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Trypanosoma cruzi and Toxoplasma gondii are two parasites than can be transmitted
frommother to child through the placenta. However, congenital transmission rates are low
for T. cruzi and high for T. gondii. Infection success or failure depends on complex
parasite-host interactions in which parasites can alter host gene expression by modulating
non-coding RNAs such as miRNAs. As of yet, there are no reports on altered miRNA
expression in placental tissue in response to either parasite. Therefore, we infected human
placental explants ex vivo by cultivation with either T. cruzi or T. gondii for 2 h. We then
analyzed the miRNA expression profiles of both types of infected tissue by miRNA
sequencing and quantitative PCR, sequence-based miRNA target prediction, pathway
functional enrichment, and upstream regulator analysis of differentially expressed genes
targeted by differentially expressed miRNAs. Both parasites induced specific miRNA
profiles. GO analysis revealed that the in silico predicted targets of the differentially
expressed miRNAs regulated different cellular processes involved in development and
immunity, and most of the identified KEGG pathways were related to chronic diseases
and infection. Considering that the differentially expressed miRNAs identified here
modulated crucial host cellular targets that participate in determining the success of
infection, these miRNAs might explain the differing congenital transmission rates between
the two parasites. Molecules of the different pathways that are regulated by miRNAs and
modulated during infection, as well as the miRNAs themselves, may be potential targets
for the therapeutic control of either congenital Chagas disease or toxoplasmosis.
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INTRODUCTION

More than one billion people worldwide are burdened by
parasitic diseases (1). Of these, Chagas disease (American
trypanosomiasis) and toxoplasmosis are caused by
Trypanosoma cruzi (T. cruzi) and Toxoplasma gondii (T.
gondii), respectively (2–4). Chagas disease is a devastating but
neglected health problem in Latin America. Due to the
extensive global migration of asymptomatic individuals, this
infection has become an emerging disease in non-endemic
countries. Congenital transmission is partially responsible for
the progressive globalization of Chagas disease (5, 6). T. gondii
is one of the most successful parasites on earth and is estimated
to infect over one billion people worldwide (7). Importantly,
both parasites can be congenitally transmitted and cause
perinatal morbidity and mortality (2–4) but present different
transmission rates. T. cruzi has a low transmission rate (1–12%)
(6, 8) while T. gondii has a high transmission rate (22–72%) (3).
Moreover, both parasites elicit a different local placental
immune response that might be related to infection
susceptibility (9, 10). Thus, T. cruzi and T. gondi infection is
related to the expression and activation of different Toll-like
receptors, which in turn mediate the secretion of different
cytokines and chemokines in defense against both parasites in
the placenta (9, 11).

However, the probability of congenital transmission depends
on a variety of complex interactions between the pathogen and
the host (4, 12). In particular, parasite factors, placental factors,
and maternal and developing fetal immune systems determine
infection occurrence (4, 13). In this context, both parasites
display sophisticated strategies to avoid host defenses and
virulence factors that increase the chance of establishing
infection and long-term persistence. One of these strategies is
the ability to modulate host cell gene expression (14–16) through
small non-coding RNAs such as microRNAs (miRNAs) that
repress mRNAs in a sequence-specific manner by either an
mRNA degradation process or through mRNA translation
inhibition (17–19). MiRNAs play a key role in fine tuning gene
expression in multiple physiological and pathological conditions
including T. cruzi (20) or T. gondii (21) infection. Interestingly,
the largest miRNA cluster in humans is encoded in chromosome
19 (C19MC; 19q13.41) and is almost exclusively expressed in the
placenta (22). Both C19MC-derived and non-C19MC-derived
miRNAs have been associated with placental development
pathologies such as pre-eclampsia and infection (23, 24).
However, there is no report in the literature regarding altered
miRNA expression in placental tissue in response to
either parasite.

Here, we infected human placental explants (HPE) ex vivo by
2 h of incubation with either T. cruzi or T. gondii, then analyzed
both miRNA expression profiles by miRNA sequencing and
quantitative PCR of selected miRNAs. In addition, we used
sequence-based miRNA target prediction and performed
pathway functional enrichment and upstream regulator
analysis of differentially expressed genes targeted by
differentially expressed miRNAs (DEMs).
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MATERIALS AND METHODS

Parasite Culture and Harvesting
For T. cruzi, Y strain (T. cruzi II) trypomastigotes were obtained
from previously infected Vero cells (ATCC® CCL-81) grown in
RPMI medium supplemented with 5% fetal bovine serum and
1% antibiotics (penicillin-streptomycin) at 37°C in a humid
atmosphere with 5% CO2. Parasites invaded the cells and
replicated intracellularly as amastigotes. After 48–72 h,
amastigotes transformed back to trypomastigotes and lysed the
host cells. The infective trypomastigotes were separated from
cellular debris by low speed centrifugation (500 × g) for 10 min.
Parasites were isolated from the supernatant by centrifugation at
3500×g during 15 min, suspended in RPMI media (without fetal
bovine serum, 1% (penicillin-streptomycin) (RPMI 1640®,
Biological Industries Ltd.), and quantified in a Neubauer
chamber (9).

For T. gondii, semi-confluent HFF cells were infected with RH
tachyzoites at a multiplicity of infection of 3 to 5 parasites per
cell. After 40 h, the infected cells were washed, then monolayers
were scraped from the flasks and passed through 20-, 23-, and
25-gauge needles. Tachyzoites were purified from host cell debris
with a 3.0 mm Isopore filter (Merck Millipore®) (25).

The laboratory has been certificated as a Biosafety level 2
laboratory by the Biosafety Committee (“Unidad de Prevención
de Riesgo”) of the “Facultad de Medicina, Universidad de Chile”
(approval # 0403/2019).

HPE Infection
Human term placentas were obtained from 3 women with
uncomplicated pregnancies with vaginal or caesarean delivery.
Informed consent for experimental use of the placenta was given
by each patient as stipulated by the Code of Ethics of the
“Servicio de Salud Metropolitana Norte” (approval number
0010/2019). Exclusion criteria consisted of the following: major
fetal abnormalities, placental tumor, intrauterine infection,
obstetric pathology, positive serology for Chagas disease, and
any other maternal disease. Donor patients were negative for
anti-T. gondii IgG/IgM antibodies. The organs were collected in
cold, sterile, saline-buffered solution (PBS) and processed no
more than 30 min after delivery. The dissected explants
(approximately 50 mg of tissue) were washed with sterile PBS
to remove the blood and co-cultivated with T. cruzi
trypomastigotes or T. gondii tachyzoites (105 parasites/ml) in
serum free RPMI media. After 2 h of co-cultivation, explants
were collected in RNAlater™ solution (ThermoFisher
Scientific®), then stored at 4°C for 24 h and at -80°C for
posterior RNA isolation (9). Three independent experiments
were carried out in triplicates; HPEs from each placenta were
infected with either T. cruzi or T. gondii parasites. The parasite
load in the HPEs was confirmed by real-time PCR as described
previously by us (9, 10, 26).

RNA Extraction
Total RNA was extracted from HPE by mechanical disruption in
1.3 ml of RNA-solv® reagent (Omega Bio-tek) and isolated using
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an E.Z.N.A® total RNA kit I (Omega Bio-tek) according to
manufacturer instructions. RNA was stored at -80°C until
analysis. The concentration and quality of RNA was
determined with a Qubit® RNA HS Assay kit and an IQ Assay
kit (Invitrogen), respectively. Only RNA samples with an IQ ≥8
were further analyzed for quality with an Agilent 2100
Bioanalyzer System (Agilent Technologies, USA) using an
RNA Nano 6000 Assay Kit. RNA samples with RNA integrity
numbers >5.0 were used for miRNA profiling analysis (9).

Library Construction and Sequencing
Small RNA-Seq libraries were constructed with an Illumina
TruSeq Small RNA library preparation kit according to
manufacturer protocols. To assess the quality of the libraries, a
DNA High Sensitivity Chip was used in an Agilent 2100
Bioanalyzer (Agilent Technologies, USA). The libraries were
sequenced on an Illumina NextSeq 500 platform. For each
condition, three independent biological replicates were
sequenced and paired-end reads were generated.

Data Analysis
Raw read quality was evaluated using the FastQC tool (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). Raw reads were
analyzed with Trim Galore Cutadapt software (27) and low-
quality reads were removed (phred value < 30) in order to obtain
clean reads. Clean reads with a length range of 18–35 nucleotides
were chosen to perform all subsequent analyses. The sofware STAR
(28) was used to align all reads to the reference human genome
sequence (Hg38). The read counts per coding sequence were
determined using HTSeq-count (29). To evaluate replicates, we
used Principal Component Analysis, Pearson correlation and
standardized median correlation analyses and box plots. The
program EdgeR was used for differential expression analysis (30).
Differentially expressed genes were defined as genes with p-value
<0.05. Target gene prediction performed by using miRDB, psRNA
target, and TargetScan sofwares.

Enrichment Analyses
miRNA set enrichment analysis was performed using the TAM
2.0 tool (http://www.lirmed.com/tam2/). KEGG pathways and
functional annotation of the predicted target genes (https://www.
genome.jp/kegg/kegg2.html) were also analyzed to determine the
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biological processes, molecular functions, cellular components,
and associations with disease.

RT-qPCR
RNA enriched in small RNAs was extracted from HPEs
(approximately 50 mg of tissue) by mechanical disruption in
1 ml RNAzol® RT (Sigma-Aldrich) according to manufacturer
instructions and stored at -80°C until analysis. The
concentration of the isolated miRNAs was determined using a
Qubit® Quant-iT™ microRNA Assay Kit (Molecular Probes).
cDNA of mature miRNAs was synthesized with a MystiCq™

microRNA cDNA Synthesis Mix Kit (Sigma-Aldrich Merck) per
manufacturer guidelines. The 25 µl RT-qPCR reaction contained
12.5 µl 2× MystiCq microRNA SYBR Green qPCR Ready Mix,
0.5 µl of 10 µM MystiCq Universal PCR Primer, 0.5 µl of 10 µM
of each specific MystiCq microRNA qPCR Assay Primer
(Supplementary Table 1), 10.5 µl nuclease-free water, and 1 µl
cDNA. All RT-qPCR reactions were performed in triplicates.
RT-qPCR was performed under the following cycling conditions:
initial denaturation at 95°C for 2 min, followed by 40 cycles of
95°C for 5 s and 60°C for 30 s. Gene expressions were calculated
using the 2−DDCT relative expression method and normalized to
snRNA U6 (RNU6-1) expression levels (31).
RESULTS

T. cruzi and T. gondii Change the miRNA
Expression Profile in HPE
The effects of T. cruzi and T. gondii on placental tissue were
assayed in HPE after a 2 h challenge with 105 parasites/ml. Total
miRNA extracted from infected and non-infected control HPE
was analyzed by miRNA Seq. Key characteristics of the obtained
sequencing data are summarized in Table 1. A total of 680 and
686 DEMs were identified in T. cruzi and T. gondii infected HPE,
respectively. Only 14 DEMs with a minimum 1.5-fold change in
expression and a 95% probability of being differentially expressed
(p ≤ 0.05) were identified in T. cruzi challenged samples (Figure
1A). In T. gondii challenged samples, the number of DEMs
increased to 42 (Figure 1B). Comparison of T. cruzi infected
HPE with non-infected control samples showed that five
TABLE 1 | Statistics of the small RNA sequences obtained in this study.

M reads (millions) M Aligned (millions) % aligned Mature microRNA reads # Mature MicroRNAs # Mature MicroRNA (single aligned)

S1 Control 12,96 11,68 90,12 3489287 922 732
S2 Control 15,17 13,87 91,43 4855933 938 760
S3 Control 15,58 13,16 84,50 3030989 843 714
S4 T. cruzi 14,35 12,60 87,77 3000672 907 712
S5 T. cruzi 14,76 12,94 87,69 3910944 907 737
S6 T. cruzi 16,13 13,15 81,55 3571933 914 720
S7 T. gondii 13,57 11,82 87,07 3160630 916 737
S8 T. gondii 14,40 12,79 88,77 4747358 962 757
S9 T. gondii 13,51 12,16 89,99 4148647 931 763
Novemb
M reads, total of sequences in analysis after raw data processing (millions); M aligned, total of mapped sequences to the human genome (millions); % aligned, total of mapped sequences
to the human genome (percentage); Mature microRNA reads, mapped reads counted as mature miRNAs; # Mature microRNAs, number of mature miRNAs; # Mature MicroRNA (single
aligned), number of mature miRNAs associated to unique miRNA precursors in the reference.
er 2020 | Volume 11 | Article 595250

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.lirmed.com/tam2/
https://www.genome.jp/kegg/kegg2.html
https://www.genome.jp/kegg/kegg2.html
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Medina et al. Differential MicroRNA Profile in HPE
miRNAs were downregulated and nine were upregulated. In T.
gondii infected tissues, 13 miRNAs were downregulated and 29
were upregulated. The Venn diagram in Figure 1C shows the
miRNAs that were differentially expressed in the presence of both
parasites compared to non-infected control samples and in HPE
infected with either parasite. The complete list of DEMs in response
to ex vivo T. cruzi and T. gondii infection is shown in Table 2.

Functional Annotation and KEGG Pathway
Enrichment Analysis of miRNA Target
Genes
To better understand the roles of the miRNAs identified in HPE
in response to ex vivo infection with both parasites, the target
genes of the miRNAs were identified using miRDB, psRNA
target, and TargetScan. GO and KEGG enrichment analyses
used to identify the biological functions of the DEMs (p <
0.05) during ex vivo T. cruzi and T. gondii infection revealed
Frontiers in Immunology | www.frontiersin.org 4
679 best scored target genes of the 14 miRNAs from T. cruzi vs.
control, 1970 best scored target genes of the 42 miRNAs from T.
gondii vs. control, and 2011 best scored target genes of the 42
miRNAs from T. cruzi vs. T. gondi. The target genes of the DEMs
are shown in Supplementary Table 2. Among the significantly
enriched GO terms in T. cruzi vs. control samples, DEMs were
significantly enriched in regulation of NFkB pathways,
chondrocyte development, cell death including apoptosis,
peritoneal cavity homeostasis, angiogenesis, cell cycle,
megakaryocyte differentiation, Toll-like receptor signaling
pathway, and immune response including innate immunity
(Figure 2A). Among the significantly enriched GO terms in T.
gondii vs. control samples, DEMs were significantly enriched in
cell proliferation, cell migration, osteoblast differentiation,
oxidative stress, lipid metabolism, regulation of stem cells
including embryonic stem cells, hepatotoxicity, DNA damage
response, regulation of NFkB pathways, smooth muscle
A B

C

FIGURE 1 | Expression profiling of mature miRNAs in human placental explants (HPEs) following T. cruzi or T. gondii infection. (A) Heat-map of differentially
expressed microRNAs (DEMs) in control vs. T. cruzi infected HPE and (B) control vs. T. gondii infected HPE. The filtered miRNA data were subjected to
unsupervised hierarchical clustering analysis. The metric was set as the Euclidean distance. Control: C1, C2, C3; T. cruzi: Tc1, Tc2, Tc3; T. gondii: Tx1, Tx2, Tx3.
(C) Venn diagram showing the number of commonly expressed and specifically expressed miRNAs between the infected HPE groups. Significant miRNAs for HPE
with T cruzi infection vs. those with T. gondii infection are shown in the yellow circle. The blue circle represents the miRNAs that discriminate between the control
(uninfected HPE) and T. cruzi infected HPE, while the green circle represents the miRNAs that distinguish the control (uninfected HPE) and T. gondii infected HPE.
November 2020 | Volume 11 | Article 595250
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proliferation, T-helper 17 cell differentiation, T-cell activation,
and response to estrogen (Figure 2B).

In addition, we performed GO and KEGG analyses to identify
different pathologies in which the T. cruzi- and T. gondii-induced
Frontiers in Immunology | www.frontiersin.org 5
DEMs were related. In T. cruzi vs. control samples, significantly
enriched DEMs were related to metabolic syndrome, IgA-
nephropathy, acute childhood lymphoblastic leukemia,
atherosclerosis, oral lichen planus, human papilloma virus
TABLE 2 | The top differentially expressed miRNAs (P < 0.05) in HPE challenged with 105 T. cruzi trypomastigotes or T. gondii tachyzoites during 2 h.

miRNAs Fold Change p-value p-adjustment Expression

Control vs T. cruzi hsa-miR-490-5p 1,47644601 0,011939305 1 Up-regulated
hsa-miR-497-5p -0,95822045 0,021380502 1 Down-regulated
hsa-miR-146a-5p 0,9111643 0,024398238 1 Up-regulated
hsa-miR-12135 2,76826832 0,025125553 1 Up-regulated
hsa-miR-210-5p 1,17471038 0,038576256 1 Up-regulated
hsa-miR-146b-5p 0,70985057 0,041583753 1 Up-regulated
hsa-miR-877-5p -0,71572824 0,049301458 1 Down-regulated
hsa-miR-1271-5p -1,48497011 0,049553349 1 Down-regulated

T. cruzi (*treatment exclusive) hsa-miR-636 0,003652701 1 Up-regulated
hsa-miR-4449 0,005197851 1 Up-regulated
hsa-miR-449a 0,009529598 1 Up-regulated
hsa-miR-2115-5p 0,013101594 1 Up-regulated
hsa-miR-561-3p 0,023021063 1 Up-regulated
hsa-miR-4446-3p 0,041796581 1 Up-regulated

Control vs T. gondii hsa-miR-12136 1,79576197 0,00017626 0,120736654 Up-regulated
hsa-miR-335-5p 1,35817451 0,0007489 0,227732906 Up-regulated
hsa-miR-10b-5p -1,51399053 0,00099737 0,227732906 Down-regulated
hsa-miR-1271-5p -2,41452099 0,00206894 0,267855922 Down-regulated
hsa-miR-409-5p -2,51430487 0,00225422 0,267855922 Down-regulated
hsa-miR-27a-3p -0,97356696 0,00234618 0,267855922 Down-regulated
hsa-miR-29a-3p -0,92877383 0,00344997 0,337603687 Down-regulated
hsa-miR-214-3p 0,9642214 0,00435186 0,372627686 Up-regulated
hsa-miR-379-5p 1,46136088 0,00619518 0,453658878 Up-regulated
hsa-miR-3120-5p 1,05085403 0,00662276 0,453658878 Up-regulated
hsa-miR-376a-5p -1,06317073 0,00928715 0,578335925 Down-regulated
hsa-miR-542-3p 1,36466429 0,01456701 0,760274481 Up-regulated
hsa-miR-195-5p 1,29637989 0,01520981 0,760274481 Up-regulated
hsa-miR-3130-5p -2,64645685 0,01847345 0,760274481 Down-regulated
hsa-miR-519d-3p -0,91993812 0,0188483 0,760274481 Down-regulated
hsa-miR-490-5p 1,42743639 0,01886813 0,760274481 Up-regulated
hsa-miR-450b-5p 1,11411811 0,02263153 0,763303449 Up-regulated
hsa-miR-374b-5p 0,86524386 0,02512358 0,763303449 Up-regulated
hsa-miR-374c-3p 0,87017312 0,02523843 0,763303449 Up-regulated
hsa-miR-143-3p 0,78495077 0,02900217 0,763303449 Up-regulated
hsa-miR-21-3p 0,79317052 0,0291757 0,763303449 Up-regulated
hsa-miR-675-5p 1,1546043 0,03213608 0,763303449 Up-regulated
hsa-miR-671-5p 1,76630085 0,03293839 0,763303449 Up-regulated
hsa-miR-146a-5p 0,86261284 0,03359957 0,763303449 Up-regulated
hsa-miR-489-3p 1,02467619 0,03372793 0,763303449 Up-regulated
hsa-miR-96-5p -2,45982286 0,03878464 0,77095716 Down-regulated
hsa-miR-509-3p 0,86545472 0,03909277 0,77095716 Up-regulated
hsa-miR-190b-5p 2,26556495 0,04749263 0,77095716 Up-regulated
hsa-miR-371b-5p -0,92943309 0,04875339 0,77095716 Down-regulated
hsa-miR-520d-5p -0,6667811 0,04979001 0,77095716 Down-regulated
hsa-miR-371a-3p -0,92563764 0,04993063 0,77095716 Down-regulated
hsa-miR-412-5p 0,86533956 0,0514002 0,77095716 Up-regulated
hsa-miR-324-5p -1,01010797 0,05178532 0,77095716 Down-regulated
hsa-miR-410-3p 0,63475365 0,05378966 0,77095716 Up-regulated
hsa-miR-139-5p 0,66901369 0,0543406 0,77095716 Up-regulated

T. gondii (*treatment exclusive) hsa-miR-548l 0,01756271 0,760274481 Up-regulated
hsa-miR-449a 0,02617767 0,763303449 Up-regulated
hsa-miR-6125 0,03454366 0,763303449 Up-regulated
hsa-miR-4638-3p 0,03454366 0,763303449 Up-regulated
hsa-miR-6860 0,03454366 0,763303449 Up-regulated
hsa-miR-4660 0,03454366 0,763303449 Up-regulated
hsa-miR-2115-5p 0,04354449 0,77095716 Up-regulated
Nov
ember 2020 | Volume 11
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infection, psoriasis, neuropsychiatric disorders, heart diseases,
pancreatic carcinoma, Löfgren’s syndrome, Mycobacterium
tuberculosis infection, male infertility, and gastric carcinoma
(Figure 3A). In T. gondii vs. control samples, the significantly
enriched DEMs were related to ankylosing spondylitis, type 2
diabetes mellitus, hypertrophic cardiomyopathy, congenital
heart disease, fetal alcohol syndrome, pulmonary hypertension,
ulcerative colitis, cystic fibrosis, vascular diseases, human
cytomegalovirus infection, muscular dystrophy, liver diseases,
coxsackievirus infection, and diabetic retinopathy (Figure 3B).
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Specific GO and KEGG enrichment analyses focused on the
functions of DEMs in response to both parasites that were related
to parasitic diseases and/or placenta pathology. These DEMs are
listed in Table 3. In this context, we found that the significantly
enriched DEMs were related to the regulation of apoptosis,
wound healing, cardiomyocyte apoptosis, heart development,
skeletal muscle cell differentiation, Toll-like receptor signaling
pathway, innate immunity, epithelial to mesenchymal transition,
chromatin remodeling, and nephrotoxicity (Figure 4).
Moreover, we analyzed the significantly enriched DEMs related
A B

FIGURE 2 | KEGG analysis of the differentially expressed miRNAs (P < 0.05) revealed significant enrichment in immune-related and cell cycle pathways. The top 15
enriched pathways of the differentially expressed miRNAs are presented for (A) control vs. T. cruzi and (B) control vs. T. gondii. The sizes and colors of the circles
represent the number of predicted gene targets of the differentially expressed miRNAs (P < 0.05) and the q-value, respectively.
A B

FIGURE 3 | KEGG analysis of the differentially expressed miRNAs (P < 0.05) revealed significant enrichment in cancer-related, infections, and inflammatory disease
pathways. The top 15 enriched pathways of the differentially expressed miRNAs are presented for (A) control vs. T. cruzi and (B) control vs. T. gondii. The sizes and
colors of the circles represent the number of predicted gene targets of the differentially expressed miRNAs (P < 0.05) and the q-value, respectively.
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TABLE 3 | Sequenced miRNA related to placental and/or parasitic diseases in HPE challenged with 105 T. cruzi trypomastigotes or T. gondii tachyzoites during 2 h.

miRNAs Control vs T. cruzi Control vs T. gondii

Expression p-value Expression p-value

hsa-miR-3074 Up-regulated 0,282778175 Down-regulated 0,906716427
hsa-miR-518e-5p Down-regulated 0,736493282 Up-regulated 0,655921033
hsa-miR-127-3p Down-regulated 0,454473692 Up-regulated 0,899001399
hsa-miR-512-3p Up-regulated 0,893095693 Up-regulated 0,554888541
hsa-miR-516a-5p Down-regulated 0,573579895 Down-regulated 0,875664943
hsa-miR-376a-3p Up-regulated 0,26239456 Up-regulated 0,890873441
hsa-miR-523-5p Down-regulated 0,736493282 Up-regulated 0,655921033
hsa-miR-517-5p Down-regulated 0,356215385 Down-regulated 0,131367096
hsa-miR-523-3p Up-regulated 0,558965508 Down-regulated 0,070624754
hsa-miR-519a-5p Down-regulated 0,902087668 Up-regulated 0,683786458
hsa-miR-526a-5p Down-regulated 0,878621126 Up-regulated 0,975623088
hsa-miR-519a-3p Up-regulated 0,855200309 Down-regulated 0,216046946
hsa-miR-518e-3p Up-regulated 0,878596629 Down-regulated 0,062749763
hsa-miR-520c-5p Down-regulated 0,878525243 Up-regulated 0,981710662
hsa-miR-526a-3p Down-regulated 0,648457618 Down-regulated 0,194744348
hsa-miR-29b-3p Up-regulated 0,688264908 Down-regulated 0,461394462
hsa-miR-520c-3p Down-regulated 0,492741665 Down-regulated 0,321148465
hsa-miR-133a-3p Up-regulated 0,800691009 Down-regulated 0,140142195
hsa-miR-525-5p Down-regulated 0,892625222 Down-regulated 0,624806979
hsa-miR-525-3p Up-regulated 0,896175408 Down-regulated 0,075998808
hsa-miR-519c-5p Down-regulated 0,736493282 Up-regulated 0,655921033
hsa-miR-518b Up-regulated 0,991656949 Down-regulated 0,078353573
hsa-miR-519c-3p Down-regulated 0,262008953 Down-regulated 0,786169155
hsa-miR-520e-5p Down-regulated 0,485165729 Up-regulated 0,996288443
hsa-miR-520e-3p Up-regulated 1 Up-regulated 0,818473073
hsa-miR-21-5p Up-regulated 0,783933507 Up-regulated 0,129614377
hsa-miR-21-3p Up-regulated 0,749764521 Up-regulated 0,029175701
hsa-miR-517a-3p Up-regulated 0,596271375 Down-regulated 0,461347018
hsa-miR-519e-5p Up-regulated 0,105129034 Up-regulated 0,757374294
hsa-miR-519e-3p Up-regulated 0,385269175 Up-regulated 0,69099671
hsa-miR-518d-5p Down-regulated 0,878525243 Up-regulated 0,981710662
hsa-miR-520g-5p Up-regulated 0,892300156 Up-regulated 0,751979117
hsa-miR-518d-3p Up-regulated 0,55414416 Down-regulated 0,942071295
hsa-miR-520b-5p Down-regulated 0,421187791 Down-regulated 0,477328076
hsa-miR-520g-3p Up-regulated 0,728189158 Down-regulated 0,352658846
hsa-miR-519a-2-5p Down-regulated 0,421187791 Down-regulated 0,477328076
hsa-miR-520b-3p Up-regulated 0,530509712 Down-regulated 0,954450249
hsa-miR-517c-3p Up-regulated 0,760586655 Down-regulated 0,675509383
hsa-miR-524-5p Down-regulated 0,490615316 Down-regulated 0,115381834
hsa-miR-210-5p Up-regulated 0,038576256 Up-regulated 0,576691951
hsa-miR-204-5p Up-regulated 0,62227226 Down-regulated 0,583793777
hsa-miR-524-3p Down-regulated 0,907890609 Down-regulated 0,099098809
hsa-miR-519b-5p Down-regulated 0,736493282 Up-regulated 0,655921033
hsa-miR-210-3p Up-regulated 0,497217414 Down-regulated 0,843820092
hsa-miR-378a-5p Down-regulated 0,915728534 Down-regulated 0,504825517
hsa-miR-526b-5p Down-regulated 0,501400731 Down-regulated 0,534886926
hsa-miR-519b-3p Up-regulated 0,996536077 Up-regulated 0,986254335
hsa-miR-518a-5p Down-regulated 0,396658878 Down-regulated 0,099042516
hsa-miR-520d-5p Down-regulated 0,163923317 Down-regulated 0,049790011
hsa-miR-526b-3p Up-regulated 0,690372369 Down-regulated 0,356016985
hsa-miR-520d-3p Down-regulated 0,368956264 Down-regulated 0,595399092
hsa-miR-30e-3p Up-regulated 0,708643074 Down-regulated 0,606142557
hsa-miR-520h Up-regulated 0,420508027 Down-regulated 0,48103803
hsa-miR-519d-5p Down-regulated 0,699132481 Down-regulated 0,210250996
hsa-miR-515-5p Down-regulated 0,451420159 Down-regulated 0,479490879
hsa-miR-519d-3p Up-regulated 0,795099209 Down-regulated 0,018848296
hsa-miR-515-3p Down-regulated 0,961837732 Down-regulated 0,056222245
hsa-miR-518c-5p Down-regulated 0,433629597 Down-regulated 0,461615584
hsa-miR-155-5p Up-regulated 0,089556012 Up-regulated 0,307144182
hsa-miR-518c-3p Up-regulated 0,825417746 Down-regulated 0,393062915
hsa-miR-520a-5p Up-regulated 0,829237058 Down-regulated 0,786085152

(Continued)
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to transcription activation and found that the following
transcription factors or its activators were modulated by them:
MYOG, calcineurin, AP-1, TNFSF12, NFkB1, myogenin,
MYOD, MYF5, MRF4, and TP53 (Figure 5).

Validation of miRNA Expression by RT-
qPCR
Validation of miRNAs associated with parasite infection or
pregnancy related pathologies was performed by selecting six
miRNAs [miR-3074 (26), miR-127-3p (27, 28), miR-30e-3p (29),
miR-512-3p (30), miR-515-5p (31), and miR-190b (32)] for
confirmation by real time PCR to verify the DEM expression
levels. Expression of miR-3074, miR-127-3p, and miR-30e-3p
(Figures 6A–C) was analyzed in HPE in response to both
parasites. miR-512-3p and miR-515-5p (Figures 6D–E)
expression was determined in response to T. cruzi infection and
miR-190b expression in response to T. gondii infection (Figure
6F). All selected miRNAs except for miR-30e-3p (Figure 6C)
were differentially expressed. Thus, miR-3074 expression (Figure
6A) was significantly decreased (T. cruzi: 57.03 ± 19.99%, p ≤
0.01; T. gondii: 69.84 ± 24.67%, p ≤ 0.01) with respect to the
control but not the infected samples. Decreased miR-3074
expression was expected in the T. gondii infected samples but
Frontiers in Immunology | www.frontiersin.org 8
not in the T. cruzi infected samples. According to the miRNA Seq
data, miR-3074 was upregulated in T. cruzi challenged samples.
Similar results were observed for miR-127-3p (Figigure 6B).
Expression of miR-127-3p was significantly decreased in HPE
infected with either parasite (T. cruzi: 68.218 ± 16.41%, p ≤ 0.01;
T. gondii: 73.13 ± 22.45%, p ≤ 0.01) compared to the control but
not to infected samples; we expected an increase in miR-127-3p
expression in the presence of T. gondii since in the miRNA Seq
data this particular miRNA was increased (Table 3). RT-qPCR
validation results for miR-512-3p, miR-515-5p, and miR-190b
confirmed the miRNA Seq data. Thus, miR-512-3p expression
increased (40.83 ± 22.53%, p ≤ 0.01) (Figure 6D) and miR-515-5p
expression decreased (21.44 ± 8.60%, p ≤ 0.01) (Figure 6E)
significantly in T. cruzi infected samples. In T. gondii infected
HPE, miR-190b expression was significantly increased (59.02 ±
37.73%, p ≤ 0.01) (Figure 6F).
DISCUSSION

Pathogens have evolved strategies to exploit resources from their
hosts to maximize their own survival, replication, and
dissemination. Thus, different kinds of pathogens (including
TABLE 3 | Continued

miRNAs Control vs T. cruzi Control vs T. gondii

Expression p-value Expression p-value

hsa-miR-376a-5p Down-regulated 0,101845272 Down-regulated 0,009287146
hsa-miR-520a-3p Up-regulated 0,303331111 Down-regulated 0,733502488
hsa-miR-144-5p Up-regulated 0,979441392 Down-regulated 0,781688613
hsa-miR-204-5p Up-regulated 0,62227226 Down-regulated 0,583793777
hsa-miR-424-5p Up-regulated 0,52797867 Down-regulated 0,318765339
hsa-miR-346 Down-regulated 0,996223653 Up-regulated 0,484560011
November 2020 | Volume 11 | A
FIGURE 4 | Bar plot illustrating the top 10 significant miRNA-function associations of the sequenced miRNA related to placental and/or parasitic diseases in human
placental explants infected with T. cruzi or T. gondii.
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parasites) have developed sophisticated mechanisms that include
hijacking host cellular machinery to modulate host gene
expression to inhibit defense responses (16, 32, 33). Both of
the parasites studied here are able to manipulate host gene
expression. For instance, during T. cruzi cell and tissue
invasion, cell reprogramming affects cellular stress responses,
host metabolism, and a significant number of transcription
factors (16, 34). T. gondii also reprograms host cells, primarily
targeting cell-specific transcription factors that regulate host
Frontiers in Immunology | www.frontiersin.org 9
defenses (i.e., NF-kB, interferon regulatory factor, and JAK/
STAT) by regulating their intrinsic activities and expression
levels (35). In addition, certain parasites including T. cruzi and
T. gondii can alter host miRNA expression to favor both parasite
clearance and infection (18, 19). Moreover, different strains of T.
gondii can induce specific miRNAs in mice that have been
proposed as biomarkers for early infection (19, 36).

Mature miRNAs regulate the expression of over 30% of
fundamental genes; these are involved in key biological
FIGURE 5 | Bar plot illustrating the top 10 significant miRNA transcription factor associations of the sequenced miRNA related to placental and/or parasitic diseases
in human placental explants infected with T. cruzi or T. gondii.
A B C

D E F

FIGURE 6 | Validation of miRNAs related to placental and/or parasitic diseases using RT-qPCR. Human placental explants were challenged with 105 T. cruzi
trypomastigotes or T. gondii tachyzoites for 2 h. The presence of miRNA was determined by real-time PCR. T. cruzi and T. gondii decreased miR-3074 and miR-
127-3p expression, while no change was observed in miR-30e-3p expression (A–C). T. cruzi inhibited miR-515-5p expression and induced miR512-3p (D, E). T.
gondii induced miR-190b-5p (F). All values are the mean ± S.D. and correspond to at least three independent experiments that were performed in triplicate. Data
were normalized in terms of the control values and analyzed by Student’s t-test or ANOVA. *p ≤ 0.05; **p ≤ 0.01.
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processes including development, cellular proliferation and
differentiation, apoptosis, metabolism, and immune response
(18, 19, 37); all of these determine infection success or failure.
Moreover, epigenetic and genetic defects in miRNAs and their
processing machinery are a common hallmark of infection and
diseases that include pregnancy-specific pathologies such as
preeclampsia (17, 38).

Most of the transcriptomic studies as well as those analyzing
miRNA profiles have focused on a single type of cell response
(34) or on tissues or organs in animal models (39, 40); no studies
have focused on human tissues. The present study is the first
report on the miRNA profile of the human placenta in response
to T. cruzi or T. gondii infection. We identified 680 and 686
DEMs, respectively, in T. cruzi and T. gondii infected samples. T.
cruzi modulated only 14 DEMs with a minimum of a 1.5-fold
change in expression and a 95% probability of being differentially
expressed (Figure 1A). In contrast, the number of DEMs
increased to 42 in T. gondii challenged HPE (Figure 2B). Our
results showed that the DEMs identified here are related to the
regulation of different fundamental cellular processes (Figure 2)
as well as different pathologies (Figure 3). Moreover,
fundamental cellular processes related to placenta pathologies
and embryonic development are affected by the presence of both
parasites (Figures 4–5). It is important to point out, that tissue
response to infection is relevant during disease progression. The
presence of the parasites leads to tissue damage as well as
immune and regulatory/repair responses, which can lead to
fibrosis and tissue dysfunction as observed in chagasic
cardiomyopathy (41) or Toxoplasma induced encephalitis in
immune-compromised individuals (42).

Three miRNAs, miR-21, miR-146a/b, and miR-210, were
overrepresented in most of the ontology terms (Table 2,
Supplementary Tables 3–4). Previous studies have implicated
these miRNAs in immune and inflammatory response regulation
via macrophage polarization controlled through transcription
factor regulat ion in response to s ignals from the
microenvironment (43, 44). Concordantly, in T. cruzi-infected
mice, increased miR-21 expression in the heart has been
correlated with a parasitemia peak at 30 days post-infection
(39). In placenta, miR-21 has been associated with trophoblast
differentiation and invasion and miR-21 dysregulation leads to
placental pathology (45). MiR-146a is a negative feedback
regulator in TLR-4 signaling that acts by repressing TRAF6 to
inhibit NFkB transcription factor activation (46, 47). In
macrophages, TRAF6 mediates the induction of the pro-
inflammatory cytokine IL-12, which is essential to control T.
gondii infection (48). TRAF6 activation is also required for
vacuole-lysosome fusion, a fundamental step during T. gondii
infection (49). Our results showed that in HPEs, T. gondii and T.
cruzi infection increased miR-146a expression. Our previous
studies showed that both parasites modulate placental immune
response differentially through TLRs and NFkB pathways in
HPEs (9, 10) Interestingly, the inhibition of these pathways
increased the DNA loads of both parasites in HPEs (10).
Increased T. gondii infection in placental tissue is also induced
by TLR-4 inhibition (9). In addition, increased levels of miR-
Frontiers in Immunology | www.frontiersin.org 10
146a have been reported in the brains of mice infected with T.
gondii, moreover, miR-146a ablation affects early parasite burden
and improves survival (50). It was previously reported that miR-
210 is induced by damage associated molecular patterns (51). In
preeclamptic placentas, miR-210 is increased (52); in the present
study, miR-210 was increased in HPE infected with T. cruzi but
not with T. gondii. Expression of miR-210 can be directly
regulated by the specific binding of NF-kB p50 to its putative
promoter (53). In this context, it is important to mention that T.
cruzi, but not T. gondii, infection of HPE activates both NF-kB
signaling pathways (10). Therefore, the increased level of miR-
210 might be a placental response to signal transduction
pathway activation.

In addition, several identified pathways, important, e.g. for
chondrocyte development, megakaryocyte smooth and muscle
cell differentiation, hepatotoxicity, and DNA damage response,
are neither related to infection or with placental tissues (Figure
3). This can be explained be the fact, that miRNAs target
multiple genes, while individual genes are targeted by multiple
miRNAs. Moreover, the same miRNA regulates different genes
in different tissues and organs (54, 55). Here, we chose to
validate six miRNAs that were associated specifically with
parasite infection and/or pregnancy related pathologies
(Figure 6). Deregulation of miR-30e-3p has been reported in
mice that were experimentally infected with T. gondii (40). This
miRNA is also related to Chagas cardiomyopathy (39) and is
upregulated in placentas with intrauterine growth restriction
(56). Nonetheless, miR-30e-3p expression was unaffected by T.
cruzi or T. gondii infection in HPE (Figure 6C). Increased miR-
3074-5p expression has been described in placentas from
recurrent miscarriages (57) and in livers from T. gondii-
infected cats (42). However, miR-3074-5p expression was
diminished in HPE infected either with T. cruzi or T. gondii
(Figure 6A). The differences between our results and the
reported data might be explained by differences in the studied
organs (heart and liver versus placenta) and the complexity of
the above mentioned placental pathologies. MiR-127 is a
placenta-specific miRNA codified in the C14MC cluster (58)
and its levels are decreased in placenta-related pathologies such
as recurrent miscarriage and small-for-gestational age (59, 60);
the downregulation of MiR-127 was also detected in babies
infected congenitally with either parasite (3, 4). Concordantly,
our results showed that HPE infection with either T. cruzi or T.
gondii led to the decrease of this miRNA (Figure 6B). Moreover,
a decreased expression of miR-127-3p in non-placental tissues
has been reported during T. gondii infection in mice and cats
(40, 42, 61), but there is no report regarding miR-127-3p
expression in response to T. cruzi infection. Both miR-515-5p
and miR-512-3p are placenta-specific miRNAs that are codified
in the C19MC cluster (62). Decreased miR-515-5p expression is
related to fetal growth restriction (63) and preeclampsia (64).
Importantly, this miRNA inhibits human trophoblast
differentiation by directly repressing the aromatase P450
(CYP19A1), frizzled 5 (FZD5), and glial cells missing 1
transcription factor (GCM1) genes (65). Trophoblast
differentiation is part of the trophoblast epithelial turnover
November 2020 | Volume 11 | Article 595250
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FIGURE 7 | Schematic summary of the comparative analysis of RNA sequencing-based miRNA profiles in HPEs in response to ex vivo T. cruzi and T. gondii
infection. Fourteen, and 42 DEMs were identified in T. cruzi and T. gondii infected samples. In T. cruzi infected HPEs, 5 miRNAs were downregulated and 9 were
upregulated. In T. gondii infected HPEs, 13 miRNAs were downregulated and 29 were upregulated. In addition, five miRNAs that are associated specifically with
parasite infection and/or pregnancy-related pathologies were validated. GO analysis revealed that the predicted targets of the DEMs were different cellular processes
involved in development and immunity, and most of the identified KEGG pathways were related to chronic diseases and infection. Considering that the DEMs
identified herein modulate crucial host cellular targets potentially determining the success of infection, these miRNAs might explain the differences in the congenital
transmission rates of the two parasites. This figure was created using BioRender.com.
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and it has been proposed that this mechanism is part of an
antiparasitic placental response against T. cruzi infection (11,
13, 66, 67). Therefore, our reported decrease of miR-515-5p
expression during ex vivo T. cruzi infection of HPE (Figure 6D)
might be at least partially responsible for the parasite-induced
trophoblast differentiation. In contrast, miR-512-3p was
upregulated in HPE in response to T. cruzi infection (Figure
6E). Interestingly, miR-512-3p confers resistance to vesicular
stomatitis virus in non-placental recipient cells (68) and
represses the caspase 8 inhibitor c-FLIP (cellular FLICE-like
inhibitory protein); it consequently increases caspase 8 activity
(69). Caspase 8 regulates trophoblast differentiation and
apoptotic cell death and is activated by T. cruzi (66).
Therefore, miR-512-3p upregulation might also be a
protective placental response to T. cruzi infection, as it is to
viral infection. The upregulation of miR-190b in HPE during T.
gondii infection was observed in the RNAseq analysis (Figure
1B, Table 3), then validated by qPCR (Figure 6F). Upregulation
of miR-190b promotes cell proliferation and migration and
reduces cell apoptosis in different types of cancer (70, 71).
Parasites modulate apoptotic responses in infected cells to
avoid rapid clearance; T. gondii is particularly capable of
blocking apoptosis by different mechanisms (33). In neurons,
increased miR-190b expression also increases cell viability,
suppresses autophagy, and significantly decreases the levels of
pro-inflammatory TNF-a, IL-6, and IL-1b cytokines (72). In
this context, we have shown that T. gondii, in contrast to T.
cruzi, does not induce pro-inflammatory cytokines in HPE (9).
Therefore, it is postulated that the lack of pro-inflammatory
cytokine secretion in response to T. gondii in HPE might be
related to an increase in miR-190b expression and that, together
with the modulation of the apoptotic pathway, it could allow
parasite persistence and infection in the placenta.

In conclusion, the present study provides a comparative
analysis of RNA sequencing-based miRNA profiles in HPE in
response to ex vivo T. cruzi and T. gondii infection (Figure 7).
Our findings provide new insight into the capacity of both
parasites to modulate host gene expression. GO analysis
revealed that the predicted targets of the DEMs were different
cellular processes involved in development and immunity, and
most of the identified KEGG pathways were related to chronic
diseases and infection. Considering that the DEMs identified
herein modulate crucial host cellular targets that participate in
determining the success of infection, these miRNAs might
explain the differences in congenital transmission rates.
Molecules of the different pathways that are regulated by
miRNAs and modulated during infection, as well as the
miRNAs themselves, may be potential targets for the
therapeutic control of either congenital Chagas disease
or toxoplasmosis.
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