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Rapidly proliferating cancer cells increase flux through anabolic
pathways to build the mass necessary to support cell division.
Imported amino acids and glucose lie at the apex of the anabolic
pyramid. Consistent with this, elevated expression of nutrient
transporter proteins is characteristic of aggressive and highly
malignant cancers. Because tumour cells are more dependent
than their normal neighbours on accelerated nutrient import, these
up-regulated transporters could be excellent targets for selective
anti-cancer therapies. A study by Babu et al. in a recent issue
of the Biochemical Journal definitively shows that SLC6A14
(where SLC is solute carrier) is one such cancer-specific amino
acid transporter. Although mice completely lacking SLC6A14
are viable and exhibit normal mammary gland development,

these animals are highly resistant to mammary tumour initiation
and progression driven by potent oncogenes. Because SLC6A14
is essential for tumour growth yet dispensable for normal
development and tissue maintenance, small molecules that block
amino acid import through this transporter could be effective
and selective anti-cancer agents, particularly as components of
rational drug combinations.
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In order to support the increased biosynthesis that is required for
proliferation, cancer cells express high levels of many different
nutrient transporters on their surface [1,2]. For example, over-
expression of c-Myc and oncogenic mutants of the Ras GTPase
force cells into an anabolic programme and drive the expression of
glucose and amino acid transporters to meet the increased demand
that this metabolic re-wiring creates [3–7]. The accelerated
glucose uptake conferred by elevated transporter expression
is exploited clinically to highlight tumour cells in the midst
of normal tissue in 18F fluorodeoxyglucose-positron emission
tomography (18F-FDG-PET) scans; labelled glutamine may also
have potential value as an in vivo imaging agent [8,9]. Although
a non-essential amino acid, extracellular glutamine is required
by many cancer cells because they cannot synthesize sufficient
quantities to meet the demands of protein synthesis, hexosamine
synthesis, redox balance and the anaplerotic reactions that supply
the tricarboxylic acid cycle with 2-oxoglutarate (α-ketoglutarate)
[9–11]. Cancers can also be addicted to other amino acids.
Asparaginase has long been used against acute lymphoblastic
leukaemias that require exogenous asparagine [12]. Enzymatic
depletion of arginine can also trigger cancer-selective death, and
requirements of some cancers for exogenous serine and possibly
glycine have been recently uncovered [13–17]. Together, these
studies have clearly established that imported amino acids that are
essential for cancer cell growth and survival are often dispensable
for normal cells. The hypersensitivity of cancer cells to amino
acid deprivation may be explained by the fact that tumour cells
carry mutations that lock them into an anabolic state, whereas
normal cells can make compensatory metabolic adaptations to
nutrient depletion. Despite these exciting proof-of-concept studies
and the indisputable success of asparaginase, agents that limit

nutrient uptake are not in the clinical pipeline as a means to target
‘cancer metabolism’ [1,18]. One potential stumbling block for
these kinds of therapies could be a narrow therapeutic index. For
example, 2-deoxy-D-glucose proved too toxic in clinical trials
at doses that limited glucose utilization [19]. Other approaches
to limiting nutrient access have had unfortunate consequences.
Although angiogenesis inhibitors such as bevacizumab, sorafenib
and sunitinib successfully limit access to blood-borne nutrients,
these agents have the undesirable property of creating a
selective pressure for migration that drives metastasis [20].
Taken together, these published studies clearly establish the
merits of targeting amino acid transporters as a novel approach
to cancer therapy if selectively essential transporters can be
identified and sufficiently potent small-molecule inhibitors can be
developed.

In a recent issue of the Biochemical Journal, Babu et al.
[21] tackle the first problem, placing SLC6A14 (where SLC is
solute carrier) in the therapeutic cross-hairs by demonstrating that
this transporter is required only in cancer cells [21]. Although
SLC6A14 transports all neutral amino acids, it is of particular
interest due to its role in supplying amino acids with important
roles in cancer cell growth, specifically glutamine, arginine and
leucine [22,23]. As highlighted above, many cancer cells depend
on imported glutamine. Although glutamine can also be imported
through SLC1A5 (system ASC amino acid transporter 2, ASCT2)
and SLC38A1–SLC38A5 (system N amino acid transporter 1–5,
SNAT1–SNAT5), the concentrating ability of SLC6A14 (sodium-
and chloride-dependent neural and basic amino acid transporter,
ATB0, + ) makes it stand out as a potential key supplier [24]. It
is also important to consider that SLC6A14 can import amino
acids that allow exchangers such as SLC1A5 (ASCT2) and
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SLC7A5 (L-type amino acid transporter 1, LAT1) to function
[25]. Thus, glutamine limitation could actually starve cancer
cells of multiple amino acids, increasing metabolic stress and
decreasing the development of resistance. Limiting the substrates
available to cancer cells is a good strategy only if the normal
cells are not harmed. For this reason, targeting amino acid
transporters that are selectively up-regulated in tumours would
be the ideal. By this criterion, SLC6A14 is also a highly
desirable target. Slc6a14 expression is low to undetectable in
healthy adult tissues but is significantly increased in colorectal,
cervical, pancreatic and oestrogen receptor-positive (ER+ ) breast
cancers [25]. The TCGA database also indicates that the Slc6a14
gene is amplified in a subset of prostate, glioma and head and
neck cancers, suggesting that SLC6A14 inhibitors might have
even broader utility than previously appreciated [26,27]. Its
cancer-weighted expression profile, ability to concentrate amino
acids intracellularly and potential role in glutamine uptake and
mammalian target of rapamycin (mTOR) activation all suggest
that SLC6A14-mediated amino acid import could be a rate-
limiting step in the anabolic growth of certain classes of cancer
cells [21,23,25,28,29].

The Slc6a14-knockout mice created by Babu et al. [21]
finally allow a definitive assessment of the relative contribution
of SLC6A14 to the maintenance and growth of normal and
transformed tissues [21]. Given that previously generated
knockouts of two amino acid transporters critical for cell growth,
SLC7A5 (LAT1) or SLC7A1 (high-affinity cationic amino acid
transporter 1, CAT-1), have led to either embryonic or perinatal
lethality [30,31], it is significant that Slc6a14-knockout animals
were viable, showed no overt phenotype and exhibited normal
fertility and mammary gland development [21]. Interestingly,
compensatory up-regulation of other nutrient transporters was
not observed in normal tissues, supporting the model that
Slc6a14 deletion does not produce amino acid limitation in
non-transformed cells [21]. Whereas Slc6a14− / − mice were
normal and healthy, deletion of Slc6a14 cut tumour incidence
in half, significantly increased the tumour-free interval and
dramatically reduced the tumour growth rate in mouse mammary
tumor virus-polyoma middle T antigen (MMTV-PyMT) and
MMTV-Neu transgenic models of breast cancer [21]. Molecular
characterization of the PyMT-Slc6a14− / − tumours showed the
expected signs of amino acid starvation, including decreased
mTOR signalling and up-regulation of asparagine synthetase and
CCAAT-enhancer binding protein (C/EBP) homologous protein
(CHOP), suggesting that the loss of amino acid import through
SLC6A14 is in fact responsible for the poor tumour growth
[21]. Microarray analysis comparing Slc6a14+ / + and Slc6a14− / −

tumours uncovered compensatory up-regulation of two amino
acid transporters suggesting that, unlike normal tissues, tumour
cells do experience amino acid limitation when SLC6A14 is
absent. Interestingly, a number of immunoglobulin genes were
also up-regulated in the tumours of the knockout mice, suggesting
that the loss of Slc6a14 might also stimulate the anti-tumour
immune response [21]. If increased anti-tumour immunity is
detected in future studies, it will be interesting to test whether
this results from necrotic cell death or from increased amino
acid availability to immune cells infiltrating tumours because the
cancer cells are less able to compete for amino acids without
SLC6A14 [32,33].

Whereas Karunakaran et al. [23] had previously postulated that
chemical inhibition of SLC6A14 should have minimal toxicity
due to tumour-specific up-regulation of the protein, the lack of
phenotype in the knockout mice generated by Babu et al. [21]
provides clear evidence that a small-molecule inhibitor targeting
this nutrient transporter is worth seeking. α-methyltryptophan

(α-MT) has been successfully employed against one SLC6A14-
positive breast cancer xenograft model [23]. However, a more
potent inhibitor would be desirable. Although the single agent
activity of α-MT is encouraging and the effect of deleting
SLC6A14 profound, it will be important to evaluate whether drug
combinations will lead to even greater inhibition or regression
and suppress the development of resistance. As oestrogen can
drive SLC6A14 expression and potentially resistance to α-MT
[23], combination with tamoxifen may be of value. If SLC6A14
restricts glutamine import as suggested by Babu et al. [21],
compounds targeting enzymes important for glutaminolysis may
also represent a logical combination with SLC6A14 inhibitors
[34]. Given the group’s earlier finding that α-MT stimulates
autophagy [23], autophagy inhibitors may also potentiate the
effects of SLC6A14 inhibitors. The Slc6a14-knockout mice
described by Babu et al. [21] should prove to be an excellent
tool for assessing the specificity of small-molecule inhibitors of
this transporter.

While holding promise for novel approaches to breast cancer
therapy, this intriguing study by Babu et al. [21] should also
stimulate future research into the role of SLC6A14 in a wide
range of cancer classes. In addition to ER+ breast tumours,
SLC6A14 has already been established as a promising candidate
for pharmacological inhibition in pancreatic, colon and cervical
cancers [28,29,35]. Evaluating whether targeting SLC6A14
would have benefits in the subset of glioma, head and neck
or prostate cancers in which Slc6a14 is amplified would be
worthwhile [26,27]. A conditional allele of Slc6a14 would also
be of great value in confirming that acute SLC6A14 inhibition in
existing tumours can block tumour growth or lead to regression.
Given the striking efficacy and cancer-selectivity of SLC6A14
deletion demonstrated by Babu et al. [21], it is exciting to speculate
that additional ‘kingpin’ nutrient transporters might be identified
as selectively up-regulated in other cancer classes and safely
targeted by novel anti-cancer therapies. In summary, these studies
with Slc6a14-knockout mice reported by Babu et al. [21] clearly
establish that nutrient transporters deserve greater attention as a
novel and effective means to target the constitutive anabolism of
cancer cells.
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