
Two-dimensional spin-gapless
semiconductors: A mini-review

Jianhua Wang and Dandan Wang*

School of Physical Science and Technology, Southwest University, Chongqing, China

In the past decade, two-dimensional (2D) materials and spintronic materials

have been rapidly developing in recent years. 2D spin-gapless semiconductors

(SGSs) are a novel class of ferromagnetic 2D spintronic materials with possible

high Curie temperature, 100% spin-polarization, possible one-dimensional or

zero-dimensional topological signatures, and other exciting spin transport

properties. In this mini-review, we summarize a series of ideal 2D SGSs in

the last 3 years, including 2D oxalate-based metal-organic frameworks, 2D

single-layer Fe2I2, 2D Cr2X3 (X = S, Se, and Te) monolayer with the honeycomb

kagome (HK) lattice, 2D CrGa2Se4 monolayer, 2D HK Mn–cyanogen lattice, 2D

MnNF monolayer, and 2D Fe4N2 pentagon crystal. The mini-review also

discusses the unique magnetic, electronic, topological, and spin-transport

properties and the possible application of these 2D SGSs. The mini-review

can be regarded as an improved understanding of the current state of 2D SGSs

in recent 3 years.
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1 Introduction

Due to their unique physical and chemical characteristics induced by low-

dimensionality and electronic constraints, as well as their potential applications in

spintronics, high-temperature ferromagnetic two-dimensional (2D) materials (Lee

et al., 2010; Li and Yang, 2014; Wang et al., 2016a; Zhou et al., 2016; Ashton et al.,

2017; Benmansour et al., 2017; Gong and Zhang, 2019; Kim et al., 2019; Zhou et al.,

2019; Chen et al., 2020; Torelli et al., 2020; Xu et al., 2020; Zhang et al., 2021a; Tang

et al., 2021; Miao and Sun, 2022) have attracted a great deal of attention in recent

years. Nevertheless, the majority of prepared 2D materials that resemble graphene are

not magnetic (Wang et al., 2012; Liu and Zhou, 2019), magnetic ordering has not been

observed in the 2D material family for more than 10 years since the discovery of

graphene (Hashimoto et al., 2004; Novoselov et al., 2004; Huang et al., 2017) in 2004.

Recently, only some intriguing 2D magnetic materials, such as CrI3 (Huang et al.,

2017), CrGeTe3 (Gong et al., 2017; Wang et al., 2018a), Fe3GeTe2 (Deng et al., 2018a;

Fei et al., 2018), VSe2 (Bonilla et al., 2018) and CrTe2 (Sun et al., 2020a), have been

experimentally realized. Furthermore, it should be noticed that, the 2D magnetic

material is far from the actual spintronic application at room temperature due to the

low Curie temperature Tc and low spin polarization. Thus, it is significant and urgent
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to develop ferromagnetic 2D materials with high spin-

polarization and Tc via theory and experiment.

Among different types of 2D ferromagnetic materials, 2D

spin-gapless semiconductors (SGSs) (Li et al., 2009; Zhang et al.,

2015; Gao et al., 2016; Zhu and Li, 2016; Wang et al., 2017a; He

et al., 2017; Lei et al., 2017; Wang, 2017; Deng et al., 2018b; Wang

et al., 2018b; Wu et al., 2020a; Yang et al., 2020a; Wu et al., 2020b;

Deng et al., 2020; Feng et al., 2020; Li et al., 2020; Nadeem et al.,

2020; Rani et al., 2020;Wang et al., 2020; Yue et al., 2020; Şaşıoğlu

et al., 2020; Feng et al., 2021; Phong and Nguyen, 2022) are ideal

candidates for high-efficient spintronic devices. Wang (Wang,

2008) first proposed the concept of SGSs in 2008, and the SGSs

can be viewed as a bridge to connect the magnetic

semiconductors (Haas, 1970; Dietl, 2010; Sato et al., 2010)

and half-metals (Wang et al., 2016b; Wang et al., 2017b;

Wang et al., 2017c; Liu et al., 2017; Wang et al., 2018c; Han

et al., 2019;Wang et al., 2019; Yang et al., 2020b; Tang et al., 2021;

Yang et al., 2021). It is well known that the SGSs (Wang et al.,

2018b) can host parabolic and linear dispersion between energy

and momentum (see Figure 1A–H). Moreover, SGSs (Wang,

2017) can be categorized into four different types depending on

the touching types of the valence band maximum (VBM) and the

conduction band minimum (CBM) in both spin directions. We

take the SGSs with parabolic dispersion as examples to introduce

the above four types (see Figure 1A–D). In Figure 1A, one finds

the CBM and VBM touch each other at the Fermi level (FL) in the

spin-up (SU) channel, whereas a semiconducting gap appears in

the spin-down (SD) channel. The VBM in the SD channel

touches the FL. Figure 1B shows the semiconducting gaps in

both spin channels. However, the VBM in the SU channel

FIGURE 1
(A–H) Different SGSs. (I–J) Top and side views of the TM2(C2O4)3 structure. The calculated band structures (BSs) of Ni2(C2O4)3 (K–N) and
Re2(C2O4)3 (O–R)with different methods. M and Cm of Ni2(C2O4)3 (S) and Re2(C2O4)3 (T) as a function of temperature. (I–T) Reproduced from (Xing
et al., 2022) with permission from RSC publishing (U) BS of the Fe2I2 monolayer. (V) 3D plot of Dirac point (W) Magnetic anisotropy and magnetic
moment of the Fe2I2 as a function of biaxial strain. (X) and (Y) atom-resolved BSs without and with SOC. (Z) Edge states of 2D Fe2I2 (U–Z)
Reproduced from (Sun et al., 2020b) with permission from RSC publishing.
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touches the CBM in the SD channel, forming an indirect zero-

gap state. The case of Figure 1C is similar to that of Figure 1B.

However, the CBM touches the FL in the SD channel. Figure 1D

is the standard form of SGSs with parabolic dispersion: a zero-

gap in the SU channel and a semiconducting gap in the SD

channel. Similarly, the cases of SGSs with linear dispersion are

listed in Figure 1E–H. Note that, for cases I, III and IV (see

Figures 1A,C, D, E, G, F), depending on how the VBM and CBM

touch each other, the zero-gap in one spin channel can be direct

(VBM and CBM touch each other at the same k point) or indirect

(they touch each other at different k points) (Wang et al., 2020).

SGSs may host the following advantages: 1) the excitation

of electrons from the valence band to the conduction band

requires only a tiny amount of energy. 2) the excited carriers

(electrons and holes) can be fully spin-polarized (S-P)

simultaneously. 3) one can use the Hall effect to separate

the 100% S-P electrons and holes. 4) for the case II SGSs (See

Figure 1B and Figure 1F), one can control the gate voltage to

manipulate the SU and SD electrons and holes. 5) researchers

proposed nodal point SGSs and nodal line SGSs in 2D and 3D

materials, which can be excellent candidates for studying the

relationship between topological and spintronics. For

example, Dirac SGSs may induce low energy consumption

and ultrafast transport because of their unique linear band

dispersion. Hence, Dirac SGSs can cohost 100% spin-

polarization and linear Dirac point at the FL.

Although there were several reviews on the research topic

of SGSs, these articles (Wang, 2017; Wang et al., 2020; Yue

et al., 2020) all focused on SGSs from 2008 to 2020. To our best

knowledge, other researchers have not reviewed the recent

advances in 2D SGSs from 2020 to 2022. From 2020 to 2022, a

series of ideal 2D SGSs are proposed via first-principles

calculations, and the related novel properties are also

investigated. Therefore, for spintronics and topology, a

mini-review of 2D SGSs seems necessary. It is noteworthy

that Dirac SGSs and nodal line SGSs are new cross concepts in

spintronics and topology. Although in almost all the reported

2D (2D) materials, the twofold degenerate nodal points in

their band structures are misused as “Dirac points” due to a

historical issue (Yang, 2016). The correct naming of these

nodal points should be “Weyl”, and then each twofold

degenerate point is described by the Weyl model in 2D.

This review follows the common practice of using “Dirac

point” SGSs in 2D materials.

In this review, we divided 2D SGSs into four classes: 2D

SGSs with direct band crossing points at high-symmetry (H-S)

points and along the H-S paths, 2D SGSs with indirect zero-

gap states, and 2D SGSs with zero-gap nodal ring states. Note

that this is the first time to review SGSs based on classification

as mentioned above.

Herein, we will review the most recent investigations of 2D

SGSs from 2020 to 2022. Section 2 introduces the proposed 2D

SGSs with band crossing points at the H-S point. Section 3

introduces the proposed 2D SGSs with band crossing points

along the H-S paths and their unique behaviors. Section 3

reviews 2D SGSs with indirect zero-gap states and their

possible application. Section 4 introduces the case of 2D

SGSs with zero-gap nodal ring states. Section 5 is the

conclusion.

2 2D SGSs with band crossing points at
H-S points

In 2022, Xing et al. (Xing et al., 2022) proposed a family of

2D oxalate-based metal-organic frameworks (MOFs) that

possed the SGS characteristic. Figures 1I,J show the

structure and reciprocal lattice of a 2D MOF TM2(C2O4)3
with a honeycomb-kagome (HK) lattice. Figure 1K–R show

the electronic BSs of Ni2(C2O4)3 and Re2(C2O4)3 calculated by

different methods along the Γ-M-K-Γ high symmetry paths.

Without SOC, the valence band and conduction band in one

spin channel touch the FL at the K point, and the other spin

channel has a semiconducting band gap of 1 eV (see

Figure 1K, O). Meanwhile, spin-gapless Dirac points with

linear dispersion appear at the FL in one spin channel,

which is beneficial for dissipationless spin transport. The

influence of SOC on the Dirac point at the K H-S point is

considered, and the results are shown in Figure 1L, P. One

finds that the SOC triggers a band gap of about 7.6 meV in

Ni2(C2O4)3 and 143 meV in Re2(C2O4)3, respectively.

Compared with Ni2(C2O4)3, the SOC-induced gap of

Re2(C2O4)3 is more significant than that of Ni2(C2O4)3
because the relative atomic mass of the Re atom is heavier

than that of the Ni atom, and the Dirac point of Re2(C2O4)3
only contributes the d orbital of Re atom. Figure 1M, Q show

the BSs calculated by the HSE06 method, and Figure 1N, R

show the BSs calculated by the GGA + U method. One finds

that the spin-gapless Dirac point is still maintained at the K

point under both HSE06 and GGA + U methods.

With the PBE functional, the calculated Fermi velocity

(vF) values (Xing et al., 2022) are up to 2.0 × 105 m s−1 and

1.86 × 105 m s−1 for Ni2(C2O4)3 and Re2(C2O4)3, respectively.

When using the HSE06 functional, the obtained vF values are

relatively higher, up to 2.78 × 105 m s−1 and 2.58 × 105 m s−1

for Ni2(C2O4)3 and Re2(C2O4)3, respectively. As seen in

Figure 1S, T, M and Cm exhibit a sudden change at a

temperature of 208 K for Ni2(C2O4)3 and 34 K for

Re2(C2O4)3, respectively. Note that the ultimate goals of

spintronic or electronic devices in the future are ultra-fast

transmission and extremely low energy consumption. The

massless charge should ideally be fully S-P, and the (effective)

mass of electrons or holes should be eliminated. Therefore, a

class of magnetic materials called 2D SGSs with Dirac points

at high symmetry points can be considered ideal for the use of

next-generation spintronics (Wang et al., 2018b).

Frontiers in Chemistry frontiersin.org03

Wang and Wang 10.3389/fchem.2022.996344

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.996344


FIGURE 2
(A) The relationship between the MAE and strain. (B–D) BS of the Cr2X3 monolayers calculated with different methods. (E) The Cr2S3 device
model. (F) The spin-resolved current-voltage curves for the PC and the APC of the device. (A–F) Reproduced from (Feng et al., 2021) with permission
from AIP publishing. (G) Schematics for the FM and AFM states of the CrGa2Se4monolayer. (H) Energy difference with respect to the ground state for
T-I, T-II and T-III configurations. (I) The simulated Curie temperature (J) The calculated BSs by the HSE06 method. (G–J) Reproduced from
(Chen et al., 2021) with permission from RSC publishing. (K) The schematic diagram of NRSGSs. Reproduced from (Zhang et al., 2020b) with
permission from APS. (L–N) Structures of 2D HKMn-cyanogen lattice, 2D MnNFmonolayer, and 2D Fe4N2 pentagon crystal, respectively. (O–Q) 3D
plot of the gapless NR states in 2D HK Mn–cyanogen lattice, 2D MnNF monolayer, and 2D Fe4N2 pentagon crystal, respectively. (L–Q) Reproduced
from (Zhang et al., 2018; Hu et al., 2019; Zhang et al., 2021b) with permission from RSC and ACS publishing.
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3 2D SGSs with band crossing points along
the H-S paths

3.1 Example 1: 2D single-layer Fe2I2
In 2020, Sun, Ma, and Kioussis (Sun et al., 2020b) proposed

single-layer Fe2I2, with space group P4/nmm (nop. 129) and

calculated lattice constants a = b = 3.81 Å, is a 2D SGS. The

calculated BSs for single-layer Fe2I2 without SOC and with GGA

+ U are shown in Figure 1U. One finds that the SU bands show a

semiconducting behavior, whereas the SD bands show a zero-gap

behavior. Two gapless band crossing points appear at the FL in

the SD channel. Unlike the gapless point at the H-S point in

Ni2(C2O4)3 and Re2(C2O4)3, the gapless points in Fe2I2 are along

the H-S paths. As shown in Figure 1U, the gapless points appear

along the Y-Γ-X H-S paths. The 3D plot of these gapless points

(named as Dirac points in Ref. (Sun et al., 2020b)) is shown in

Figure 1V. The obtained vF with the help of GGA + U and

HSE06 is 4.66 × 105 m s−1 and 6.39 × 105 m s−1, respectively. As

we all know, the massless Dirac fermions will lead to low effective

masses and high carrier mobility. Further, as shown in

Figure 1W, single-layer Fe2I2 undergoes a spin reorientation

transition to an in-plane magnetization orientation beyond

-4% compressive strain. As shown in Figure 1X, one finds

that the SD bands arise from the Fe-d orbital, whereas the SU

bands are from the I-p orbital. Hence, the Fe-d orbital contributes

solely to the Dirac points at the FL. When SOC is added,

significant band gaps (~301 meV) appear along the Y-Γ-X H-S

paths (see Figure 1Y) and a nonzero Chern number (|C| = 2). The

edge states for the single-layer Fe2I2 are shown in Figure 1Z; one

finds that two chiral topologically protected gapless edge states,

which are consistent with the obtained |C| = 2. The SOC induces

a physics nature transition from Driac SGS to quantum

anomalous Hall (QAH) state in single-layer Fe2I2.

3.2 Example 2: 2D Cr2X3 monolayer with
the HK lattice

In 2021, Feng, Liu, and Gao (Feng et al., 2021) proposed the

spin-gapless semiconducting states in 2D Cr2X3 monolayers (X = S,

Se, and Te) via first-principle calculations. The estimated Curie

temperatures for these three monolayers are about 420, 480, and

510 K, respectively. The S-P BSs and the calculated MAE for these

three monolayers are collected in Figures 2B–D. One finds these

three monolayers belong to 2D SGSs with zero-gap Dirac points

along the H-S paths, i.e., K-Γ-M. As shown in Figure 2A one finds

that the MAEs for these three monolayers increase with the

increasing tensile strains from 1% to 5%. Unfortunately, the SGS

behaviors in Cr2Te3 at the FL are destroyed within HSE06. For the

Cr2S3 and Cr2Se3, the Dirac points along the K-Γ-M paths are still

maintained within PBE and HSE06. The effect of SOC to the Dirac

points is also examined by Feng, Liu, and Gao (Feng et al., 2021);

they stated that the SOC effect is weak for the proposed monolayers.

Feng, Liu, and Gao (Feng et al., 2021) also studied the

nonequilibrium spin transport properties of monolayer Cr2S3,

and the device model is shown in Figure 2E. From Figure 2F, for

the APC in both spin directions, one finds the values of spin-

currents are extremely small. For the PC, one finds the spin-

current of the PC-spin down can be neglected, whereas the spin-

current of PC-spin up increased at first and then decreased with

the increase of voltage form 0.0 V–1.0 V. The maximum value of

spin current of PC-spin up appears at about+/-0.35 V. Hence, the

device model in Figure 2E should host a perfect spin filtering

effect (Chen et al., 2019; Zhang et al., 2020a; Han et al., 2022).

4 2D SGSs with indirect zero-gap states

In 2021, Chen et al. (Chen et al., 2021) predicted a 2D spin

gapless ferromagnetic semiconductor of CrGa2Se4 monolayer with

indirect zero-gap state. As shown in Figures 2G,H, one finds that the

magnetic ground state is the FM state with a T-I configuration. It can

be seen from Figure 2I that the Curie temperature of the CrGa2Se4
monolayer is about 220 K. Chen et al. calculated the BSs of the

CrGa2Se4 monolayer with HSE06 functional. The results are

collected in Figure 2J. At first glance, one finds that the

CrGa2Se4 monolayer is a ferromagnetic semiconductor. The

bands in SU and SD channels host semiconducting gaps of

0.36 eV and 1.36 eV, respectively. Interestingly, the lowest

conduction band state in the SD channel touches the FL, and the

highest valence band states in the SU channel touch the FL, forming

an indirect zero-gap state. Hence, the CrGa2Se4 monolayer can also

be seen as an SGS with an indirect spin-gapless semiconducting

state.

Wewould like to point out that the indirect zero gap states occur

because the two spin components at different k points accidentally

have their extreme values at the FL. Therefore, in general, they are

not protected from the symmetry of systems due to the indirect band

touching. However, the SGSs with indirect band touching usually

host bipolar magnetic behavior. That is, by changing the sign of the

applied gate voltage, one can achieve the electrical manipulation of

spin-polarization orientation in SGSs (with indirect band touching).

5 2D SGSs with zero-gap nodal ring states

Compared to the Dirac SGSs with single or multiple nodal point

states, Zhang et al. (Zhang et al., 2018) proposed a new class of 2D

SGSs with a gapless nodal ring (NR) in the momentum space and

100% spin polarization. That is, the SGSs, with a one-dimensional

topological signature, have zero-gap band crossing points that form

a line in the momentum space. Typically, they are named as

NRSGSs. The schematic diagram of NRSGSs is shown in

Figure 2K. One finds that the SU channel shows a zero-gap NR

state in the momentum space and the SD channel shows a

semiconducting state.
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To this date, 2D HK Mn–cyanogen lattice (Zhang et al., 2018),

2D MnNF monolayer (Hu et al., 2019), and 2D Fe4N2 pentagon

crystal (Zhang et al., 2021b) are proposed to be 2D NR SGSs. The

structural model and the 3D plot of the gapless NR state in one spin

channel are shown in Figure 2L–Q. We would like to point out that

the gapless NR state in one spin channel may suffer sizable SOC-

induced gaps. Hence, searching for NRSGSs with light elements to

reduce the value of SOC-induced gaps.

6 Conclusion and remarks

In this mini-review, we introduced a series of ideal 2D SGSs,

including 2D SGSs with band-crossing points at H-S points or along

the H-S paths, 2D SGSs with S-P NR states, and 2D SGSs with

indirect zero-gap states.

The Dirac SGSs with band-crossing points at H-S points or along

the H-S paths show massless fermions around the FL, ideal

dissipation-less properties, and 100% spin-polarization.

Furthermore, the band crossing points may not isolate in the

momentum space and form an NR in 2D SGSs. The NRSGSs will

exhibit more intensive nonlinear electromagnetic responses than a

single Dirac point. It should be noted that the 2D SGSs are hopped to

host a high Curie temperature and a robust FM state at room

temperature. Finally, a major challenge for 2D SGSs is that no 2D

SGSs has been experimentally realized. The reason is that the 2DSGSs

are monolayer materials, and they are hard to synthesize. Moreover,

somemonolayermaterials are not stable in the ambient environment.

Thus, new nanotechnology is needed for fabricating 2D

monolayer SGSs.
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