
ARTICLE

Dual-energy three-compartment breast imaging for
compositional biomarkers to improve detection of
malignant lesions
Lambert T. Leong 1,2, Serghei Malkov3, Karen Drukker4, Bethany L. Niell5, Peter Sadowski 6,

Thomas Wolfgruber 1, Heather I. Greenwood7, Bonnie N. Joe7, Karla Kerlikowske3,8, Maryellen L. Giger 4 &

John A. Shepherd 1✉

Abstract

Background While breast imaging such as full-field digital mammography and digital breast

tomosynthesis have helped to reduced breast cancer mortality, issues with low specificity

exist resulting in unnecessary biopsies. The fundamental information used in diagnostic

decisions are primarily based in lesion morphology. We explore a dual-energy compositional

breast imaging technique known as three-compartment breast (3CB) to show how the

addition of compositional information improves malignancy detection.

Methods Women who presented with Breast Imaging-Reporting and Data System (BI-

RADS) diagnostic categories 4 or 5 and who were scheduled for breast biopsies were con-

secutively recruited for both standard mammography and 3CB imaging. Computer-aided

detection (CAD) software was used to assign a morphology-based prediction of malignancy

for all biopsied lesions. Compositional signatures for all lesions were calculated using 3CB

imaging and a neural network evaluated CAD predictions with composition to predict a new

probability of malignancy. CAD and neural network predictions were compared to the biopsy

pathology.

Results The addition of 3CB compositional information to CAD improves malignancy pre-

dictions resulting in an area under the receiver operating characteristic curve (AUC) of 0.81

(confidence interval (CI) of 0.74–0.88) on a held-out test set, while CAD software alone

achieves an AUC of 0.69 (CI 0.60–0.78). We also identify that invasive breast cancers have

a unique compositional signature characterized by reduced lipid content and increased water

and protein content when compared to surrounding tissues.

Conclusion Clinically, 3CB may potentially provide increased accuracy in predicting malig-

nancy and a feasible avenue to explore compositional breast imaging biomarkers.
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Plain language summary
Breast cancers are detected by

mammography. This study explored

the use of a particular kind of mam-

mography technique to obtain infor-

mation about the composition of

cancerous and non-cancerous breast

tissue. This technique provided mea-

sures of lipid (fat), water, and protein

content in addition to shape char-

acteristics provided from standard

mammography. Adding information

about the composition of the tissue

to its shape characteristics resulted in

an increased ability to distinguish

invasive cancerous tissue from unaf-

fected surroundings. Invasive breast

cancer tissues were also found to

exhibit lower lipid, higher protein and

higher water content when compared

to other non-invasive, non-cancerous

breast tissues in which cancer was

suspected. Our findings highlight the

added value of including the compo-

sition of breast tissue when deciding

if biopsy of the suspicious tissue is

warranted.
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Breast cancer is the leading cause of cancer death among
women globally1. Early detection with screening mammo-
graphy has a beneficial impact on survival and has been

shown to reduce cancer mortality2–6. However, the accuracy
resulting from breast imaging technologies still has room for
improvement. For instance, in the United States, 71% of biopsies
do not result in a breast cancer diagnosis suggesting a modest
specificity7,8. Furthermore, breast density affects the accuracy of
full-field digital mammography (FFDM) since dense tissue can
mask tumors, diminishing the sensitivity of mammography by
10–20% compared to women with fatty breasts9. Compared to
FFDM, digital breast tomosynthesis (DBT) increases cancer
detection rates and decreases recall rates. However, the added
benefit of DBT is difficult to quantify and studies have demon-
strated that, positive biopsy rates following screening DBT are
similar to those following screening FFDM9,10. Also, in a registry
study including over 1.5M screening mammograms from 46
registry sites, it was shown that women with the extremely dense
breast tissue had neither reduced recall nor increased cancer
detection rates for DBT compared to FFDM11. Improvements to
sensitivity and specificity are needed and could result in an
increase in detecting malignancies and reduction of unnecessary,
benign biopsies.

The fundamental information that a radiologist uses, the
attenuation of X-rays from a single exposure, has remained the
same since the inception of breast imaging in 1913 (ref. 12).
Without additional information, mammography provides only
relative radiopacity (i.e. tissue density relative to a background of
fat) and lesion type, such as mass, asymmetry, distortion, or
calcifications. Lesion classification is limited to detection of cal-
cifications, which are often benign, as well as the shape and
symmetry of high-density breast masses. Thus, lesion classifica-
tion has limited reliably in predicting an invasive breast cancer.
Computer-aided detection (CAD) software attempts to improve
the diagnostic accuracy of mammography through the utilization
of computer vision and artificial intelligence algorithms to auto-
matically identify anomalies13. Yet, the fundamental information
used by CAD is identical to the information radiologists use.
While CAD has been shown to be clinically beneficial by
some14,15, others have shown that the addition of CAD had no
significant improvement to screening sensitivity and specificity16.
It is likely that the limit of diagnostically relevant information
from radiologists and/or CAD has been reached with X-ray based,
single-energy mammography, especially in women with dense
breasts.

Additional diagnostic information can be obtained via
contrast-enhanced mammography (CEM). Contrast imaging has
demonstrated increased sensitivity to detect cancer due to dif-
ferential vascularization of cancerous and benign tissue17. Inva-
sive breast cancer typically presents as a mass of epithelial cells
with a high degree of vascularization. IDC, and often DCIS due to
its own vascularization, enhance on contrast imaging methods.
However, these techniques still have low specificity because
benign lesions also enhance with contrast18–20. Like mammo-
graphy, the diagnostic information gained with contrast imaging
is still based in the lesion morphology and structure of sur-
rounding tissue. Since intravenous contrast can cause adverse
effects, CEM is often used as a secondary imaging tool. Therefore,
radiologists are often not afforded this information on the initial
screening exam.

Radiomic features and imaging biomarkers based on tissue
composition have the potential to address accuracy issues seen
with current imaging techniques and technologies. Evidence
suggests that the biology and atomic composition of malignant
lesions differ from benign lesions and these differences manifest
into macroscopically unique tissue compositions which are

measurable with multispectral X-ray imaging21,22. First, invasive
cancer is highly angiogenic and malignant tumors have been
shown to consume lipids to sustain high rates of proliferation23,24.
The central to peripheral microvasculature of the lesion differs
significantly between normal tissue, fibroadenomas (FA) and
different grades of invasive ductal carcinoma (IDC)25,26. Second,
adipocytes, available at the tumor stromal interface, have
demonstrated a pro-tumorigenic role for breast cancer27. Triple-
negative cancers utilize and require fatty-acid oxidation leeched
from the surrounding tissues. This has been observed using
multispectral mammograms as a decrease in fat composition
surrounding triple-negative cancers versus receptor-positive
tumors28. Third, Cerussi et al.29 found a 20% reduction in lipid,
and 50% increase in water, content in invasive breast cancer versus
normal breast tissue. A strong positive correlation (R= 0.98)
between the macroscopic water concentration and the Scarff
Bloom-Richardson Score (a histological grading scale ranging
from 3 to 9 that accounts for tubule formation, nuclear pleo-
morphism, and mitosis counts) was also reported30. Fourth,
invasive cancers have significantly lower X-ray attenuation than
FAs that also lead to biopsy, suggesting a distinctly different
composition between cancerous and benign masses17.

The purpose of this study is to demonstrate that compositional
profiles of the breast combined with CAD predictions can
improve specificity of breast cancer detection. A dual-energy
mammography technique known as 3-compartment breast (3CB)
imaging was used to obtain the lipid–water–protein (LWP)
fractions of the breast on a pixel-by-pixel basis. The 3CB scientific
principals and imaging protocols have been previously
presented21,31 as well as the characteristics of malignant versus
benign lesions22,32. To quantify the added clinical value of 3CB
imaging, we compared the performance of CAD-based models to
identify malignancies without and with 3CB lesion characteriza-
tion. Malignant and non-malignant masses and hormone recep-
tor status were further studied to better understand the biological
mechanism which led to increased specificity of models that
include 3CB composition. Compositional information from 3CB
improved accuracy of malignancy predictions when compared to
CAD and confirmed that invasive breast lesions have unique
compositional signatures when compared to other lesion types.

Methods
Data acquisition. The participants in this study were women
identified from screening and diagnostic mammography popu-
lations at the University of California San Francisco (San Fran-
cisco, CA) and H. Lee Moffitt Cancer Center and Research
Institute (Tampa, FL). Women who presented with Breast
Imaging-Reporting and Data System (BI-RADS) diagnostic
categories 4 or 5 and who were scheduled for breast biopsies were
consecutively recruited for 3CB imaging. Demographics and
characteristics of this studies population are detailed in Table 1.
The 3CB imaging clinical study was approved by the institutional
review board at all participating research sites (University of
California, San Francisco, University of Chicago, and H. Lee
Moffitt Cancer Center and Research Institute) and followed
Health Insurance Portability and Accountability Act-compliant
protocols. All study participants provided written informed
consent.

In addition to clinical diagnostic mammograms, participants
underwent further research imaging using the 3CB protocol prior
to breast biopsy. FFDMs, 2D images, were acquired on Hologic
Selenia systems (Hologic, Inc., Bedford, MA). In brief, the 3CB
imaging protocol consisted of two images in succession: a clinical
mammogram (autocontrast, autocompression release off) and a
high-energy (HE) image acquired at 39 kVp (40 mAs, 3-mm
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additional aluminum filtration). A calibration phantom was
placed on top of the breast compression paddle during imaging to
accurately estimate paddles compression depth, warp, and tilt
from which exact submillimeter point thicknesses of the breast
could be calculated33. With these three pieces of information (HE

attenuation, low-energy (LE) attenuation, and local breast
thickness) a system of three equations was solved which resulted
in the LWP thicknesses at each pixel. Absolute accuracy of this
technique has been previously verified using reference
standards21,34.

Pathology results were reported on all biopsies and radiologist
delineated regions of interest (ROIs) for the mammographic
abnormalities on presentation mammogram images. Participants
were excluded if biopsy site annotation coordinates could not be
correctly registered on presentation or 3CB images, if the lesion
pathology was incomplete, or if the 3CB data set was incomplete.
The 3CB protocol requires that images be acquired on calibration
phantoms prior to patient imaging and the absence of calibration
images or poor image quality, due to excessive movement
between HE and LE image acquisition, resulted in an incomplete
3CB data set and exclusion. See Fig. 1. for a flowchart of study
participant enrollment and derivation of final data set.

Table 2 stratifies ROIs by BI-RADS density categories.

3CB feature extraction. The 3CB LWP thickness maps were
generated for all FFDM images and were used to quantify the

Table 2 Saparation of all 689 radiologist delineated ROIs by
pathology and BI-RADS density.

BI-RADS density A B C D Total findings

Invasive 21 33 45 4 103
DCIS 2 27 22 10 61
Fibroadenoma 8 49 41 18 116
Other benign 34 164 178 33 409
Total 65 273 286 65 689

Table 1 Participant stratification by age, BMI, BI-RADS
density, and duration of hormone therapy.

N Percentage

Participants 349 100
Age
<40 20 6
40 to <50 120 34
50 to <60 118 34
60 to <70 57 16
70 to <80 30 9
≥80 4 1
BMI
<18.5 9 3
18.5 to <25 120 34
25 to <30 92 26
≥30 128 37
BI-RADS
A 23 7
Density
B 130 37
C 162 46
D 34 10
Hormone therapy
None 321 92
<5 years 10 3
≥5 years 18 5

Fig. 1 Overview of participants and data used for modeling and analysis. Flow diagram detailing inclusion and exclusion of data used in the final analysis.
This study includes 349 patients (N) which equates to 360 biopsy sites (L) and 660 mammographic images (I) which includes craniocaudal (CC) and
mediolateral oblique (MLO) views. The 660 images contained 689 radiologist delineated region of interests (ROIs) (R) and 413 computer-aided detection
(CAD) delineated ROIs agreed with radiologist delineated ROIs. The final data set contained all radiologist ROIs and agreeing CAD ROIs which results in
1107 ROIs.
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composition within the radiologist delineated ROIs. Standard
presentation images and their fully registered 3CB compositional
maps can be observed in Fig. 2a. Note that the 3CB images are
thickness maps where each pixel corresponds to a thickness, in
centimeters, of a given composition. Recall, we are investigating
the diagnostic impact of independently adding compositional
information to morphological features already existing in stan-
dard clinical FFDM. To abstract compositional information away
from morphological features, we computationally extracted nine
measurements to quantify the composition within a given region.
These nine measurements included the mean, median, standard
deviation, minimum, maximum, kurtosis, skew, total, and per-
centage value of all pixels contained within a ROI.

Three additional outer ROIs were derived from the lesion ROI
to capture the background or tissue immediately surrounding a
lesion, see Fig. 2b. Each outer region captured all pixels extending
2 mm from the border of the previous region. Therefore, the first,
second, and third outer regions contain all pixels extending from
the edge of the lesion ROI out to 2 mm, the edge of the first outer
region out to 2 mm, and the edge of the second outer region out
to 2 mm, respectively. In other words, in relation to the lesion
border, the first, second, and third outer regions measure
0–2 mm, 2–4 mm, and 4–6 mm, respectively. For each lesion,
we obtained nine compositional measurements from four ROIs
(lesion and three outer regions) on each of the three composi-
tional images (3CB LWP maps) which resulted in 108 composi-
tional features per lesion ROI.

Clinical CAD lesion detection. Low-energy, standard FFDMs
were processed using commercial CAD software (SecondLook,

version 7.2, iCAD, Nashua, NH) to identify suspicious masses
and calcifications. The CAD software utilizes a proprietary
algorithm to delineate suspicious ROIs for masses and individual
calcifications as well as assigns a probability of malignancy for
each delineation. Note that for input to our analysis, we used the
calcification cluster ROI rather than each individual calcification
ROI. Calcification cluster ROIs were calculated using the convex
hull or minimum envelope which encompasses all calcifications
associated with a cluster. Therefore, CAD delineated ROIs, used
in our final analysis, may consist of either a suspicious mass or a
calcification cluster.

Predictive modeling with morphology and 3CB. The final data
set, consisting of compositional features extracted from ROIs, was
split by patient ID into a train, validation, and test set using a 60,
20, and 20% split. The data were split by patient ID such that all
ROIs for a given patient remained exclusively in one of the three
datasets. These data split condition ensured no data leakage and
ROIs from a single patient, which are highly correlated, did not
end up in both the training and test set, for example. To reiterate,
the train, validations, and test datasets contained their own
unique subset of patients and patient ROIs and the test set con-
tained 20% of the patients.

A neural network model was trained to predict malignancy
probability from the 108 extracted 3CB features and the
prediction from CAD. CAD predicts probabilities of malignancy
rather than specific lesion type. To compare against CAD
performance, target labels were created for our data set which
combined BN and FA pathologies into a non-malignant label.
ROIs with DCIS and IDC pathologies were also combined into a

Fig. 2 3CB, lipid, water, and protein, data, and regions of feature extraction. a Full presentation mammogram image and the derived three-compartment
breast (3CB) thickness maps. From left to right is the standard presentation craniocaudal mammogram used for reading by a radiologist, lipid thickness
map, water thickness map, and protein thickness map. Grayscale colorbars, adjacent to 3CB thickness maps, indicate thickness in cm. b The composition of
the background or tissue surrounding a lesion was measured progressively by capturing three outer regions extending from the border of the lesion (yellow
solid line). The outer regions extend from the lesion border at distances of 2 mm (orange dot-dashed line), 4 mm (cyan dotted line), and 6mm (magenta
dashed line). c Computer-aided detection (CAD) delineations that had some agreeance with radiologist region of interest (ROIs) (yellow line) were
included in the final data set. CAD delineates suspicious masses (cyan dot-dashed line) and calcification clusters (magenta dotted line). Outer regions for
all ROIs (radiologist and CAD delineated) were calculated but not displayed in this sub-figure for easy viewing.
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new malignant label. The final model was trained to output these
new targets or probability of malignancy. Additional details on
the neural network architecture, tuning, and hyperparameters
optimization can be found in the extended Methods Section and
Supplementary Fig. 1.

Quantifying the added diagnostic benefit of 3CB for malig-
nancy prediction. The benefit of 3CB composition was evaluated
using the following metrics area under the receiver operating
characteristic (ROC) curve (AUC), the integrated discrimination
improvement (IDI) and the net reclassification improvement
(NRI)35,36. All metrics were computed on the unsee, independent
hold out test set. The 95% confidence intervals (CI) and the mean
AUC were computed via 1000 rounds of bootstrapping. All
samples were selected randomly for each bootstrap round and
thus the number of replacements were also random for each
bootstrap round.

IDI and NRI offer additional insight into the benefits of new
biomarkers beyond AUC comparison. Performance differences
between a reference model and a new model, which contains the
added biomarkers are evaluated across all calculated risks. The
NRI measures the number of cases correctly reclassified by the
new model while the IDI also takes into account the magnitude of
the change in discrimination slopes. The NRI is the sum of the
events NRI and the non-events NRI. In the context of this study,
events and non-events correspond to malignancies and benigns,
respectively. Therefore, the NRI captures the percent improve-
ment of correctly classified malignancies and benigns by the new
model which includes 3CB features. The IDI is the sum of the
integrated sensitivity (IS) and the integrated 1-specificity (IP).
The IS is the difference in the mean probability of malignancy for
those with cancer between CAD and the neural network while the
IP is the difference in the mean probability of malignancy for
those with benign masses between CAD and the CAD+ 3CB
neural network models. The NRI and IDI changes were evaluated
with respect to BI-RADS assessment categories as to investigate
the clinical implications of 3CBs improvement. The BI-RADS
categories of interest were 3, 4a, 4b, and 4c, with risk threshold of
2%, 10%, 50%, and 95%37, respectively.

Lesion composition characterization. Using quantitative meth-
ods, we further investigate compositional differences among the
four different lesion pathologies. To quantify these unique sig-
natures, the median LWP values from each of the surrounding
outer region ROIs were subtracted from the median LWP values
from within the lesion ROI. Only radiologist drawn ROIs deli-
neating biopsy sites were included in this analysis. Micro-
calcifications are present in many of the mammograms and
although they are not composed of lipid, water, or protein, they
can produce a high water and protein signal in the 3CB thickness
maps. Therefore, the median pixel values were used to mitigate
the influence microcalcifications have on the mean composition
within an ROI. Lesion signatures were stratified by pathology and
compositional component type (i.e. lipid, water, or protein).

Our model predicts probability of malignancy rather than lesion
type, so malignant and non-malignant types were grouped for this
analysis. The average signature for malignant lesion types (DCIS and
IDC) and the average signature between non-malignant types (BN
and FA) were computed for all outer ROIs. Differences between the
malignant and non-malignant compositions were computed and p
values were derived using Welch’s test for unequal variance.

We also looked at possible correlations between invasive
cancers and patient hormone receptor status. It is hypothesized
that cancers of different receptor type have unique compositional
signatures due to utilization of exogenous fatty acids for sustained

growth28,38,39. To investigate, we compared the composition of
IDC lesions to their background and stratified each lesion by
hormone receptor status. We compared triple-negative receptor
lesions to all receptor-positive lesions: estrogen receptor,
progesterone receptor, human epidermal growth factor receptor
2, or any combination of the three. Differences between the triple-
negative and receptor-positive lesions composition were also
computed, and p values were derived using Welch’s test for
unequal variance.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
Final participant data. This work reports on results from 349
participants after exclusions. Participants were imaged in both the
craniocaudal (CC) and mediolateral oblique (MLO) views which
resulted in 698 images of 349 women participants. After image
exclusion, 660 images remained which contained a total of 689
radiologist delineated ROI of biopsy sites for which pathology was
reported. The 689 ROIs consisted of 103 IDC, 61 ductal carci-
noma in situ (DCIS), 116 FA, and 409 other benign (BN), see
Fig. 1a. In addition, CAD delineated 1187 ROIs from the 660
images. Only 418 CAD delineated ROIs had a 25% or greater
overlap with the radiologist delineated biopsy sites. The 769 non-
overlapping CAD ROIs were excluded from our analysis because
they did not overlap biopsy sites, and thus pathology diagnosis
could not be confirmed. Of the patients with DCIS pathologies,
CAD failed to delineate any ROI on one patient resulting in a
complete miss. CAD missed one delineation for the CC view for
one patient and missed another delineation on the MLO view for
another patient. In total, four DCIS ROIs were not identified by
CAD. Of patients with IDC pathologies, CAD completely missed
delineations on seven patients, missed three delineations on the
MLO view, and one delineation for the CC view. In total, 18 IDC
lesions were not identified by CAD but were delineated by the
radiologists. These lesions were assigned a CAD probability of
malignancy of zero and are present in the final training data set
only. The final data set consisted of 108 3CB features and a CAD
probability of malignancy on 1107 ROIs (689 radiologist and 418
CAD delineated, see Fig. 1a) from 349 patients.

Model performance with morphology and morphology plus
3CB. On the unseen, independent hold out test set, the com-
mercial CAD output of probability of malignancy resulted in a
mean AUC curve of 0.69 and a CI of 0.60–0.78. On this same test
set, the neural network model, which utilized both morphological
features captured by CAD and compositional features derived
from 3CB, resulted in a mean area under the curve (AUC) of 0.81
and CI of 0.74–0.87 (see Fig. 3a).

We plot the IDI curves in Fig. 3b and the CAD (dashed lines)
and CAD+ 3CB (solid lines) represent the reference and new
model, respectively. The space or black shaded area between the
black dashed and solid lines indicates the IS which is −1.06%.
The space or red shaded area between the black dashed and solid
lines indicates the IP which is 13.17.

Using the predicted malignancy probabilities output from the
CAD and CAD+ 3CB, we investigate the NRI with respect to BI-
RADS assessment categories. The vertical dash lines in Fig. 3b
indicate the border between different BI-RADS categories. The
NRI for malignant lesions was 2, 4, 16, and −45% at the BI-RADS
3/4a, 4a/4b, 4b/4c, 4c/5 borders. The NRI for benign lesion at the
aforementioned BI-RADS borders was 2, 12, 13, and 17%
resulting in a total NRI at each border of 4, 15, 29, and −28%.
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A breakdown of each test set ROIs classification by both reference
CAD and new CAD+ 3CB models as well as their NRIs are
presented in Table 3.

Lesion composition characterization. Evidence demonstrates
that malignant, particularly IDC, lesions have unique biological
and compositional characteristics which may have contributed to
better model performance. To investigate further, 3CB thickness
heat maps for lesions of each type (BN, FA, DCIS, IDC) which
resulted in high NRIs were generated for Fig. 4. Using the visible
light color spectrum ordering convention, red indicates higher
quantities of a given tissue component and quantities decrease as
colors move towards violet. All lesion types, except DCIS, appear
to have higher concentrations of protein and water relative to
their background or surrounding tissue. Additionally, all lesions
appear to have less lipid than surrounding parenchyma, and

invasive lesions contain considerably less lipid compared to their
surroundings. The invasive lesions in particular appear to have a
noticeably higher water signal.

Figure 5 shows that all lesions contain less lipid when
compared to their background as indicated by negative median
values in the box and whisker plots. The IDC lipid signature is
strongest and distinctly different than the other lesion types. BN,
FA, and DCIS lesions tend to have less water when compared to
the surrounding tissue; however, IDC lesions show an increase in
water content. All lesion types have a higher protein signature
when compared to the three outer surrounding regions and IDC
lesions show the largest signature. As demonstrated by the
circumferential regions of interest, the protein content increases
from the background reaching a peak in the lesion itself.

Differences between the malignant and non-malignant com-
positions are indicated by the space between the blue and orange

Fig. 3 Improved performance on unseen test set when adding 3CB compositional information. a Adding three-compartment breast (3CB) features to
computer-aided detection (CAD) (orange) results in an area under the receiver operating characteristic (ROC) curve (AUC) of 0.81, standard deviation
(SD) of 0.03, when compared to CAD alone (blue), AUC of 0.69, SD of 0.04. Mean curves (solid lines) and 95% confidence intervals (shaded regions)
were computed via 1000 bootstrap samples. b The integrated sensitivity (IS), black shaded region between solid and dashed lines, indicates the change in
sensitivity with the addition of 3CB. The integrated 1-specificity (IP), red shaded region between solid and dashed lines, indicates the change in specificity
with the addition of 3CB. The integrated discrimination improvement (IDI) is the sum of the IS and IP (−1.06+ 13.17) which is 12.11 and a positive IDI
indicates that predictive models benefit from the addition of 3CB. The borders of the Breast Imaging-Reporting and Data System (BI-RADS) assessment
categories are indicated by the vertical dashed lines. Net reclassification improvement (NRI) for events or cancers (black) and non-events or benigns (red)
are calculated at each BI-RADS border to demonstrate 3CBs effect on specificity with respect to each BI-RADS category.

Table 3 Net reclassification with respects to BI-RADS risk categories.

Reference (CAD) Events (CAD+ 3CB) Non-events (CAD+ 3CB)

BI-RADS thresholds
(risk range)

3 (0–≤2%) 4a (2–≤10%) 4b
(10–≤50%)

4c & 5
(>50%)

Total 3 (0–≤2%) 4a (2–≤10%) 4b (10–≤50%) 4c & 5
(≥50%)

Total

3 (0–≤2%) 0 0 0 1 1 0 0 0 0 0
4a (2–≤10%) 0 0 1 0 1 2 2 8 3 13
4b (10–≤50%) 0 0 9 8 17 0 6 51 9 66
4c & 5 (≥50%) 0 0 11 20 31 0 5 47 13 65
Total 0 0 21 29 50 2 13 106 25 146

This table shows that adding 3CB allows for more accurate BI-RADS classification, as determined by probability of malignancy, for lesions with both malignant and non-malignant pathologies or events
and non-events. The NRI for events and non-events is −0.02 and 0.25. The overall NRI, which is the sum of NRI events and non-events, is 0.25.
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lines. This difference is also quantified and presented in Table 4.
Malignant lesions have a lower lipid, higher water, and higher
protein signature when compared to non-malignant types.
Compositional difference between malignant and non-
malignant lesions amplifies when moving further out into the
surrounding tissue or towards outer region 3. All compositional
differences between malignant and non-malignant lesions result
in significant p values, see Table 4.

The orange dot-dashed line, in Fig. 6, indicates triple-negative
lesions, and the blue dashed line represents all receptor-positive
lesions: estrogen receptor, progesterone receptor, human epider-
mal growth factor receptor 2, or any combination of the three.
The lipid content of triple-negative cancers is less than the lipid
content of hormone receptor-positive cancers for the second and
third outer regions as indicated by the space between the orange
and blue lines in Fig. 6. Water and protein content of triple-
negative cancers also appear to be distinctly different than

hormone-positive cancers and that difference increases the
further away we get from the lesion (i.e. the difference when
evaluating the surrounding tissue 2 mm away from the lesion is
smaller than when evaluating the region 6 mm away from the
lesion). This indicates a gradient difference in the lipid and water
content of the surrounding tissue for triple-negative cancers. The
change in the vertical position of the orange and blue lines across
the three graph columns further demonstrates this gradient and
suggest that receptor-positive cancers have different composi-
tional gradients than triple-negative cancers.

Discussion
This work suggests further support to the hypothesis that dif-
ferent breast lesion pathologies result in unique LWP composi-
tions that can be directly measured through our 3CB, dual-energy
mammography technique. We developed a neural network model

Fig. 4 Compositional heat maps of all lesion pathologies. Each row consists of a lesions with a different pathology. a–d contain benign lesions, e–h contain
fibroadenomas, i–l contain ductal carcinoma in situ (DCIS), and m–p contain invasive lesions. The first column (a, e, i, m) contains the standard
mammogram presentation, the second (b, f, j, n), third (c, g, k, o), and fourth (d, h, l, p) columns contain the corresponding three-compartment breast
(3CB) LWP thickness map. Colorbars adjacent to each 3CB map indicate thickness in centimeters where red indicates areas of high thickness and thickness
decreases towards the color violet. Thickness ranges are normalized across each column. Yellow lines are radiologist delineations of where biopsies were
taken from which lesion pathology was determined.
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Fig. 5 Lesion composition characterization. Differences between median composition values of the lesion and the outer regions were calculated for all
radiologist region of interest (ROI)s. Column one (a, d, g), two (b, e, h), and three (c, f, i) compares the composition within the lesion to the region 2, 4, and
6mm from its border respectively. Each row looks at a different compositional component, lipid (a, b, c), water (d, e, f), or protein (g, h, i). Calculated
differences are stratified by the following lesion types: benign (green), fibroadenoma (blue), ductal carcinoma in situ (DCIS) (orange), and invasive ductal
carcinoma (invasive) (red). Median values of all benign lesions types, benign and fibroadenoma, and malignant types, DCIS and invasive, are represented
by blue and orange dashed lines respectively. Gray line indicates zero and ROIs that lay above this line have more of a given composition when compared
to its corresponding background outer region. Boxes represent the 25–75% interquartile range and the center line represents the median. Whiskers
represents 1.5 the interquartile range and outliers which fall outside that range are depicted as diamonds.

Table 4 Comparison between benign and malignant lesions.

Composition Outer region Malignant median Benign median Median difference P value

Lipid 1 −2.50e−02 −1.82e−02 −6.82e−03 1.37e−06

Lipid 2 −4.93e−02 −3.74e−02 −1.18e−02 7.49e−08

Lipid 3 −5.56e−02 −4.03e−02 −1.53e−02 8.61e−07

Water 1 −9.39e−03 −1.77e−02 8.36e−03 6.56e−07

Water 2 −9.17e−03 −2.21e−02 1.29e−02 2.43e−07

Water 3 −5.17e−03 −2.22e−02 1.70e−02 4.17e−08

Protein 1 1.23e−02 3.44e−03 8.87e−03 1.73e−08

Protein 2 3.42e−02 1.89e−02 1.52e−02 3.66e−09

Protein 3 3.99e−02 2.33e−02 1.66e−02 7.68e−10

Difference in compositions indicated by the space between blue and orange dashed lines in Fig. 5 are quantified in this table. P values were calculated using a Welch’s test for unequal variance and all p
values are significant, indicating that benign and malignant lesions have uniquely different compositions as measured by 3CB.
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to empirically demonstrate that adding compositional informa-
tion improves classification of malignant and non-malignant
lesions, providing diagnostic value. Further investigation into
3CB-derived features revealed distinct differences between lesions
and their surrounding parenchyma composition, mechanisms
that likely contribute to the increased predictive performance.

Previous work showed that compositional features were pre-
dictive of lesion pathology and models could be built to reason-
ably identify malignancies from composition alone40. Like trained
radiologists, CAD software only has morphology, texture, and
image opacity available to make malignancy probability decisions.
When combining these morphologic features with compositional
features from 3CB in our neural network model, the AUC on the
test set increased. The IDI and NRI analysis showed that the

boost in AUC is attributed to increased specificity via the
reduction of false positives or lowering malignancy probability on
non-malignant lesions that CAD had previously assigned a high
probability. The potential reduction in false positives is high-
lighted by the large red area between the new and reference
models in Fig. 3b. Table 3 showed that the CAD+ 3CB model
was able to reclassify two ROIs to a BI-RADS category 3, which
implies a potential to avoid unnecessary biopsies. This study
specifically recruited BI-RADS 4 and 5 women and while we are
not powered to extrapolate a strong conclusion about 3CBs ability
to reclassify benign lesions to BI-RADS 3 or lower, our results
suggest it to be a likely possibility. The addition of 3CB features
also resulted in more accurate BI-RADS classification of malig-
nant lesions and reclassification to lower BI-RADS categories for

Fig. 6 Hormone receptor composition characterization. Compositional difference between invasive regions of interest (ROI) and their background are
stratified by hormone receptor status. Each column of panels corresponds to the compositional signature at 2 (a, d, g), 4 (b, e, h), and 6 (c, f, i) mm from
the lesion border while each row of panels corresponds to lipid (a, b, c), water (d, e, f), or protein (g, h, i). Median compositional difference between
receptor-positive and triple-negative cancers are indicated by the blue and orange dashed lines, respectively. Receptor-positive median was calculated by
including all lesion that contained either estrogen receptor (ER), progesterone (PR), or human epidermal growth factor receptor 2 (HER2) receptor status.
Each subplot panel contains box and whisker plots for ER+ (blue), PR+ (orange), HER2+ (green), ER+/PR+ (red), ER+/PR+/HER2+ (purple), and triple-
negative (brown) receptor statuses from left to right. Boxes represent the 25–75% interquartile range and the center line represents the median. Whiskers
represents 1.5 the interquartile range and outliers which fall outside that range are depicted as diamonds.
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non-malignant lesions, thus demonstrating an increase in con-
fidence levels with respect to the decision to biopsy. Using 3CB
imaging to increase specificity has the potential to be clinically
beneficial with only minimal additional risk (10% additional dose
from the acquisition of a second, high-energy mammogram). It
should also be noted that this method of obtaining useful com-
positional information, unlike CEM, does not require contrast
agents and the possibility of adverse reactions to contrast is non-
existent.

Comparing compositional differences between lesions and
their background supports the hypothesis different lesion
pathologies present unique 3CB signatures. The aggressive bio-
logical nature of invasive lesions causes them to consume lipids at
a high rate, and this phenomenon was observed on a macroscope
scale with 3CB imaging. IDC’s lower levels of lipid compared to
surrounding tissue, observed in Fig. 5, is consistent with the lit-
erature. The lipid signature, which is the difference between the
lesion and its surrounding region, increases as the region of
comparison is moved further away from the lesion border. This
further supports the aggressive growth natures of invasive cancers
in that it begins to metabolize lipid from its peripheries. While
non-malignant lesions were significantly different from malignant
lesions for all composition types (LWP), it is likely that predic-
tions were primarily driven by the lipid compositions since that
signature is the greatest. There is a positive correlation between
the magnitude of each compositional signature and the distance
away from the lesion border. In other words, there is a gradient
difference in tissue composition such that the composition
becomes more different than normal breast tissue nearer the
lesion. Although our models and analysis are focused on detec-
tion, gradient compositional changes of the breast could be useful
in a screening situation as well. For instance, 3CB can be used to
generate compositional gradient profiles of regions deemed sus-
picious on clinical for presentation FFDM. If the compositional
profiles are similar to what we have observed in our study for
malignant lesions, decreasing lipid and increasing water and
protein, then the patient may be identified as high risk and
subject to follow-up examination. Changes in compositional
profiles and gradients within the breast are difficult to visualize on
standard mammographic images alone due to the limited
dynamic range of a single channel grayscale. 3CB images allow for
independent assessments of possible changes in gradients for each
tissue type, which is not possible on regular mammography. 3CB
deconvolves the gradient into composition-specific gradients for
lipid, water, and protein.

Recall, 108 3CB features were purposely extracted from the
image in order to abstract the compositional information away
from morphology. However, the entire 3CB thickness maps of
LWP affords more information, on many orders of magnitude,
than what was captured by the 108 features we used. In addition,
there are more powerful computer vision methods such as con-
volutional neural networks which could potentially open the door
to better automated detection and screening with 3CB images.

A reader study demonstrated CAD’s ability to improve radi-
ologists’ ability to detect breast cancers41. Since we demonstrated
improvements to CAD prediction with 3CB, it is reasonable to
presume that the addition of 3CB would also further improve
radiologists’ ability to accurately detect and classify lesions. Ide-
ally 3CB, like CAD, would be integrated as a tool into the clinical
workflow. This would allow radiologist to interrogate the com-
position of any region of the breast to both lower false positives
identified by CAD On the other hand, 3CB could identify a region
not flagged by CAD that is expressing a compositional signature
similar to that of a malignancy. Nonetheless, the translational
clinical benefit of 3CB of this study is the increased confidence in

the decision to biopsy which has the potential to reduce unne-
cessary biopsies.

Data availability
Source data for the main figures in the manuscript can be found in “Supplementary
Data 1”. Imaging data linked to extensive meta data could be used to identify a
participant and are therefore not publicly available. The data that support the findings of
this study are available from the corresponding author upon reasonable request through
a data sharing agreement.

Code availability
Custom 3CB software (version 2020) for image analysis and lesion delineation, and
trained model, 3CB-CNN, are available at https://github.com/shepherd-lab/
3cb_software_and_model/tree/V0.1.1, https://doi.org/10.5281/zenodo.461542142.
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