recognition task, 
achieved an average accuracy of 0.766 using the conventional DCNNs. 
Since most references have used the sensitivity, specificity, and accuracy 
metric to compare the results, this metric is used to compare the results 
of the proposed method with other benchmark methods. 

As can be seen from the results of Table 7, the proposed model with 
structure i-2 s-8c-2 s-16c represents the best accuracy (i.e., 100 %), 
followed by the i-2 s-8c-2 s-16c structure and VGG19 with 99.38 % and 
99.33 %, respectively. Of course, it should be noted that the 19-layer 
VGG 19 network is much more complex than the 5-layer LeNet-5. 

The results of the simulation show that DCNN-ChOA achieves the 
best outcomes for practically all epochs. The DCNN-performance 
ChOA’s gain over the DCNN changes with each epoch, with values 
ranging from 2.82 (the tenth epoch) to 5.94 (the first epoch). Taking into 
account the randomness of both ChOA and the connection weight of the 
fully-connected layer, the DCNN-ChOA takes from around 0.8619 times 
(for the first epoch, 88.01/102.11) to 08,147 times (for the tenth epoch, 
923.43/1133.44) as long to compute as the LetNet-5. It is clear that the 
efficiency of the ChOA grows with the number of epochs because the 
stochastic character of the ChOA causes the complexity to decrease. 
Experts in data science might suggest that the optimal outcome should 
be shown in terms of the confusion matrix, total precision, accuracy, 
recall, ROC curve, etc. However, if the data cannot be comprehended, 
these optimal outcomes may not be adequate for medical specialists. 
Medical professionals and data scientists will have a deeper grasp of the 
network’s decision-making process if the ROI driving that process can be 
identified. 

In addition to ensuring classification accuracy, we look for features 
within an image that aid experts in correctly and easily classifying the 
images. This is accomplished through the use of class activation map-
ping (CAM) (Hu, Khishe, Mohammadi, Parvizi, Taher Karim, et al., 
2021). As a result, by adding the DCNN model’s probability to the final 
convolutional layer of the associated model, the distinct discriminative 
zones for each category are highlighted. 

The activation map of the ReLU layer, which comes after the last 
convolution layer, creates the CAM for a particular image class. Each 
activation mapping’s weighted average is used to calculate class grades. 
After the final convolutional layer, CAM introduces a cumulative 
average pooling layer that is utilized to generate connection weights 
based on geographic location. Therefore, it enables locating the exact 
regions within a photo that identify the class specificity before the 
softmax layer, which can improve trust in the results. 

Fig. 9 is an example feature map for COVID19 and Non-COVID19 
input images. Images that have been masked for COVID19 and Non- 
COVID19 are displayed in Fig. 10. Consequently, the picture discrimi-
native regions for COVID19 and Non-COVID19 are displayed in Figs. 11 
and 12, respectively. In fact, Figs. 11 and 12 depict the results of the 
CAM demonstration in the “COVID19′′ and ”Non-COVID19′′ instances, 
respectively. This is confirmed by the suggested model, which also lo-
cates the optimal region for its selection based on a set of discriminating 
criteria. 

In the COVID-19 cases, several regions are obviously emphasized 
(reddish color). This proves that the system successfully categorizes the 
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data. This visualization of deep learning techniques can help medical 
practitioners and radiologists understand these models from a different 
perspective and with greater depth. 

6. Conclusion 

An effective DCNN model for detecting Covid-19 X-rays was pro-
posed in this study, and the ChOA was used in its development. On the 
COVIDetectioNet and COVID-Xray-5 k datasets, the developed detector 
was benchmarked. Two structures, i-6c-2 s-12c-2 s and i-8c-2 s-16c-2 s, 
were chosen for comparison after hyperparameter adjustment. The 
outcomes were contrasted with DCNN-GA, MSAD, and standard DCNN. 
Since there was such a large discrepancy between the outcomes, we used 
a weighted average of the ten trained DCNN-ChOA and the validation 
accuracy of the weights to create an ensemble. Validation accuracy was 
99.11 % for the ensemble DCNN-ChOA. The final ensemble of LeNet- 
5 achieved an accuracy of 84.58 % in validation dataset. Comparatively, 
the suggested DCNN-ChOA produced over 99.11 % accuracy with a false 
alarm rate of less than 0.89 %. In addition to the previous comparison 
and in order to have a baseline, the results of the proposed fine-tuned 
models were compared to sixteen state-of-the-art classifiers, including 
ResNet18, ResNet50, SqueezeNet, DenseNet-121, ResNet-101, CB- 
STMRENet, VGG16, VGG19, OptiCNN, CNN, Deep Decision Tree, Sup-
port Vector Machine, Naïve Bayes algorithm, K-Nearest Neighbors, and 
Random Forest, which have been applied to the identical dataset, i.e., 
COVID-Xray-5 k. The findings showed that when compared to these 
well-known classifiers, the developed detector can deliver very 
competitive results. The possible COVID-19-infected areas were also 
identified using the CAM concept. Results showed that highlighted re-
gions were completely connected with clinical outcomes, which was also 
supported by experts. 

The following topics can be considered as future research direction: 
applying DCNN-ChOA for other image classification tasks, including 
breast or brain cancer diagnosis, sonar and radar image classification, 
and agricultural image recognition. Although DCNN-ChOA presented 
some merits, using a hybrid method, especially an iterative method like 
ChOA, leads to high complexity computation; therefore, some unsu-
pervised or semi-supervised learning can help reduce time and space 
complexity. Recently some modifications of ChOA, including weighted 
ChOA (WChOA), Dynamic Levy flight ChOA (DLF-ChOA), etc., have 
been proposed for the various filed of optimization problems. So, the 
improved version of ChOA or other well-known metaheuristic opti-
mizers like SMA, AOA, or MPA can be used for the DCNN fine-tuning 
task. Considering the fact that the more comprehensive data sets, the 
more robust results, using more extensive and more diverse datasets in 
future studies can lead to more robust results. 
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