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The Shastry-Sutherland lattice, one of the simplest systems with geometrical frustration, which has an exact
eigenstate by putting singlets on diagonal bonds, can be realized in a group of layered compounds and raises
both theoretical and experimental interest. Most of the previous studies on the Shastry-Sutherland lattice
are focusing on the Heisenberg model. Here we opt for the Hubbard model to calculate phase diagrams over
a wide range of interaction parameters, and show the competing effects of interaction, frustration and
temperature. At low temperature, frustration is shown to favor a paramagnetic metallic ground state, while
interaction drives the system to an antiferromagnetic insulator phase. Between these two phases, there are
an antiferromagnetic metal phase and a paramagnetic insulator phase (which should consist of a small
plaquette phase and a dimer phase) resulting from the competition of the frustration and the interaction.
Our results may shed light on more exhaustive studies about quantum phase transitions in geometrically
frustrated systems.

T
he strongly correlated system with geometrical frustration is an important research area in condensed matter
physics, and has attracted enormous interests in recent years. Geometric frustration refers to the case where
the geometry of a lattice conflicts with its inter-site interactions. It can be realized in antiferromagnetic

Heisenberg models on certain lattices, such as triangular lattice1 and kagome lattice2, which host competing
exchange interactions that can not be satisfied simultaneously. This can give rise to new possibilities for the
ground state, including the usual antiferromagnetic order and many novel states, such as heavy Fermi liquid, spin
liquid, spin glass, and spin ice, which are poorly understood and thus actively studied3–7.

The Shastry-Sutherland lattice is one of geometrically frustrated systems, and has been actively studied due to the
magnetization plateaus in the presence of a magnetic field8–14 and its observation15–20. It was first proposed by
Shastry and Sutherland21 as a theoretical toy model with the Heisenberg Hamiltonian where there are exchange
interactions on the nearest bond as well as the diagonal bonds (see in Fig. 1 (b)). It is shown to have an exact
eigenstate consisting of orthogonal singlet dimers on the diagonal bonds, which becomes the exact ground state of
the system when frustration is strong. It is later found out that the Shastry-Sutherland lattice can be used to describe
the magnetic properties of the compound SrCu2(BO3)2

8,22,23, in which the two dimensional magnetic linkage of the
Cu21 ions has a structure shown in Fig. 1 (a) and is topologically equivalent to Shastry-Sutherland lattice. Similar
structures have also been found in other materials, such as Y b2Pt2Pb24 and RB4(R 5 La 2 Lu)25. Most of the
theoretical and numerical studies on Shastry-Sutherland lattice so far have been focusing on Heisenberg model9,26–28,
Ising model25, t 2 J model29,30, and t 2 J 2 V model31. However, there are few works about the Hubbard model, and
they are all mainly considering the possibility of superconductivity in a system doped away from half-filling32. In this
report, we opt for the Hubbard model to investigate correlated electrons on this geometrically frustrated system,
which reduces to the Heisenberg model in the large U limit at half-filling. Our study based on Hubbard model thus
can provide phase diagrams that include a wider range of interaction parameters.

To understand this strongly correlated many-body system with geometrical frustration, we apply the cellular
dynamical mean field theory (CDMFT) combined with the continuous time quantum Monte Carlo method
(CTQMC). The CDMFT, which incorporates the short-range spatial correlations by mapping the lattice to a self-
consistent embedded cluster in real space instead of a single site in dynamical mean field theory (DMFT)33, has
been proved to be successful when applied to study strongly interacting systems with geometrical frustration34–36.
The CTQMC, on the other hand, which is more accurate than the traditional quantum Monte Carlo method, is
used as an impurity solver37,38. From the single-particle Green’s function given by the CDMFT and CTQMC, the
single-particle density of states and the double occupancy can be calculated, which are further used to identify the
Mott metal-insulator transition. Due to the presence of frustration, magnetic order is another important aspect
that we would like to address in this report, which can also be extracted from the single-particle Green’s function.
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Then we obtain phase diagrams including the effect of interaction,
frustration and temperature. At low temperature, apart from the
antiferromagnetic insulator and paramagnetic metal phase that usu-
ally appear in a Mott transition, the competition between frustration
and interaction gives rise to two other phases. One is an antiferro-
magnetic metal phase in the intermediate interaction region before
the onset of the metal-insulator transition. The other one is a para-
magnetic insulator phase at both large interactions and large frustra-
tions, and this non-magnetic insulator phase should consist of a
small plaquette phase and a dimer phase.

Results
The standard Hubbard model on the Shastry-Sutherland lattice can
be written as

H~{t1

X
ijh i1,s

cz
is cjs{t2

X
ijh i2,s

cz
is cjszU

X
i

ni:ni;, ð1Þ

where cz
is cisð Þ is the creation (annihilation) operator; ni~cz

i ci is the
number operator; t1 (t2) is the nearest-neighbor (the diagonal)

hopping energy as shown in Fig. 1(b). U is the Hubbard interaction
strength. Æijæ1 (Æijæ2) runs over the nearest-neighbor links (the diag-
onal links) on the lattice. We set t1 5 1.0 as the energy unit, and t2

hence can be seen as a measure of the frustration strength. We focus
on the half-filling case i.e. Ænæ 5 1, which is realized by adjusting the
chemical potential m.

We shall start from the non-interacting case with U 5 0. In
this case, the Hamiltonian in Eq. (1) can be partially diago-
nalized in momentum space as H0~

X
k

yz
k t kð Þyk, where

yz
k ~ cz

1k , cz
2k , cz

3k , cz
4k

� �
. The index i 5 1, 2, 3, 4 in cik represent

the four sites in each unit cell as illustrated in Fig. 1 (b), and k locates
in the first Brillouin zone. t(k) is a 4 3 4 matrix that has a form,

t kð Þ~
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Figure 1 | (a) Two dimensional lattice structure of Cu21 in SrCu2(BO3)2; (b) Sketch of Shastry-Sutherland lattice, which is topologically equivalent to

(a). The dashed green line marks the four-site cluster which contains four atoms labeled by 1, 2, 3, and 4. t1 and t2 are the nearest-neighbor hopping

energy and the diagonal hopping energy respectively. We set the distance between the nearest neighbors as the length unit and t1 5 1.0 as the energy unit.

(c) First Brillouin zone of Shastry-Sutherland lattice. T, K, and C denote high symmetry points in the first Brillouin zone. (d) Tight-binding band

structure for t2 5 1.0; (e) Non-interacting density of states at half-filling for t2 5 0.8, t2 5 1.0, and t2 5 1.2.
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The band dispersion is readily obtained by diagonalizing this matrix.
A special case with t2 5 1.0 is shown in Fig. 1 (d), where there are four
bands resulting from the four sub-lattices. We label them I II III and
IV from top to bottom, among which band II and III touch atC point
(k 5 (0, 0)). Band II has its minimum at C and two diagonals in the
first Brillouin zone, which result in a Van Hove singularity right at
half filling in the density of states as shown in Fig. 1(e). In addition,
we show in Fig. 2 the evolution of the band dispersions along the high
symmetry lines of the first Brillouin zone with respect to t2. It can be
seen that there are several things in common for the dispersions at
different t2’s. For example, the band is a flat along the diagonal of the
first Brillouin zone. Along the boundary of the first Brillouin zone,
band I and II as well as band III and IV are degenerate. Besides, when
t2 . 2.0, there is a gap opened between band II and III, and the system
becomes a band insulator at half-filling. As we are focusing on the
Mott transition, we limit our studies to the case when t2 , 2.0 in this
report.

Now we turn to the case when the Hubbard interaction is present
(i.e. U . 0). A large U can induce a large energy cost when two
electrons occupy the same site, leading to a decreasing double occu-
pancy. Consequently, at half filling electrons tends to get localized
with one electron per site and when U is large enough the system
becomes an insulator with gap in the single-particle electron spec-
trum, known as the Mott metal-insulator transition. In order to
identify the Mott transition of the Shastry-Sutherland lattice, we
calculated the density of states (DOS) at different interaction

strength by the maximum entropy method39 with different temper-
ature and frustration. In Fig. 3(a), we show the DOS for T 5 0.2, t2 5

1.0. It can be seen that when U 5 7 a Fermi-liquid-like peak is found
near Fermi energy, which splits to a pseudogap when U is increased
to 8.540,41. When U increases up to the critical point U 5 9.5 an
obvious gap appears around the Fermi level which suggests the sys-
tem undergoes a Mott transition from a metal to a Mott insulator. In
Fig. 3(b) we plot the DOS at T 5 0.1 with t2 5 1.0 and we can see that
the transition point at T 5 0.1 decreases to U 5 8 compared with U 5

9.5 when T 5 0.2, which is because the decreasing of temperature
suppresses the thermal fluctuations and makes the Mott transition
easier. By comparing Figs. 3(b)–(d), it is found out that the critical
interaction of Mott transition increases when the frustration
becomes stronger.

The double occupancy Docc 5 Æni"ni#æ represents the probability
of two particles occupying the same site. The evolution of Docc as a
function of U at different temperature is shown in Fig. 4. It can be
seen that as U increases, Docc decreases monotonically to a small
value, which is a characteristic feature of the Mott transition2, indi-
cating that the system is almost singly occupied at large U.
Meanwhile, Docc has no visible discontinuities at the critical points
marked with arrows, suggesting that the Mott transition here is con-
tinuous. We also observe a natural decrease of the critical U when the
temperature decreases, which suppresses the thermal fluctuations.
Besides, the evolution of Docc as a function of the frustration
strength for different U is shown in the inset of Fig. 4, and it can

Figure 2 | Non-interacting band dispersion at (a) t2 5 0.8, (b) t2 5 1.0, (c) t2 5 1.5, (d) t2 5 2.0, (e) t2 5 2.1, and (f) t2 5 2.5. We label I II III and

IV from top to bottom. Band II and III begin to separate when t2 5 2.0, and the system becomes a band insulator at half-filling. We focus on the case when

t2 , 2.0 in this report.
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be seen that the double occupancy is increased with increasing t2 or
decreasing U.

There is usually magnetic order developed along with the Mott
metal-insulator transition. In order to investigate the formation of
the magnetic order, we define a staggered magnetic order parameter

as m~
1
N

X
i
sign ið Þ ni:

� �
{ ni;
� �� �

, where sign(i) 5 1 if i 5 1, 3 and

sign(i) 5 21 if i 5 2, 4 as shown in Fig. 1(b). Fig. 5 shows the
evolution of this staggered magnetic order parameter m and the
single-particle gap DE as a function of U for T 5 0.1, with t2 5

1.0. When U 5 6 both the staggered magnetic order parameter
and the single-particle gap vanish, and the system is in a paramag-
netic metal phase. When 6 , U , 8, the magnetic order forms while
the single-particle excitation is still gapless, implying the system is in
an antiferromagnetic metal phase. When U increases to 8, a gap
opens, and the system goes into an antiferromagnetic insulator
phase. In the inset of Fig. 5, we also show the case when t2 5 1.4.
There only exists the metal-insulator transition at U 5 10, and all
magnetic orders are suppressed due to strong frustration.

Figure 3 | (a) Density of state (DOS) for different U with T 5 0.2 and t2 5 1.0. Mott metal-insulator transition happens at U 5 9.5 where an

obvious gap appears around the Fermi level. DOS when b) T 5 0.1, t2 5 1.0, c) T 5 0.1, t2 5 0.8, and d) T 5 0.1, t2 5 1.2 are also plotted, where the

transition points are U 5 8, 6.5, and 9.1 respectively.

Figure 4 | Evolution of double occupancy (Docc) as a function of U for T
5 0.1, 0.2, and 0.5 when t2 5 1.0. The blue, red, and black arrows

mark the critical U’s of Mott transition for T 5 0.1, 0.2 and 0.5, and the

values are 8, 9.5, and 11.8 respectively. Inset: The evolution of Docc as a

function of t2 for different on-site interaction at T 5 0.1.

Figure 5 | Evolution of the staggered magnetic order parameter m and
the single-particle gap DE as a function of U at T 5 0.1 and t2 5 1.0. When

the interaction is weak, DE 5 0 m 5 0, and the system is in a paramagnetic

(PM) metal phase. With the increasing of the interaction U, an

antiferromagnetic (AFM) metal phase found with m ? 0 but DE 5 0.

When U is strong enough, DE ? 0 m ? 0, and the system enters an

antiferromagnetic (AFM) insulator phase. The insert picture is for t2 5 1.4.

www.nature.com/scientificreports
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Carrying out the analysis above in a wide range of parameters,
phase diagrams of interacting fermions on the Shastry-Sutherland
lattice with respect to interaction, frustration, and temperature are
obtained in Figs. 6 and 7. We first show the effect of frustration t2 and
interaction U at a low enough temperature T 5 0.1 (see Fig. 6). When
t2 5 0, the Shastry-Sutherland Lattice degenerates to a square lattice,
which is unstable towards an antiferromagnetic phase for an arbit-
rarily small interaction due to the perfect nesting of the Fermi sur-
face, and the magnetic order is always accompanied by a Mott
insulating gap36,42. In Fig. 6, the finite critical U which is around
2.9 when t2 5 0 is due to the finite temperature. In the presence of
frustration, when U increases, instead of going directly into the anti-
ferromagnetic insulator phase from the paramagnetic metal phase,
the system first enters an antiferromagnetic metal phase, showing an
important role that frustration plays in the formation of an antifer-
romagnetic metal43–45. When t2 . 1.3 the antiferromagnetic metal
phase disappear and a paramagnetic insulator phase emerges for U .

9.5. The critical frustration t2 5 1.3 obtained here is consistent with
the one obtained from the calculations of the two dimensional
Heisenberg model on the Shastry-Sutherland lattice, beyond which
the system was shown to consist of a small plaquette phase and a
dimer phase26,46–49. We will return to this later in more details in the
discussion part.

We also obtain phase diagrams showing the effects of thermal
fluctuations at a fixed frustration strength t2 5 1.0, as illustrated in
Fig. 7. The antiferromagnetic metal phase exists when T , 0.175, and
a phase transition from antiferromagnetic metal to antiferromag-
netic insulator is found when U is kept increasing. When temper-
ature is high, magnetic orders are suppressed by thermal
fluctuations, and the system undergoes a transition from a paramag-
netic metal phase to a paramagnetic insulator phase with increasing
interaction. Additionally, we plot the phase digram with frustration
up to 1.3 in the inset of Fig. 7. It is shown that due to the strong

frustration, magnetic orders are totally suppressed even at low tem-
perature; both the antiferromagnetic metal phase and the antiferro-
magnetic insulator phase disappears. When the interaction is
increased, there is only a transition from a paramagnetic metal to a
paramagnetic insulator.

Finally, we present in Fig. 8 the distribution of the spectral weight

at zero frequency, A k,v~0ð Þ<{
1
p

limvn?0ImG k,ivnð Þ for differ-

ent U and t2 with T 5 0.1. The location of the maxima of A(k, v 5 0)
can be seen as the Fermi surface1. As showed in Fig. 8, when the
interaction is small, the spectral function has sharp peaks at the
center and along the two intersecting diagonals of the first
Brillouin zone, which is weakly renormalized compared to the
non-interaction case, and exhibits a well-defined Fermi surface.
With the increasing of the interaction, the peaks become lower,
and finally vanish when the Mott transition happens due to the
localization of particles. The decreasing of the frustration also makes
the Fermi surface shrink.

Discussion
As mentioned in the introduction part, most of the theoretical and
numerical studies of Shastry-Sutherland lattice are focusing on loca-
lized spins based on the Heisenberg model, whose ground state phase
diagram has two limiting behavior depending on the dimensionless
parameter J/J9, where J is the exchange coupling constant along the
nearest neighbour bonds and J9 the one along the additional diagonal
bonds. In the limit J=J 0?1, the ground state is an antiferromagnet
with gapless magnetic excitations, while in the opposite limit J=J 0=1,
the exact ground state is proved to be a non-magnetic insulator where
local spins form singlet dimers (see Fig. 6 (a3)) on the diagonal
bonds. Between these two phases, a small window of an intermediate
phase was also found50,51, which has been confirmed as a plaquette
phase26,46–49.

In this report, we numerically investigate the Hubbard model on
the Shastry-Sutherland lattice which takes the itinerancy of electrons
into account. When U is large and overwhelms the effect of the
kinetic energy, electrons get localized and the system reduces to
the extensively studied antiferromagnetic Heisenberg model, which

Figure 6 | t2 2 U phase diagram at T 5 0.1 is illustrated in (b). Schematic

diagrams of a1) paramagnet, a2) antiferromagnet, and a3) dimer phase are

also shown. When t2 , 1.3, there is an antiferromagnetic metal phase

between the paramagnetic metal phase and antiferromagnetic insulator

phase. When t2 . 1.3, a low-temperature paramagnetic insulator phase

emerges (which should consist of a small plaquette phase and a dimer

phase).

Figure 7 | T 2 U Phase diagram of interacting fermions on the Shastry-
Sutherland Lattice at t2 5 1.0. The black line indicates the transition from

a metal to an insulator and the red line shows the transition from the

paramagnetic (PM) phase to the antiferromagnetic (AFM) phase. When

the temperature is low enough, with the increasing U, there exists a region

of antiferromagnetic metal phase before the system enters the

antiferromagnetic insulator phase. The insert picture is for the case when

t2 5 1.3.
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can thus serve as a benchmark of our calculations. As shown in Fig. 6,
at large U limit, spins order antiferromagnetically when frustration
(t2/t1) is small. When frustration goes large, magnetic orders are
suppressed and the system becomes a non-magnetic (paramagnetic)
insulator consistent with previous results for the Heisenberg
model. The critical point in our calculation is around t2/t1 5 1.3,
which, at large U limit, corresponds to J/J9 5 (t1/t2)2 < 0.6 for the
Heisenberg model. This is close to previous results9,23,52–54, where
the critical J/J9 between the Néel phase anf the non-magnetic phase
is predicted to be around 0.7. According the the previous studies on
Heisenberg model, this non-magnetic phase should consist of a
small plaquette phase and a dimer phase26,46–49. In the intermediate
coupling regime where the itinerancy of electrons need to be
taken into account, there is an antiferromagnetic metal phase sand-
wiched by the paramagnetic metal phase and the antiferromagnetic
insulator phase, due to the competition of the frustration and the
interaction. Similar phenomenons have also been discussed for
the Hubbard model on the frustrated triangular lattice55–60, where
there are also intermediate phases between the usual antiferromag-
netic insulator phase and paramagnetic metal phase, due to the geo-
metrically frustrated lattice structure, such as a non-magnetic
insulating phase, a superconducting phase, and an insulating spin
liquid phase.

In summary, by combining the cellular dynamical mean field
theory with the continuous time quantum Monte Carlo method,
we investigate the Hubbard model on Shastry-Sutherland lattice at
half filling, and obtain phase diagrams with respect to interaction,
frustration and temperature. Our result shows that in the present of
frustration an antiferromagnetic metal phase exists at low temper-
ature between the paramagnetic metal phase and the antiferromag-
netic insulator phase. When frustration goes beyond a critical value,
magnetic orders are suppressed, and Mott transition leads the system
to a paramagnetic insulator, which should consist of a small pla-
quette phase and a dimer phase according to previous studies on
Heisenberg model on Shastry-Sutherland lattice. We hope our study
can provide a new perspective for the property of this lattice.

Methods
All calculations reported in this work are carried out by using the cellular dynamical
mean field theory (CDMFT)34–36 and the continuous time quantum Monte Carlo
method (CTQMC)37,38. In our work we map the original lattice onto a four-site
effective cluster (see Fig. 1 (b)) embedded in a self-consistent medium. From an
initialization of the self-energy S(iv), the effective medium g(iv) can be obtained via
the coarse-grained Dyson equation,

g{1 ivð Þ~
X

k

1
ivzm{t kð Þ{S ivð Þ

" #{1

zS ivð Þ, ð2Þ

Figure 8 | The distribution of spectral weight at zero frequency for different U at T 5 0.1, with (a) t2 5 1.2, (b) t2 5 1.0, and (c) t2 5 0.7. Peaks in the

diagrams represent the dominate distribution of electrons with zero energy in momentum space and thus correspond to the location of Fermi

surface. When the effect of interaction is small, it behaves like sharp peaks on the two diagonals in the first Brillouin zone, reflecting the Fermi surface at

half-filling. With the increasing U and decreasing t2, the renormalization effect becomes stronger, and the distribution spread. In (c3) where Mott

transition occurs and the system is in the antiferromagnetic phase, no clear patterns of the distribution can be seen.
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where m is the chemical potential and t(k) is the Fourier-transformed hopping matrix
and k is summed over the reduced Brillouin zone.

After getting t(k), we can obtain the cluster Green’s function G(iv) by simulating
the effective cluster model using CTQMC as the impurity solver. Using Dyson
function S5 g21(iv) 2 G21(iv) we renew the cluster self-energyS(iv) and complete
the iteration. Here, g(iv), t(k), G(iv), S(iv) are all 4 3 4 matrices. We repeat this self-
consistent iterative loop until the results are converged, and in each iteration we take
107 Monte Carlo steps. The self-energy after 20 iterations is accurate to two decimal
places for weak or intermediate interaction and one decimal place for strong inter-
action.
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