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Abstract
Gastroenteropancreatic neuroendocrine neoplasms comprise a heterogeneous 
group of tumors that differ in their pathogenesis, hormonal syndromes produced, 
biological behavior and consequently, in their requirement for and/or response to 
specific chemotherapeutic agents and molecular targeted therapies. Various 
imaging techniques are available for functional and morphological evaluation of 
these neoplasms and the selection of investigations performed in each patient 
should be customized to the clinical question. Also, with the increased availability 
of cross sectional imaging, these neoplasms are increasingly being detected 
incidentally in routine radiology practice. This article is a review of the various 
imaging modalities currently used in the evaluation of neuroendocrine 
neoplasms, along with a discussion of the role of advanced imaging techniques 
and a glimpse into the newer imaging horizons, mostly in the research stage.

Key Words: Neuroendocrine tumor; Gastroenteropancreatic; Intravoxel incoherent motion; 
Diffusion weighted imaging; Perfusion imaging; Dual energy computed tomography

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The prognosis of gastroenteropancreatic neuroendocrine neoplasms 
(GEPNENs) depends on the stage of the disease and tumor grade. Traditional imaging 
techniques like multiphase contrast-enhanced computed tomography perform well at 
disease staging. For tumor grading, histopathological examination, with determination 
of number of mitoses and Ki-67 index is considered optimal. Advances in imaging 
techniques have enabled detection of smaller neuroendocrine neoplasms (< 2 cm). By 
analysing functional information like diffusion, perfusion and tumor heterogeneity, 
quantitative imaging is currently focused on noninvasive prediction of the grade of 
GEPNENs preoperatively.
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INTRODUCTION
Gastroenteropancreatic neuroendocrine neoplasms (GEPNENs) are a rare and heterogeneous group of 
tumors that originate from the gastrointestinal and pancreatic neuroendocrine cells[1,2]. They may be 
benign or malignant and may or may not secrete hormones. Use of the previous terminology - carcinoid 
tumor - is no longer encouraged. The gastrointestinal tract (GIT), having the highest density of neuroen-
docrine cells in the body, is the most common site of involvement of neuroendocrine neoplasms (NENs), 
comprising nearly 60% of all NENs[3]. Pancreatic NENs (PNENs) account for about 7% of all GEPNENs
[4]. Most PNENs are sporadic. However, association with four familial syndromes (in up to 25%) is well 
described: multiple endocrine neoplasia type I, von Hippel Lindau syndrome, neurofibromatosis type I 
and tuberous sclerosis[5,6].

Classification based on histological differentiation and grade is desirable as it provides insight into 
tumor biology, clinical course and helps in planning management. In 2019, the 5th edition of the World 
Health Organization (WHO) classification of tumors series published the latest NEN classification 
(Table 1)[7]. The latest WHO classification recognizes that well-differentiated NENs may be high grade, 
but they are distinct from the poorly differentiated neuroendocrine carcinomas (NECs). Most GEPNENs 
are well-differentiated and slowly growing. Grade 3 NENs are most common in the pancreas, but can 
occur throughout the GIT[7]. Given the differences in prognosis, tumor grade is the most important 
factor determining the treatment of GEPNENs. The treatment of GEPNENs depends on grade, differen-
tiation, site of origin, and stage of tumor, and the opinion about the best treatment strategy is evolving. 
Surgical resection remains the cornerstone and is the only curative treatment. For patients with small (< 
2 cm), low-grade NENs, decisions on surgery vs active surveillance need to be individualized based on 
tumor size, morphology (homogeneous, well circumscribed tumor < 1 cm correlate with low malignant 
potential) and patient characteristics like age and presence of comorbidities[8].

The commonly used imaging modalities include ultrasonography (US), computed tomography (CT), 
magnetic resonance imaging (MRI) and positron emission tomography (PET)-CT. Imaging is primarily 
aimed at accurate detection, characterization and staging of these neoplasms and also at assessment of 
response to treatment. Sensitivity of common imaging modalities used in the evaluation of GEPNENs 
are summarized in Table 2.

Improvements and advances in the imaging techniques have mainly focused on the noninvasive 
prediction of the grade of the NENs. The European Neuroendocrine Tumor Society (ENETS) has also 
recommended that preoperative assessment of the grade of the NENs is essential for prognosis 
prediction and management planning[9]. In addition, with the improvements in the imaging techno-
logies, the detection rates of small NENs have significantly improved, with many often being detected 
incidentally.

US
Transabdominal ultrasonography (USG) often is the commonest initial modality used for patients with 
gastrointestinal symptoms. It has value in the detection of liver metastases (sensitivity reaching 85%-
90%). PNENs in general appear as hypoechoic masses with a hyperechoic halo on USG[10].

However, transabdominal USG has limitations. It has a poor sensitivity (13%-27%) for the detection of 
GEPNENs[11]. The technique is dependent on the experience of the operator. Presence of bowel gas and 
increased subcutaneous fat can obscure adequate visualization.

The advent of harmonic imaging, pulse inversion sequence, low mechanical index techniques and 
ultrasound contrast agents (UCAs) has enabled routine application of contrast-enhanced ultrasound 
(CEUS) to overcome the limitations of conventional B mode USG. The inherent advantage of CEUS is its 
ability to assess tumor-enhancement patterns in real time during transabdominal USG[12]. The 
enhancement patterns are described during arterial, portal venous and late phases. UCAs are gas 
microbubbles stabilized by a shell, the composition of which varies depending on the type of contrast 
agent. UCAs are blood pool agents and increase the back scatter of US, enhancing the echogenicity of 
flowing blood[12]. Harmonic imaging detects harmonic signals from the microbubbles and CEUS 
specific US modes filter signals from the background tissue, thereby showing even very slow blood flow 
without Doppler related artifacts. UCAs, unlike CT and MRI contrast agents, are excreted by the lungs 
and hence can be used safely in patients with deranged renal function.

https://www.wjgnet.com/1007-9327/full/v28/i26/3008.htm
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Table 1 World Health Organization Classification and grading criteria for neuroendocrine neoplasms of the gastrointestinal tract and 
hepatopancreatobiliary organs (7)

Terminology Differentiation Grade Mitoses/2 mm2 Ki-67 index

NEN grade 1 Well differentiated Low < 2 < 3%

NEN grade 2 Intermediate 2-20 3%-20%

NEN grade 3 High > 20 > 20%

SCNEC Poorly differentiated High1 > 20 > 20%

LCNEC > 20 > 20%

MiNEN Well or poorly differentiated Variable Variable Variable

1Poorly differentiated neuroendocrine carcinomas are not formally graded, but are considered high-grade by definition.
LCNEC: Large cell neuroendocrine carcinoma; MiNEN: Mixed neuroendocrine non-neuroendocrine neoplasm; NEN: Neuroendocrine neoplasm; SCNEC: 
Small-cell neuroendocrine carcinoma.

Table 2 Sensitivity of common imaging modalities used in the evaluation of gastroenteropancreatic neuroendocrine neoplasms

Imaging modality Sensitivity

Transabdominal USG 13%-27% for GEPNEN

Contrast enhanced ultrasound 99% in detecting liver metastases

Endoscopic ultrasonography 82%-93% for PNEN

CECT 63%-82% for PNEN

CE MRI 79% for PNEN

DWI 83% for liver metastases

USG: Ultrasonography; GEPNEN: Gastroenteropancreatic neuroendocrine neoplasms; CECT: Contrast enhanced computed tomography; CE MRI: 
Contrast-enhanced magnetic resonance imaging; DWI: Diffusion-weighted imaging.

The differential perfusion on CEUS has been shown to identify and diagnose pancreatic tumors. 
Pancreatic adenocarcinomas are in general hypovascular, while NENs are hypervascular. Takeda et al
[13] found three patterns of hyperenhancement of PNENs and found that CEUS was useful in the differ-
entiation of PNENs from pancreatic adenocarcinomas. Malagò et al[14] also showed that the 
enhancement patterns of nonfunctioning PNENs on CEUS (hyper-, iso- or hypovascular) correlated well 
with Ki-67 index and CEUS improved the detection of hepatic metastases. Hypervascular lesions had 
lower Ki-67 index. Another study showed that the enhancement patterns of NENs on CEUS correlated 
significantly with CT enhancement pattern and histological Ki-67 index and CEUS was a good predictor 
of response of tumors to somatostatin analogues[15].

Elastography
Elastography is an advancement in USG that enables real-time measurement of tissue stiffness along 
with display in colors superimposed on the grey scale images[16]. In general, elastography helps with 
the differentiation of benign and malignant lesions based on stiffness, as malignant lesions are usually 
hard. Only a few studies have reported the usefulness of transabdominal shear wave elastography 
(SWE) in the evaluation of pancreatic tumors. Park et al[17] showed that elastography can differentiate 
benign and malignant solid pancreatic lesions based on the difference in the shear wave velocity values 
(relative stiffness) between the tumor and the normal parenchyma. An early study by Uchida et al[18] 
found that NENs were homogeneous and soft on elastography, comparable to the normal pancreas. 
They also reported that a combination of elastography and B mode USG, improved the diagnostic 
accuracy to 90%, from 70%-80 % when B mode USG was used alone. However, if the visualization on 
the baseline B mode USG is suboptimal, the results of CEUS and elastography are also often unsatis-
factory. These limitations have been overcome by the use of endoscopic ultrasound (EUS).
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EUS
EUS is considered the most accurate test for the diagnosis of pancreatic masses[19]. EUS uses higher 
frequency (7.5-12 MHz) probes, placed in proximity to the area of interest and hence performs better at 
detection of tumors < 2 cm for which CT and MRI have poor sensitivity[20]. Overall, EUS has a 
sensitivity of 82%-93% and a specificity of 92%-95% for localizing PNENs. EUS is particularly useful in 
the detection of benign insulinomas that lack somatostatin receptors and consequently are not detected 
on somatostatin receptor scintigraphy/single photon emission computed tomography (SPECT)/PET
[21]. EUS also plays an important role in the detection of functional pancreatic and extrapancreatic 
(duodenal) gastrinomas[22]; both of which generally have a small size (average 1 cm) at diagnosis. The 
additional benefit of EUS is its ability to guide accurate tissue sampling via fine needle aspiration and 
core biopsy[23]. CEUS can also be performed through EUS with the use of second generation UCAs (e.g, 
Sonovue), which produce harmonic signals at low acoustic powers. A recent study showed that the time 
intensity curve analysis during CEUS showed high diagnostic accuracy in grading PNENs, and could 
differentiate grade 1/2 tumors from grade 3 tumors/carcinomas[24].

EUS elastography
EUS elastography of the pancreas has been shown to be a promising imaging technique in several 
studies[25-27]. However, a prospective study by Hirche et al[28] including 70 patients with undifferen-
tiated pancreatic masses showed an overall lower sensitivity (41%), specificity (53%) and accuracy (45%) 
for the detection of malignancy. One of the early studies evaluating conventional strain elastography for 
pancreatic lesions showed significant strain difference between benign and malignant masses[29]. The 
major utility of EUS elastography is in increasing the yield of sampling by aiding better tumor targeting, 
especially in the background of pancreatic parenchymal fibrosis[30]. SWE EUS is a recent development 
and studies evaluating its utility in the pancreas are just emerging[31,32]. A recent comparative study 
suggested that conventional strain elastography was superior to SWE in the characterization of 
pancreatic lesions[33].

CT
CT is the cornerstone and the most commonly performed imaging modality for the diagnosis and 
preoperative staging of GEPNEN. Standard CT scan has low sensitivity (~60%) for the detection of GIT 
NENs[34]. Dynamic dual-phase protocol, which includes the arterial and portal venous phases, is 
recommended in patients with suspected NEN[35,36] (Figure 1). For PNEN, the late arterial phase 
acquired at 40-45 s (pancreatic phase) suits best. For detection of small bowel NENs, CT enterography 
(oral administration of neutral contrast agent like mannitol for bowel distension) or CT enteroclysis 
(administration of neutral contrast via nasojejunal tube) is required. CT enteroclysis combines the 
advantages of enteroclysis with imaging capabilities of multidetector computed tomography (MDCT). 
Study by Kamaoui et al[37] showed that CT enteroclysis had 100% sensitivity and 96.2% specificity for 
the detection of small bowel NEN. A comparative study from Mayo Clinic found that CT enterography 
was better than capsule endoscopy in detecting small bowel tumors, with a sensitivity of up to 93%[38]. 
This ability of CT enterography to detect small bowel tumors remains high (sensitivity of 88%) even in 
the presence of gastrointestinal bleeding[39].

The characteristic imaging feature on CT scan suggesting the diagnosis of NENs is their intense 
enhancement in the late arterial phase, owing to the hypervascular nature of the tumor. The arterial 
phase also helps in outlining the relationship of the tumor with the adjacent arteries. Using the 
maximum intensity projection technique, virtual angiographic images can be obtained. Volume 
rendering techniques applied to the arterial phase provide easily explainable images to the surgeon. 
Portal venous phase helps to draw the relationship of the tumor with major veins, especially the splenic 
vein and the superior mesenteric vein for PNENs. Dual-phase imaging is also crucial for the evaluation 
of hepatic metastases. The classic liver metastases from NEN, being hypervascular, are most evident on 
the arterial phase images. About 6%-15% of NEN liver metastases are appreciated only in the arterial 
phase[40,41]. However up to 16% are hypovascular and show delayed enhancement[40].

One of the early studies suggested that the size of the tumor is an important prognostic factor, with 
tumors < 1 cm showing lesser incidence of liver metastasis (20%–30%) compared to those with > 1 cm (> 
40% risk)[42]. Studies have shown that up to 42% of PNENs may not show arterial phase hyperen-
hancement[43,44]. Such arterial phase hypoenhancing tumors were associated with a significantly lower 
5-year survival (54%) compared to the lesions which were isoenhancing (89%) or hyperenhancing (93%)
[45]. Rodallec et al[46] found that tumor enhancement on CT scan correlated with microvascular density 
(MVD) evaluated on histology and that hypoenhancing PNENs correlated with poorly differentiated 
tumors and a decrease in overall survival rate. These studies showed that the CT enhancement charac-
teristics of NENs have a prognostic value. Gallotti et al[6] found that incidentally detected PNENs, size 
> 3 cm, complex enhancement pattern and, presence of calcification, vascular invasion, main pancreatic 
duct dilatation, and peripancreatic lymph nodes were associated with nonbenign tumors and required 



Ramachandran A et al. Imaging advances in neuroendocrine tumors

WJG https://www.wjgnet.com 3012 July 14, 2022 Volume 28 Issue 26

Figure 1 49-year-old man with epigastric pain and raised serum gastrin levels. A and B: Axial contrast enhanced pancreatic phase computed 
tomography (CT) images show a well-defined hyperenhancing mass (arrow in A) in the head and neck of pancreas, abutting the proper hepatic artery along with two 
hyperenhancing focal lesions in the liver (arrowheads in B), indicating hepatic metastases; C and D: Axial portal venous phase CT images show retention of contrast 
in the lesions in both locations. Thickened gastric mucosal folds is also noted (arrowheads in C).

more aggressive course of management.
The role of various CT quantitative parameters based on enhancement of the NEN in the arterial or 

pancreatic and the venous phases has been evaluated in the prediction of tumor grade. Kim et al[47] 
found that portal enhancement ratio (HU value of the tumor divided by the HU value of pancreatic 
parenchyma on portal phase images) had the best odds ratio (49.6) and a cutoff value of < 1.1 had a 
sensitivity of 92% and specificity of 81% in differentiating grade 3 PNENs from grade 1 and 2. This high 
sensitivity and specificity of portal enhancement ratio in differentiating neuroendocrine carcinomas 
from well-differentiated NENs was also confirmed by another study[48]. Yamada et al[49] showed that 
corrected true enhancement values in the pancreatic phase had a sensitivity of 92%, specificity of 84% 
and area under the curve of 0.897 in the differentiation of grade 1 from grade 2 PNENs. D’Onofrio et al
[50] showed that various tumor enhancement parameters (tumor permeability ratios, tumor 
parenchyma ratios, tumor arterial ratio and tumor venous ratio) were significantly different between 
grade 1 and grade 3 and between grade 2 and grade 3 PNENs. However, these values could not differ-
entiate grade 1 from grade 2 tumors.

Dual-energy CT
Dual-energy CT (DECT) is an advancement in CT, which allows acquisition of images at two energy 
levels, with lower energy being 80-100 kVp and higher being 140 kVp. Using DECT, material 
decomposition of images and generation of iodine maps, virtual noncontrast images, and mono-
chromatic images at different energy levels is possible (Figures 2 and 3). Monoenergetic images at low 
keV (55 keV) in the pancreatic phase of DECT show improved image contrast for evaluation of 
pancreatic masses[51]. Monochromatic spectral images improve the sensitivity of detection of NENs like 
insulinomas, particularly the hypovascular and isoattenuating tumors and the sensitivity is comparable 
to MRI[52]. One study showed that iodine uptake obtained from DECT is useful in the differentiation of 
hepatocellular carcinoma from liver metastases arising from NENs, with the former showing 
significantly higher iodine uptake (3.8 ± 1.2 vs 2.3 ± 0.6)[53]. This iodine uptake parameter on DECT may 
also be used in assessing the response to treatment of NENs.

Perfusion CT
Perfusion CT is a technique that measures the dynamic changes in the attenuation of the tissues after 
contrast administration. It allows quantitative measurement of tissue perfusion, thereby assisting in the 
assessment of tumor viability and biological behavior[54]. The commonly used quantitative parameters 
of perfusion CT in oncoimaging are blood flow, blood volume, vascular permeability-surface area 
product and mean transit time (Figures 4 and 5). These parameters serve as imaging biomarkers of 
tumor angiogenesis, which is ideally assessed histologically by calculating the MVD[55]. NENs are 
among the tumors with significant angiogenesis. Unlike majority of the cancers, where increased tumor 
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Figure 2 Dual-energy computed tomography images of a 46-year-old man presenting with melena. A: Axial monochromatic computed tomography 
(CT) image at 55 keV in pancreatic phase shows a hyperenhancing well-defined mass (arrow) arising from the duodenal wall; B: Enhancement of the same lesion 
(arrow) appears subtle on the axial 100 keV monochromatic CT image; C and D: Iodine overlay maps show bright areas (arrow) suggesting contrast uptake (C), with 
iodine concentration of 3.2 mg/mL in areas of uptake (D). Iodine concentration of normal pancreas was 0.5 mg/mL.

Figure 3 Dual-energy computed tomography in grading the pancreatic neuroendocrine neoplasms. A: Iodine overlay dual-energy computed 
tomography (CT) map of a 40-year-old woman with low-grade (grade 2) pancreatic neuroendocrine neoplasms (PNEN) in head of pancreas shows 
hyperenhancement of the tumor with an iodine concentration of 5.1 mg/mL; B and C: Iodine overlay dual energy CT maps of a 29-year-old man with grade 3 PNEN 
(outlined in B) shows large hypoenhancing areas with low iodine concentration (0.9 mg/mL) and peripheral bright areas with iodine concentration of 4.3 mg/mL (C). 
Measuring iodine concentration helps in objectively assessing the grade of the tumor.

vascularity is associated with aggressive behavior, higher microvascular density in NENs is associated 
with a low tumor grade[54]. Low MVD was found to be an unfavorable prognostic factor for PNENs in 
several studies despite the presence of other favorable conventional histoprognostic factors, and call for 
a more aggressive treatment approach[56-58]. A study by d’Assignies et al[59] on 36 patients with 
PNENs found a significant correlation between MVD and blood flow assessed by using perfusion CT. In 
their study, the authors found that tumors that are small (< 2 cm), benign (grade 1), with a proliferation 
index of ≤ 2%, and without histological signs of microvascular involvement had a significantly higher 
blood flow. Volume perfusion CT has been shown to improve the detection of pancreatic insulinomas, 
particularly the ones which have transient hyperenhancement (comprising 30% cases)[60,61]. A recent 
study demonstrated that addition of low dose perfusion CT to contrast enhanced CT improved the 
detection rate of PNENs from 83.6% to 89.1% and found that blood flow parameters were significantly 
different between grade 1 and grade 2 tumors[62].

Perfusion CT has also been shown to have a role in monitoring response to treatment with antian-
giogenic drugs. Few studies have shown that the perfusion parameters of PNENs and liver metastases 
decrease as early as 48 h after treatment with anti-angiogenic drugs and perfusion CT offers a significant 
role in an early noninvasive assessment[63,64]. A major limitation of perfusion CT is the higher 
radiation dose, resulting in an additional dose of approximately 7 mSv[65].
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Figure 4 Volume perfusion computed tomography images of a 56-year-old man with recurrent hyperinsulinemic hypoglycemia. A: Axial 
pancreatic phase computed tomography image shows a hyperenhancing lesion in the pancreatic tail (arrow); B-D: Color-coded parametric maps for blood volume (B), 
blood flow (C) and mean transit time (D) of the tumor (arrow) and normal pancreatic tissue; E: Chart shows mean value of each perfusion parameter of the tumor. 
Blood flow in the tumor was higher (247 mL/100 mL/min) compared to normal pancreatic parenchyma (72 mL/100 mL/min); F: Time attenuation curve shows dynamic 
enhancement pattern of the tumor corresponding to transient hyperenhancement. Histopathology after enucleation proved the tumor to be grade 1 insulinoma.

Figure 5 Volume perfusion computed tomography images of a 67-year-old man with a large grade 3 neuroendocrine neoplasm involving 
body and tail of pancreas. A and B: Axial arterial phase computed tomography images with circular regions of interest placed at two different locations in the 
lesion (*); C-H: Parametric maps for blood flow (C and D) and blood volume (E and F) with mean value of each perfusion parameter (G and H) are shown. Lower 
values of mean blood flow, mean blood volume and mean transit time are features of high grade neuroendocrine neoplasm.

MRI
MRI is best performed as a problem-solving tool when CT scan findings are equivocal or negative, and 
is aimed at acquiring images of the lesion and organ with better soft tissue contrast. For instance, MRI 
has shown better sensitivity for the detection of liver metastases compared to CT and somatostatin 
receptor scintigraphy[66]. The absence of exposure to ionizing radiation makes MRI the apt modality for 
screening young individuals suspected of having NEN and those with syndromic association who 
require multiple follow up imaging[67]. Most NENs are hypointense on T1-weighted and hyperintense 
on T2-weighted images[10]. Contrast enhancement pattern and morphologic appearances are similar to 
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that seen in CT scan (Figure 6). For the detection of PNENs, the sensitivity of MRI ranges from 85% to 
100% and specificity from 75% to 100%[68].

Diffusion-weighted imaging
Diffusion-weighted imaging (DWI) is a widely used technique in clinical imaging as it reflects the 
microscopic environment of the neoplasm including tumor cellularity and extracellular matrix. The 
application of DWI in oncology is mainly in tumor detection and assessing response to chemotherapy 
and radiotherapy. Wang et al[69] demonstrated that the apparent diffusion coefficient (ADC) values of 
PNEN correlated well with Ki-67 labelling index, thus indicating that DWI has a prognostic value 
(Figure 6). Another study showed that the ADC values were significantly different between benign and 
non-benign PNENs (1.48 × 10-3 mm2/s vs 1.04 × 10-3 mm2/s, respectively)[70]. Lotfalizadeh et al[71] 
showed that DWI has the additional value in identification of high grade tumors (grade 3) and can 
accurately differentiate grade 3 from grade 1/2 tumors (AUROC-0.96). The ADC values showed an 
inverse relation with the grade of the tumor.

Another major utility of DWI is in the detection and characterization of liver metastases. Several 
studies have shown that DWI is more sensitive for the detection of liver metastases than T2-weighted 
and multiphase gadolinium-enhanced MRI, especially for smaller lesions[72-74]. Besa et al[75] showed 
that the ADC of liver metastases from NEN weakly and significantly correlated negatively with tumor 
grade and Ki-67 and that the mean ADC and the minimum ADC values were significantly different 
between the three grades (1.6, 1.35 and 0.9 × 103 mm2/s and 0.84, 0.5 and 0.27 × 103 mm2/s for grades 1, 2 
and 3, respectively). DWI is hence recommended in routine MRI abdomen protocol for the detection of 
liver metastases from NEN.

Histogram analysis of the ADC of the whole tumor has also been shown to predict tumor grade and 
aggressiveness. Pereira et al[76] found that whole tumor histogram analysis of the ADC, including the 
skewness and kurtosis can reliably differentiate grade 1 from grade 2/3 tumors. Another study also 
showed that this histogram analysis of ADC was useful in predicting tumor grade, vascular invasion 
and metastasis (node, liver) in PNENs and that ADCentropy and ADCkurtosis were the best markers in 
identifying tumor aggressiveness[77].

DWI is also useful in predicting and assessing response to various medical treatments for NENs. A 
recent study by Le Bihan et al[78] showed that the change in the ADC values of liver metastases from 
NENs after transarterial radioembolization was significantly different between the partial response and 
progressive disease groups, thus concluding that ADC can be used as an additional marker for 
treatment response evaluation.

While DWI investigates diffusion of water molecules in tissues, it does not detect perfusion of blood. 
Intravoxel incoherent motion (IVIM) DWI detects translational motion of water molecules in a voxel and 
can simultaneously quantify their diffusion and microcirculation in tissue capillary network[79]. IVIM 
images are quantified by ADC, which integrates the effects of both diffusion and perfusion. IVIM 
therefore enables evaluation of tissue perfusion without the requirement of a contrast agent. The 
quantitative parameters in IVIM include the pure diffusion coefficient (Dslow), which reflects the 
diffusion of water molecules, the pseudodiffusion coefficient (Dfast), which reflects the diffusion 
movement of capillary microcirculation perfusion, and the perfusion fraction (f), which represents the 
volume ratio between the perfusion effect of local microcirculation and the overall molecular diffusion 
(Figures 7 and 8). IVIM-DWI is a useful method to assess true tumor cellularity of PNEN, represented 
by tissue diffusion, as increased microcirculation of hypervascular PNENs may cause the pseudodif-
fusion effect and thus leads to the overestimation of ADC values[79]. Hwang et al[80] observed that 
IVIM DWI can differentiate grade 1 from grade 2 or 3 PNENs. They found that pure diffusion coefficient 
is a better marker of tumor cellularity than ADC, and was significantly higher in grade 1 PNENs, 
thereby enabling prediction of tumor grade on imaging. A recent study showed that Dslow and Dfast 

parameters help in the differentiation of high grade PNENs from pancreatic adenocarcinoma with high 
diagnostic accuracy (0.460 vs 0.579 × 103 mm2/s and 13.361 vs 4.985 × 103 mm2/s, respectively)[81].

Diffusion kurtosis imaging 
Diffusion kurtosis imaging (DKI) is a new rapidly advancing MRI technique based on the concept that 
water molecules in biological environment have non Gaussian properties. This is in contrast to standard 
DWI that calculates ADC using monoexponential analysis, assuming that diffusion of water in tissues 
follows Gaussian behavior[82]. At higher b values (> 1000 s/mm2), due to the barriers encountered by 
water molecules in tissues, there is deviation from Gaussian distribution. The deviation when 
quantified, in fact represents the tissue microenvironment. Two quantitative parameters, diffusion 
coefficient (D) and kurtosis (K), representing deviation from Gaussian distribution, can be extracted 
from DKI. DKI thus provides a more accurate model of diffusion and quantifies tissue heterogeneity, 
and irregularity of cellular microstructure by capturing non Gaussian diffusion parameters (Figure 9)
[82,83]. A drawback which hampers its use in routine practice is the long acquisition time due to scan 
acquisition at multiple b values. There are studies showing application of DKI for the assessment of the 
pancreas[84,85]. Shi et al[83] found that the radiomics model of DKI and T2 weighted imaging could 
improve the diagnostic accuracy for PNENs.
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Figure 6 Magnetic resonance images of a 24-year-old woman with multiple endocrine neoplasia-type 1 syndrome and pancreatic 
neuroendocrine neoplasm. A-C: Axial magnetic resonance images through the head of pancreas show a round heterogeneous mass (arrow) which appears 
hypointense on T1-weighted image (A), hyperintense on T2-weighted image with central cystic / necrotic change (B) and shows peripheral hypointensity on apparent 
diffusion coefficient (ADC) image (C) suggesting diffusion restriction along the periphery (ADC = 0.93 × 103 mm2/s); D-F: Axial dynamic contrast enhanced T1-
weighted images show hyperenhancement of the tumor along the periphery in pancreatic phase (D), with contrast retention in venous (E) and delayed (F) phase 
images. The patient also had bilateral inferior parathyroid and left superior parathyroid adenomas.

Figure 7 Intravoxel incoherent motion diffusion-weighted imaging in a 46-year-old woman with proven grade 1 pancreatic neuroe-
ndocrine neoplasm. A: Axial diffusion weighted image (b = 800 s/mm2) shows a small pancreatic lesion with diffusion restriction (arrow); B: Color-coded diffusion 
map shows true diffusion coefficient, D = 2.33 × 103 mm2/s; C: Color-coded perfusion map shows pseudodiffusion coefficient, D* = 5.37 × 103 mm2/s); D: Color-coded 
perfusion fraction map shows a value, f = 3.2%; E: Signal decay curve of the tumor (purple) shows fall in signal at lower b values with plateau at higher b values. In 
comparison, normal pancreas (orange) shows lesser diffusion restriction than the tumor.

MR elastography
MR elastography (MRE) is a phase-contrast-based MRI technique for the evaluation of mechanical tissue 
properties noninvasively, e.g., tissue stiffness. MRE of pancreas is at an early stage. Recent studies have 
used MRE to differentiate healthy from pathological pancreatic tissue[86]. The normal pancreatic 
stiffness in adults measured by MRE is 1.1–1.21 kPa[86]. Shi et al[87] used MRE for the characterization 
of solid pancreatic masses. They found that malignant masses had significantly higher stiffness (3.27 
kPa) than benign masses (1.96 kPa). PNENs had a median stiffness of 2.32 kPa. They also suggested that 
stiffness ratio (ratio of stiffness of mass to normal parenchyma) may perform better in the differentiation 
of benign from malignant pancreatic masses.
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Figure 8 Intravoxel incoherent motion diffusion-weighted imaging in a 67-year-old man with grade 3 pancreatic neuroendocrine 
neoplasm. A: Axial diffusion weighted image (b = 200 s/mm2) with circular region of interest in the tumor; B: Color-coded diffusion map shows true diffusion 
coefficient, D = 0.84 × 103 mm2/s; C: Color-coded perfusion map shows pseudodiffusion coefficient, D* = 5.01 × 103 mm2/s); D: Color-coded perfusion fraction map 
shows a value, f = 4.5%; E: Signal decay curve shows steeper decay at low b values and continued fall at higher b values [in comparison to grade 1 pancreatic 
neuroendocrine neoplasm (PNEN) (Figure 7), true diffusion coefficient is lower in grade 3 PNENs].

Figure 9 Diffusion kurtosis of the lesion same as in Figure 8. A: Axial diffusion-weighted image (b = 200 s/mm2) with region of interest marked; B: 
Diffusion map (D = 3 × 103 mm2/s); C: Kurtosis map (k = 0.40); D: Signal decay curve shows non-Gaussian diffusion.

MRI perfusion
MRI perfusion techniques for the assessment of tumor perfusion have the major advantage that they 
lack adverse effects of radiation compared to the radiation-intensive CT perfusion. T1-weighted 
dynamic contrast enhanced (DCE) MRI is the technique applied in the evaluation of tumors in the 
abdomen[88]. This provides both semiquantitative and quantitative information on the microvascular 
perfusion of the tissue. The semiquantitative analysis is based on the time-signal intensity curve and the 
quantitative analysis is based on the Tofts two-compartment pharmacokinetic model (intravascular and 
extravascular-extracellular compartments) with the parameters evaluated being Ktrans (volume transfer 
constant, wash in), Kep (reverse efflux rate constant, wash out) and Ve (extravascular extracellular space 
volume fraction)[89]. This technique has shown promising results in the evaluation of PNENs. A study 
by Donati et al[90] showed that Ktrans and Kep values were higher in NENs (2.709 ± 0.110/min; 5.957 ± 
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0.371/min) compared to other focal lesions and healthy pancreatic parenchyma. This in fact reflects the 
wash in (Ktrans) and wash out (Kep) of the contrast agent from the hypervascular NENs. Also, well 
differentiated and poorly differentiated NENs showed different perfusion characteristics. In the study 
by Kim et al[91], Ktrans value of NENs were significantly higher than that of neuroendocrine 
carcinomas (0.339 ± 0.187/min vs 0.077 ± 0.036/min). Ductal adenocarcinomas being hypovascular, 
show significantly lower average values of Ktrans and Kep[90-92]. The role of DCE MRI in the 
evaluation of response to systemic chemotherapy and targeted molecular therapy by assessing the 
changes in the values of MRI perfusion parameters reflecting good or poor response to treatment is a 
direction for future studies.

PET CT AND PET MRI
Hybrid anatomical and functional imaging using PET/CT is a valuable tool in the current practice of 
grading and management of NENs. In general, in dual tracer PET/CT (somatostatin receptor imaging 
with Ga68 DOTATATE/TOC/NOC PET/CT and glucose metabolism with FDG PET/CT), low-grade 
tumors, which express somatostatin receptors, bind to somatostatin analog, but not to FDG[93]. In 
contrast, poorly differentiated GEPNENs with high Ki-67 index would be negative on somatostatin 
PET/CT but FDG avid[94]. Zhang et al[95] suggested that dual tracer PET /CT may be used as an 
alternative to tissue sampling, as it reflects both cellular somatostatin receptor expression and glucose 
metabolism. The authors also found a positive correlation between SUVmax (standardized uptake 
value) and Ki-67 index with respect to FDG PET/CT and negative correlation with respect to Ga68 

DOTATATE PET/CT. However, low-grade insulinomas show low expression of somatostatin receptors 
in contrast to other secreting and nonsecreting NENs and are frequently not detected on Ga68 

DOTATATE PET/CT[96]. Since virtually all benign insulinomas express glucagon-like peptide 1 (GLP-
1) receptors (incretin receptors), these receptors can be targeted by PET/CT for preoperative localization 
of occult benign insulinomas. GLP-1R PET/CT had higher sensitivity than MRI and SPECT/CT for 
localization of benign insulinomas in a study by Antwi et al[97]. Glucose dependent insulinotropic 
polypeptide receptor (GIPR) is another incretin receptor overexpressed in GEPNENs. It is a potential 
target for imaging the small percentage (~10%) of GEPNENs which do not express SSTR and GLP1R, as 
confirmed by studies in animal models[98].

With technical advances, simultaneous PET and MRI acquisition in an integrated scanner is now 
possible. The first study in 2013 by Beiderwellen et al[99] showed that every lesion detected on PET/CT 
was identified on PET/MRI. Hope et al[100] evaluated hepatic lesions in patients with NENs using Ga68 

DOTATOC PET/CT and PET/MRI and found that there was a strong correlation between SUVmax 
obtained in PET/CT and PET/MRI. However, due to the high cost, the routine use of PET/MRI is 
limited.

RADIOMICS, TEXTURE ANALYSIS AND MACHINE LEARNING
Radiomics is the process of conversion of digital biomedical images to mineable data and the 
subsequent analysis of this data[101]. Texture analysis is an imaging technique under the wider arena of 
radiomics, that extracts, analyzes and interprets quantitative imaging features, and enables objective 
assessment of tumor heterogeneity beyond what is possible to human eyes[102]. In statistical-based 
model of texture analysis, from each voxel in a region of interest, various first order (e.g., first-order 
entropy, kurtosis, skewness, standard deviation, mean intensity) and second order (e.g., contrast, 
uniformity, second order entropy, etc.), or higher order features are extracted and analyzed using post 
processing software. As mentioned previously, tumor grade is an important prognostic factor of NENs 
and their prediction noninvasively is valuable.

CT radiomics is increasingly finding its place in the grading of NENs. Canellas et al[103], evaluating 
PNENs on CT scan, found that tumors with high entropy (a texture parameter reflecting tissue hetero-
geneity) values had 3.7 times higher odds of being aggressive (grades 2 and 3). In this study, entropy 
was a better predictor of tumor grade than the size of the lesion. Choi et al[104] found that lower 
kurtosis, lower sphericity and higher skewness correlated to grade 2 or 3 PNENs. A study on 3D texture 
analysis of PNENs in 100 patients showed that kurtosis was significantly different between all the three 
grades and entropy could differentiate grade 1 from grade 3 and grade 2 from grade 3, but not grade 1 
from grade 2 tumors[50]. These results of CT texture analysis were confirmed in other recent studies
[105,106] thus emphasizing its role in the prediction of tumor grade.

MRI radiomics also help in characterizing PNENs. MRI texture analysis was found to be useful in 
differentiating nonfunctioning PNEN from solid pseudopapillary neoplasm in a study by Li et al[107]. 
Nonlinear discriminant analysis was found to have the lowest misclassification rate of all the types of 
analyses performed in their study. Shindo et al[108] studied ADC histogram for differentiation of 
pancreatic adenocarcinoma from PNENs. In their study, ADC entropy had the highest area under the 
curve (AUC) for differentiating adenocarcinoma from NEN. De Robertis et al[77] found that ADC 
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Table 3 Summary of important research studies on imaging of gastroenteropancreatic neuroendocrine neoplasms

Ref. Number 
(n) Modality Results Conclusion

Ultrasonography Takada et al
[25], 2019

30 Contrast-
enhanced 
harmonic EUS

Three parameters in TIC showed high diagnostic 
accuracy: Echo intensity change - 87%; Rate of 
enhancement - 87%; Enhancement ratio for 
node/pancreatic parenchyma - 88.5%

Contrast-enhanced EUS and TIC 
analysis show high diagnostic 
accuracy for grading of PNEN

CT Worhunsky 
et al[45], 
2014

118 APCT 5-year overall survival: Hypoenhancing - 54%; 
Isoenhancing - 89%; Hyperenhancin - 93%. On 
multivariate analysis only hypoenhancement (HR 
2.32, P = 0.02) was independently associated with 
survival

Hypoenhancement of PNEN on 
APCT (22% of well-differentiated 
PNEN) was an independent 
predictor of poor outcome

Rodallec et 
al[46], 2006

37 Dual-phase 
contrast-
enhanced CT

Poorly differentiated NEC: Hypoattenuating - 71%; 
Isoattenuating or weakly hyperattenuating - 29%; 
Well-differentiated NECmoderately or strongly 
hyperattenuating - 53%. Poor enhancement at 
pancreatic phase and less vascularized tumors 
were associated with decreased survival rate

Enhancement of PNEN at CT 
correlated with microscopic tumor 
vascularity. Low-enhancing PNEN 
correlated with poor differentiation 
and lower overall survival

Park et al
[48], 2020

69 Dynamic CT NEC (compared to well-differentiated NEN): 
Significantly higher frequencies of main pancreatic 
ductal dilatation, bile duct dilatation, vascular 
invasion; Significantly lower conspicuity of 
interface between tumor and parenchyma, AER 
and PER. PER < 0.8 showed 94.1% sensitivity, 
88.5% specificity for differentiation of NEC from 
well-differentiated NEN. On combining 3 
significant CT features, the sensitivity and 
specificity for diagnosing NEC were 88.2% and 
88.5% respectively

Tumor parenchyma enhancement 
ratio in portal phase is useful to 
distinguish NECs from well differ-
entiated NENs. Combining 
qualitative and quantitative CT 
features aid in achieving good 
diagnostic accuracy in differen-
tiation between NEC and well-
differentiated NEN

d’Assignies 
et al[59], 
2009

36 MDCT 
perfusion

Tumor blood flow and intratumoral MVD showed 
high correlation (r = 0.620, P < 0.001). Blood flow 
was significantly higher in: Grade 1 than grade 2/3 
tumors; Tumors with proliferation index ≤ 2% (P = 
0.005); Tumors without histological signs of 
microscopic vascular involvement (P = 0.008). 
Mean transit time was longer in tumors with 
lymph node (P = 0.02) or liver (P = 0.05) metastasis

Perfusion CT is feasible in patients 
with pancreatic NENs and reflects 
MVD. Perfusion CT measurements 
correlated with histoprognostic 
factors, such as proliferation index 
and WHO grading

MRI Canellas et 
al[103], 2018

80 MRI MRI features associated with aggressive tumors: 
Size > 2 cm (OR = 4.8); T2 non-bright lesions (OR = 
4.6); Presence of pancreatic ductal dilatation (OR = 
4.9); Diffusion restriction (OR = 4.9)

MRI can assess aggressiveness of 
PNEN and identify patients at risk 
for early disease progression after 
surgical resection

d’Assignies 
et al[74], 
2013

59 MRI DWI (71%-71.6%) was more sensitive than T2 
weighted images (55.6%) and dynamic CEMRI 
(47.5%-48.1%). Combination of these sequences 
improved detection of liver metastases. Specificity 
of each sequence was comparable (89%-100%)

DWI is more sensitive for detection 
and characterization of liver 
metastases from NENs than T2-
weighted and dynamic gadolinium-
enhanced MRI

Radiomics, texture 
analysis and 
machine learning

Canellas et 
al[103], 2018

101 CECT with 
texture 
analysis

CT features predictive of a more aggressive tumor: 
Size > 2 cm (OR = 3.3); Vascular involvement (OR = 
25.2); Pancreatic ductal dilatation (OR = 6); 
Lymphadenopathy (OR = 6.8); Entropy (OR = 3.7); 
Differences (P < 0.05) in progression free survival 
were found for: Grade 1 vs grade 2 vs grade 3 
tumors; PNEN with vascular involvement; Tumors 
with entropy values > 4.65

CT texture analysis and CT features 
are predictive of aggressiveness and 
can be used to identify patients at 
risk of early disease progression 
after surgical resection

De Robertis 
et al[77], 
2018

42 MRI and 
histogram 
analysis

ADC entropy is significantly higher in grade 2/3 
tumors (sensitivity: 83.3%, specificity: 61.1%). ADC 
kurtosis is higher in PNENs with vascular 
involvement, nodal and hepatic metastases 
(sensitivity: 85.7%, specificity: 74.3%)

Whole tumor ADC histogram 
analysis can predict aggressiveness 
in PNENs. ADC entropy and ADC 
kurtosis are the most accurate 
parameters for identification of 
PNEN with malignant behavior

Luo et al
[112], 2020

93 CECT with 
application of 
a CNN based 
DL algorithm

AUC = 0.81 of arterial phase in validation set was 
significantly higher than those of venous (AUC = 
0.57, P = 0.03) and arterial/venous phase (AUC = 
0.70, P = 0.03) in predicting the pathological 
grading of PNENs. The AUC and accuracy of DL 
algorithm for diagnosing grade 3 PNEN were 
0.80% and 79.1%. There was significant difference 
in OS and PFS between the predicted G1/2 and G3 
groups

The CNN-based DL method showed 
a relatively robust performance in 
predicting pathological grading of 
PNENs from CECT images

Gao et al CEMRI with The average accuracy of the five trained CNNs With the help of GAN, the CNN 96
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[114], 2019 application of 
deep learning 
algorithm on 
images

ranged between 79.08% and 82.35%, and the range 
of micro- average AUC was between 0.8825 and 
0.8932. The average accuracy and micro-average 
AUC of the averaged CNN were 81.05% and 0.8847 
respectively

showed the potential to predict the 
grades of PNENs on CEMRI

EUS: Enhanced ultrasonography; TIC: Time-signal intensity curve; APCT: Arterial phase computed tomography; ADC: Apparent diffusion coefficient; 
CECT: Contrast enhanced computed tomography; CEMRI: Contrast enhanced magnetic resonance imaging; CNN: Convolutional neural network; DWI: 
Diffusion weighted imaging; NEC: Neuroendocrine carcinoma; NEN: Neuroendocrine neoplasm; AER: Annual equivalent ratio; PER: Portal enhancement 
ratio; MVD: Microvascular density; WHO: World Health Organization; MDCT: Multidetector row computed tomography; OS: Overall survival; PFS: 
Progression free survival; AUC: Area under the curve; PNEN: Pancreatic neuroendocrine neoplasm; GAN: Generative Adversarial Network.

histogram analysis of DWI, using radiomics, could predict aggressiveness of PNENs. They found high 
ADC kurtosis values in tumors with vascular invasion (AUC of 0.763 for a cut off value of 4.13) and 
distant metastases (AUC of 0.820 for a cut off of 3.642)[77]. The future prospects of radiomics are in the 
direction of development of a robust predictive model combining qualitative and quantitative imaging 
parameters.

Machine learning is increasingly being used in medicine and has various applications including 
detection of disease, classification of images, identifying treatment and monitoring adherence to therapy
[109,110]. The standard radiomics analysis on CT or MRI requires marking of the tumor margins for 
analysis. However, deep learning using convolutional neural network (CNN) performs analysis 
automatically and provides better results[111]. A few recent preliminary studies have shown the 
promising role of deep learning using CNN in the prediction of grade of PNEN and survival using 
contrast enhanced CT[112-114]. Clinical trials for translation of these imaging techniques into clinical 
practice and validation for routine use are ongoing.

In short, the quantitative parameters derived from imaging, relevant for prognostication of GEPNENs 
include tumor size, enhancement ratios derived from HU values, iodine uptake on DECT, entropy on 
CT texture analysis, tumor blood flow, tumor blood volume, and mean transit time on perfusion CT, 
ADC and ADC histogram analysis of DWI, true and pseudodiffusion coefficients and perfusion fraction 
on IVIM DWI, Ktrans and Kep on perfusion MRI and SUVmax on dual tracer PET/CT. A combination 
of qualitative features and quantitative factors with the newer functional imaging techniques enables 
better tumor classification based on their prognosis. A summary of important studies on advanced 
imaging in GEPNENs is shown in Table 3.

CONCLUSION
With the recent advances in CT, MRI, USG and hybrid imaging techniques like PET/CT and PET/MRI 
using dual tracers, smaller pancreatic and bowel NENs are now being increasingly detected and staged. 
In addition to tumor detection and staging, their non-invasive grading, prognostication and monitoring 
response to treatment are shown to be feasible and reliable with the emerging studies using quantitative 
imaging techniques like CT and MR perfusion studies, DWI, IVIM and texture analysis with radiomics. 
Standardization of these techniques with more large scale studies would be an important future 
prospect. These advances in imaging will help in making the right treatment choice, contributing to an 
overall improvement in patient outcome.
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