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Topographic design in wearable MXene
sensors with in-sensor machine learning for
full-body avatar reconstruction

Haitao Yang1,9, Jiali Li1,9, Xiao Xiao 2,9, Jiahao Wang3,9, Yufei Li1, Kerui Li1,
Zhipeng Li 3, Haochen Yang 4, Qian Wang1, Jie Yang 1, John S. Ho 3,
Po-Len Yeh5, Koen Mouthaan3, Xiaonan Wang 6, Sahil Shah 7 &
Po-Yen Chen 4,8

Wearable strain sensors that detect joint/muscle strain changes become pre-
valent at human–machine interfaces for full-body motion monitoring. How-
ever,mostwearable devices cannot offer customizable opportunities tomatch
the sensor characteristics with specific deformation ranges of joints/muscles,
resulting in suboptimal performance. Adequate wearable strain sensor design
is highly required to achieve user-designated working windows without
sacrificing high sensitivity, accompanied with real-time data processing.
Herein, wearable Ti3C2Tx MXene sensor modules are fabricated with in-sensor
machine learning (ML) models, either functioning via wireless streaming or
edge computing, for full-body motion classifications and avatar reconstruc-
tion. Through topographic design on piezoresistive nanolayers, the wearable
strain sensor modules exhibited ultrahigh sensitivities within the working
windows that meet all joint deformation ranges. By integrating the wearable
sensors with a ML chip, an edge sensor module is fabricated, enabling in-
sensor reconstruction of high-precision avatar animations that mimic con-
tinuous full-body motions with an average avatar determination error of
3.5 cm, without additional computing devices.

Tracking, monitoring, and reconstruction of full-body motions are
increasingly prevalent and have been applied in many scenarios,
including high-precision movement detection1,2, motor sign
recognition3, athlete performance analysis4,5, rehabilitation
assessment6,7, human–machine interaction8,9, and personalized avatar
reconstruction in augmented/virtual reality10,11. Current approaches to
realizing full-body motion monitoring involve digital imaging systems
(such as cameras), which capture a series of photographs and/or

videos to extract quantitativemovement information12,13. However, the
approaches of using digital imaging systems for body motion mon-
itoring face several limitations. A key drawback is that these imaging
systems are composed of immobile, expensive, and burdensome
equipment, making them hard to relocate and unsuitable for tracking
distant and dynamic objects1,14. Also, privacy and data security con-
cernsmay constrain the implementation of cameras in communities or
home settings15,16. Furthermore, graphics processing units (GPUs) are
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always needed to process images/videos in external data terminals17,18,
proposing the challenges of high bandwidth requirement, hardware
expense, and power consumption.

An alternative strategy for high-precision full-body motion mon-
itoring and/or avatar reconstruction involves wearable strain sensors
that canmechanically conform to dynamic joint surfaces of the human
body, allowing the physiological signals to be collected1,4,6,8,19,20. For
proprioception purposes, the multi-joint motions of the human body
require a set of wearable strain sensors capable of achieving high
sensitivities in separate strain ranges8,21,22. However, the state-of-the-art
strain sensors and existing commercial sensors have limited custo-
mizable opportunities to tune the sensors’working windows to match
the strain changes of targeted joints/muscles7,23–25, leading to erro-
neous sensing signals and low signal-to-noise ratios. Therefore, to
satisfy full-body motion monitoring applications, adequate wearable
strain sensor design is highly required to achieve user-designated
working windows without sacrificing high sensitivity, accompanied
with real-time data processing.

Besides tuning the strain sensor characteristics, an additional
challenge is to transmit, store, and process the raw sensor data col-
lected through multiple signal acquisition channels7,21,26. One facile
approach is through the integration of wireless technology (e.g.,
Bluetooth) with wearable strain sensors, enabling continuous, real-
time streaming of multi-channeled sensor data to an external com-
puting device26–28. On the other hand, an emerging approach is to
process the time-resolved sensor data locally (in-sensor), which can
largely reduce communication bandwidths and radio power con-
sumption as well as improve data latency and security28,29. To the best
of our knowledge, integrating edge computing chip(s) with wearable
strain sensors (with customizable sensor characteristics) has not been
realized in the literature, especially to monitor and analyze the multi-
joint and multi-mode movements of the human body.

Herein, wearable sensor modules were fabricated with ML mod-
els, either functioning via wireless data streaming or in-sensor edge
computing, for full-body motion classifications and personalized ava-
tar reconstruction. Ti3C2Tx MXene nanosheets were specifically
adopted for the fabrication of piezoresistive nanolayers due to high
electrical conductivity, superior conformability, and ease of
processing30–34. First, by harnessing the interfacial instability during
localized thermal contraction, wrinkle-like topographies were hetero-
geneously created on the piezoresistive MXene nanolayers, the crack
propagation behaviors of which were able to be controlled. Through
topographic design, the working windows of resulting strain sensors
were managed to be tuned from 6 to 84%, whichmet the strain ranges
of all the joints without sacrificing ultrahigh sensitivities (gauge factor
(GF) > 1000). Next, by interfacing wearable strain sensors with Blue-
tooth chips, the wireless sensor module was able to stream multi-
channeled strain sensing data continuously, which were input to train
an Artificial Neural Networks (ANN) model capable of identifying a
variety of full-body motions with 100% classification accuracy. Finally,
an edge sensor module was fabricated by integrating wearable strain
sensors with an edge computing chip, enabling in-sensor Convolu-
tional Neural Network (CNN) to reconstruct personalized avatar ani-
mations with an average avatar determination error of 3.5 cm. In
comparison with the wireless sensor module, the edge sensor module
avoided wireless data streaming and showed 71% less power con-
sumption for full-body avatar reconstruction.

Results
Controllable fabrication of wrinkle-like MXene textures via
localized thermal contraction
A variety of low-dimensional nanomaterials, ranging from one-
dimensional (1D) silver nanowires35,36 and carbon nanotubes37,38 to
two-dimensional (2D) graphene39,40 andTi3C2TxMXenenanosheets7,41,42,
have been adopted for the fabrication of piezoresistive nanolayers.

Polymers are often involved to stabilize the assembled
nanostructures30,43. In this work, three building block units, single-
walled carbon nanotubes (SWNTs), Ti3C2Tx MXene nanosheets, and
polyvinyl alcohol (PVA), were selected for the fabrication of piezo-
resistive nanolayers. Ti3C2Tx MXene nanosheets were specifically
selected over other 2D materials because of their high electrical con-
ductivities, superiormechanical properties, intrinsic hydrophilicity, and
ease of processing30–34. Detailed characterizations of SWNTs andMXene
nanosheets are provided in Supplementary Fig. 1, where the diameter
and length of SWNTs were 1–2 nm and 5–30 µm, respectively, and the
average diameter of as-exfoliatedMXene nanosheets was characterized
to be ca. 1000nm.

Next, the dispersions/solution of MXene nanosheets, SWNTs, and
PVA were mixed and then underwent vacuum-assisted filtration to
deposit a composite nanolayer on a polyvinylidene fluoride (PVDF)
membrane. The thickness of as-filtered MXene/SWNT/PVA nanolayer
(abbreviated as ps-MXene nanolayer) was fixed at 400nm for the rest
of this study, and the composition of ps-MXene nanolayer was con-
trollable by adjusting the mass ratios of three building block units in
themixture. Supplementary Fig. 2a–c present the top-down and cross-
section scanning electron microscope (SEM) images of a planar ps-
MXene nanolayer, where SWNTs were highly dispersed and entangled
within the MXene multilayer. Further characterizations of ps-MXene
nanolayers (including X-ray diffraction (XRD) and Raman spectra) are
provided in Supplementary Fig. 2d, e, respectively. The as-filtered ps-
MXene nanolayer was then detached from the PVDF membrane in an
ethanol bath, and the freestanding ps-MXene nanolayer was trans-
ferred onto a thermally responsive polystyrene (PS) shrink film. In this
study, the shrink films were specifically customized to contract only in
a uniaxial direction above the glass transition temperature (Tg) of PS
(ca. 100 °C), which were produced by using the roll-to-roll machine
shown in Supplementary Fig. 3. After the thermal contraction at 100 °C
for 120 s, the width of the uniaxial shrink film was reduced 50%, while
its length remained constant (see Supplementary Figs. 4 and 5 for
detailed characterizations).

By controlling the thermal contraction region(s), the planar ps-
MXene nanolayers (named asMp,M indicates the ps-MXene nanolayer,
the subscript p refers to the planar feature) were managed to be
deformed into different kinds ofMn nanolayers (the subscript n refers
to the topographic design). Two categories of Mn nanolayers were
developed in this work: (1) the ps-MXene nanolayerswith homogenous
topographies (includingMp andMw) and (2) the ps-MXene nanolayers
with heterogeneous topographies (including Mp-w-p and Mw-p-w).

In the category of homogeneous topographies, a Mp nanolayer
was shrunk without any constraints, and the resulting nanolayer was
fully covered with periodic wrinkles, which was named as Mw nano-
layer (the subscript w refers to the wrinkle-like feature, Fig. 1a, (1)).
Supplementary Figs. 6 and 7 show the digital photos and SEM images
of a Mw nanolayer, respectively. In the category of heterogenous
topographies, the two ends of aMp nanolayer were fixed (Fig. 1a, (2)),
so only the middle region showed periodic wrinkles after thermal
contraction, which was named as Mp-w-p (the subscript w refers to the
wrinkle-like feature, p refers to the planar feature, Fig. 1a, (2)). When
themiddle part of aMp nanolayer wasfixed, the two edge regions were
shrunk and displayed periodic wrinkles (named as Mw-p-w nanolayer,
the subscriptw refers to the wrinkle-like feature, p refers to the planar
feature, Fig. 1a, (3)). Figure 1b presents the SEM images of Mw, Mp-w-p,
and Mw-p-w nanolayers, showing that the generation of ps-MXene
micro-wrinkles can be locally controlled. Supplementary Fig. 8 further
shows the enlarged SEM image of the transition regions of Mp-w-p and
Mw-p-w nanolayers (between planar and textured regions). The wave-
length distribution profiles ofMp,Mw,Mp-w-p, andMw-p-wnanolayers are
summarized in Fig. 1c, showing that the periodic wrinkles are con-
strained within the region(s) experiencing localized thermal contrac-
tion. The electrical conductivity of a Mp nanolayer (at the MXene/
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SWNT/PVA ratio of 85/10/5) was confirmed to be 2479 S cm–1 using a
four-point probe, and the electrical resistances of all kinds of wrinkle-
like ps-MXene textures were provided in Supplementary Fig. 9.

Crack propagation behaviors of Mn sensors with homogenous
and heterogenous topographies
For the fabrication of wearable strain sensors, all the Mn nanolayers
(including Mp, Mw, Mp-w-p, and Mw-p-w) were first immersed in a
dichloromethane (DCM) bath to dissolve the PS substrates, and theMn

nanolayers were detached and became freestanding (see Supplemen-
tary Fig. 10 and Experimental Section for fabrication details). As shown
in the SEM image in Supplementary Fig. 11 and the atomic force
microscopy (AFM) profiles in Supplementary Fig. 12, the wrinkle-like
textures of a Mw nanolayer were slightly relaxed, and the average
wavelength increased from 8.1 to 10.2 µm. Next, the freestanding Mn

nanolayers were transferred onto VHBTM tapes followed by wiring
electrical leads to obtain the corresponding Mn sensors (as illustrated
in Supplementary Figs. 13 and 14).

Finite element analysis (FEA) was conducted to simulate the strain
distribution heatmap of each Mn sensor under uniaxial strains. With
homogenous topographies, the FEA results ofMp andMw sensorswere
compared. As shown in Fig. 2a, i, when theMp sensor was stretched to
120% of its original length, the Mp nanolayer experienced large and
concentrated strains (>50%) in its central region. In comparison, in
Fig. 2a, ii, when theMw sensor was stretched to 120%, theMw nanolayer
experienced attenuated localized strains (<20%), and the localized

strains were propagated at the valleys of periodic wrinkles. The crack
propagation behaviors ofMp andMw sensors during continuous strain
loading processes were in situ recorded by using a reflection-contrast
microscopy. As recorded in Fig. 2b and Supplementary Movie 1, when
the Mp sensor was stretched to 120%, long and continuous fractures
were generated on its piezoresistive nanolayer. On the other hand,
when the Mw sensor was stretched to 120%, short and zigzag surface
cracks were gradually developed (see Fig. 2b and Supplementary
Movie 2). As further shown in the SEM images in Supplementary
Figs. 15 and 16, the Mw nanolayer showed slower crack propagation
than the Mp nanolayer under stretching, preventing the conductive
pathways of nanolayer from being completely cut off.

With heterogenous topographies, the FEA results of Mp-w-p and
Mw-p-w sensorswere compared. As shown in Fig. 2c, iii, theMp-w-p sensor
showed the strain distribution profile with hybrid features, where the
wrinkle-textured regions experienced attenuated strains (<20%) while
the localized strain in the planar region quickly propagated above 50%.
Similarly, in Fig. 2c, iv, theMw-p-w sensor presented a region-dependent
strain distribution profile. As a result, in Fig. 2d, bothMp-w-p andMw-p-w

sensors showed region-dependent crack propagation behaviors dur-
ing the strain loading processes: long/continuous fractures emerged in
the planar regions, and short/zigzag cracks propagated in the textured
regions. By using ImageJ to quantify the FEA results under 120%
stretching, theMw-p-w nanolayer showed an average localized strain of
20%, lower than the Mp-w-p nanolayer (32%). Therefore, the Mw-p-w

nanolayer showed slower crack propagation than theMp-w-p nanolayer
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(see SEM images in Supplementary Figs. 17 and 18), enabling Mw-p-w

sensors to sustain higher uniaxial strain (>50%) than theMp-w-p sensor
(<30%) before the conductive pathways of nanolayer being completely
cut off. From both FEA simulation and experimental results, the crack
propagation behaviors of Mn sensors can be controlled by creating
homogenous and heterogeneous topographies.

Tunable strain sensing characteristics of Mn sensors through
topographic designs and stretching directions
Three characteristics of a strain sensor are generally evaluated,
including (1) sensitivity, (2) linear working window, and (3) maximum
working strain. The sensitivity of a strain sensor is normally char-
acterized by GF, as defined in Eqs. 1 and 2,

Sε =
Rε � R0

R0
ð1Þ

GF=
Sε
ε

ð2Þ

where Sε is the relative resistance change at ε strain, ε denotes the
applied strain, R0 and Rε represent the initial resistance and the
resistance under ε strain, respectively. On the other hand, the linear
working window of a strain sensor is determined by the strain range
where its resistance increased linearly with the applied strain. When
the strain sensor reaches its maximum resistance, the maximum
working strain is abbreviated as εmax.

As the Mn nanolayers exhibited directional wrinkle-like textures,
the stretching direction showed significant effects on the strain sen-
sing characteristics of a Mn sensor. Figure 3a, b present the relative

resistance change (Sε)–strain (ε) profiles of Mn sensors under two
stretching directions (parallel to and perpendicular to the wrinkle
axes). Under parallel stretching (Fig. 3a), the linearworkingwindowsof
Mp, Mw, Mp-w-p, and Mw-p-w sensors were characterized to be 3–6%,
8–24%, 25–39%, and 35–50%, respectively, with highGFvalues of 3400,
1160, 1230, and 1470. Also, the εmax of Mp, Mw, Mp-w-p, and Mw-p-w sen-
sors were determined to be 6%, 24%, 39%, and 50%, respectively. In
comparison, under perpendicular stretching (Fig. 3b), the Mw, Mw-p-w,
Mp-w-p sensors demonstrated narrower linear working windows (with
an average strain range of 6%) and lower sensitivities (GF ~600). In
Supplementary Note 1, detailed FEA simulations and in situ SEM stu-
dies were conducted on all Mn sensors to investigate the effect of
stretching directions on their crack propagation behaviors and strain
sensing performance. In short, there are two major advantages of
selecting parallel stretching over perpendicular stretching, including
(1) higher Mn sensors’ sensitivities and wider linear working windows
and (2) more design opportunities via topographic design. Therefore,
we adopted theparallel stretchingdirection for allMn sensors.Detailed
comparisons of strain sensor performance between (1) Mp and Mw

sensors and (2) Mp-w-p and Mw-p-w sensors are supplemented in Sup-
plementary Note 2.

To further examine the influence of the topographic design on
the strain sensing performance, several types of Mn sensors were
fabricated by (1) varying the areal percentages of wrinkle-like
region(s) and (2) changing the distribution of wrinkle-like region(s).
First, Supplementary Fig. 19 compares the strain sensing curves of
various Mw-p-w sensors with different areal percentages of wrinkle-
like regions. With the areal percentages of wrinkle-like regions
increasing from 5 to 75%, the resulting Mw-p-w nanolayers exhibited
more short/zigzag cracks under parallel stretching. The higher
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coverage of short/zigzag cracks prevented the conductive pathways
from being completely cut off, leading to wider working windows.
Therefore, as the areal percentages increased from 5 to 75%, the
linear working window of the resultingMw-p-w sensor increased from
12–14% to 45–69%, respectively (Fig. 3c).

Second, several other types of Mn sensors were fabricated by
varying the positions and distribution of wrinkle-like region(s); the
total areal percentage ofwrinkle-like region(s)was controlled to be the
same at 50%. Toevaluate the effect ofwrinkle texturing distribution on
the strain sensing performance, two kinds of Mn sensors, including
Mp-w and Mw-p-w-p, were fabricated. Supplementary Fig. 20 shows the
FEA results of Mp-w, Mp-w-p, Mw-p-w, and Mw-p-w-p, and the average loca-
lized strain of each sensor was quantified by ImageJ on the FEA results.
Figure 3d compares the strain sensing curves ofMp-w andMp-w-p, which
have “one” wrinkle-like region. The Mp-w-p nanolayer under 120%
stretching showed an average localized strain of 32%, while the Mp-w

nanolayer illustrated a lower average localized strainof 17%.With lower
localized strains, the εmax of aMp-w sensor was characterized to be 37%,

whichwas larger than the one of aMp-w-p sensor (εmax = 24%). Figure 3e
compares the strain sensing curves ofMw-p-w andMw-p-w-p, which have
“two”wrinkle-like regions. TheMw-p-w nanolayer under 120% stretching
showed an average localized strain of 20% (quantified by ImageJ on the
FEA result), while the Mw-p-w-p nanolayer illustrated a higher average
localized strainof 34%.With lower localized strains, the εmax of aMw-p-w

sensorwas characterized to be 50%,whichwas higher than the one of a
Mw-p-w-p sensor (εmax = 32%). From both FEA results and strain sensing
performance, setting the wrinkle-like region(s) at the edge position(s)
was able to effectively reduce overall localized strains and increaseMn

sensors’ εmax.
The strain sensing stability of all Mn sensors was investigated.

Figure 3f demonstrates stable relative resistance changes of a Mw

sensor under repeated uniaxial strains, as the surface cracks were
repeatedly generated at the same spots on the reconfigurable micro-
textures during reversible stretching processes (in situ recorded in
Fig. 3g and Supplementary Movie 3). It is worth to note that the flat-
tened plateaus on the signal peaks in Fig. 3f resulted from the default
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position of all Mn nanolayers was set at 85/10/5 (MXene/SWNT/PVA), and the
thickness of all Mn nanolayers was controlled at 400nm. b Relative resistance
change (Sε)–strain (ε) curves ofMn sensors under perpendicular stretching. c Linear
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changes of a Mw sensor under various repeated uniaxial strains. g Reflection-
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i Comparison of ourMn sensors with other strain sensors in the literature (in terms
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the gauge factors >1000. The fabrication details of 12 Mn sensors are listed in
Supplementary Table 1.
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mode of our tensile tester, as the movement of tensile grips slowed
down to transit from stretching (open grips) to relaxation (close grips).
From Supplementary Figs. 21–24, the cycling performance of all Mn

sensors was tested for 20,000 cycles, where the relative resistance
changes of all Mn sensors remained stable during the cycling tests. In
addition, the response times of a Mp sensor were collected in Sup-
plementary Fig. 25.

Themechanical properties of allMn sensorswere tested. As shown
in Supplementary Fig. 26, allMp,Mp-w-p,Mw, andMw-p-w sensors showed
similar Young’s moduli of ca. 150 kPa, which were higher than a bare
VHBTM tape (106 kPa). In addition, the hysteresis of a Mn sensor
(Uhysteresis) was quantified by measuring the maximal signal difference
between the stretching and releasing processes, as defined in Eq. 3,

Uhysteresis =Max∣Sstretching � Sreleasing ∣ ð3Þ

where Sstretching is the relative resistance change signal, (R-R0)/R0, of a
Mn sensor during the stretching process, and Sreleasing is the relative
resistance change of aMn sensor during the relaxation process. Based
on Supplementary Fig. 27, the hysteresis values ofMp,Mp-w-p,Mw, and
Mw-p-w sensorswere calculated as 18, 27, 28, and 31, respectively, as the
hysteresis of a VHB tape increased with the applied strains of 5%, 15%,
25%, and 40%44,45.

Fabrication reproducibility is highly critical for wearable sensor
applications, as the users can avoid re-calibration of as-fabricated Mn

sensors and use the in-database Sε–ε profiles as the references
23,46,47. In

this study, the fabrication reproducibility was characterized by calcu-
lating the signal error of threeMn sensor replicates, as defined in Eq. 4,

Signal Error =
σSε

ε
ð4Þ

where σSε
is the standard deviation of Sε under an applied strain (ε). A

smaller signal error indicates thatMn sensor replicates are with nearly
identical strain sensing characteristics, thus showing higher fabrica-
tion reproducibility, vice versa. The large signal error resulted from
large Sε variations from three Mn sensor replicates. According to
Supplementary Movie 1, the Mp nanolayer exhibited uncontrolled
crack propagation behaviors, showing that the large cracks were ran-
domly generated under strains. In comparison, according to Supple-
mentary Movie 2 and 3, the Mw nanolayer demonstrated a more
controllable crack propagation fashion, showing that the zigzag cracks
were constrained along the valleys of periodic wrinkles and emerged
repeatedly under strains. Therefore, with one or more wrinkle-
textured region(s), theMw,Mw-p-w, andMp-w-p sensors (three replicates)
demonstrate more consistent strain sensing performance and thus
lower signal errors <10% (as shown in Fig. 3h). On the other hand, with
only planar nanolayers, theMp sensors (three replicates) exhibited the
largest signal errors >50%.

The effects of nanolayer composition and thickness on the per-
formance ofMn sensorswere also investigated. By fixing the nanolayer
composition (at the MXene/SWNT/PVA ratio of 85/10/5) and thickness
(at 400 nm) (Supplementary Fig. 28a), the εmax of resultingMn sensors
was tuned from6 to 50%,when the nanolayer topography altered from
Mp to Mw-p-w. In comparison, by fixing the nanolayer thickness (at
400nm) (Supplementary Fig. 28b), the εmax only increased from 6 to
16% for theMp sensors, from 24 to 47% for theMp-w-p sensors, from 39
to 65% for theMw sensors, and 50% to 84% for theMw-p-w sensors,when
the nanolayer composition varied from 85/10/5 to 65/30/5. On the
other hand, by fixing the nanolayer composition (at theMXene/SWNT/
PVA ratio of 65/10/5) (Supplementary Fig. 28c), the εmax decreased
from 16 to 14% for the Mp sensors, from 47 to 37% for the Mp-w-p sen-
sors, from 65 to 48% for the Mw sensors, and 84 to 67% for the Mw-p-w

sensors, when the nanolayer thickness increased from 400 to 800nm.
Supplementary Note 3 provided more discussions of the effects of

nanolayer thicknesses on the Mn sensors’ topographic design and
crack propagation behaviors. Supplementary Fig. 29 summarizes the
nanolayer composition, thickness, and topography effects on the εmax

of Mn sensors. Compared with the strategies of adjusting nanolayer
composition and thickness, topographic design served as a more
effective approach to tuning the Mn sensor characteristics. As further
summarized in Fig. 3i, the linear working windows of Mn sensors
(indices I–XII, see fabrication details in Supplementary Table 1) were
able to be tuned from6 to 84%. In comparison with the state-of-the-art
strain sensors (summarized in Fig. 3i), our Mn sensors showed user-
designated linear working windows without sacrificing their superior
strain sensitivities (GF > 1000)30,33,43,48–62.

Wireless sensor module for full-body motion classification
With tunable linear working windows, the Mn sensors are suitable to
match the strain changes of different body joints, and the proprio-
ception information can be collected with high accuracy to classify,
track, and reconstruct full-body motions. As shown in Fig. 4a, by
measuring the average strain change ranges of seven joints of a
volunteer (including back waist, left/right shoulders, left/right elbows,
and left/right knees), we designed and fabricated seven Mn sensors
with joint-matched linear working windows. In detail, the Mp sensor
with the linear working window of 3–6% was selected to monitor the
back waist bending (average strain change ~5%). The Mp-w-p, Mw, and
Mw-p-w sensors with the windows of 8–24%, 25–39%, and 35–50% were
assigned to monitor the movements of shoulders (average strain
change ~10%), elbows (average strain change ~30%), and knees (aver-
age strain change ~50%), respectively.

The Mn sensors in a single type (e.g., all Mp sensors) were not
able to collect accurate proprioception signals for full-body motion
monitoring. When seven Mw-p-w sensors were attached to all the
joints (Fig. 4b), the Sε signals collected from back waist were too
small (<1.0) and hard to be distinguished from noises. On the other
hand, when seven Mp sensors were attached to all the joints
(Fig. 4c–e), the average strain changes of shoulders, elbows, and
knees exceeded the linear working window of Mp sensor, leading to
erroneous Sε signals. Similarly, using single type of Mp-w-p or Mw

sensors was not able to monitor the high-strain movements of left/
right knees (Supplementary Fig. 30). Therefore, it was necessary to
use multi-type Mn sensors to collect the proprioception signals of
full-body motions. As shown in Fig. 4f, the seven Mn sensors were
able to successfully record the strain sensing signals in a multi-
channeled fashion for various full-body motions, including (i) left/
right elbow lifting, (ii) left/right shoulder lifting, (iii) squatting, (iv)
stooping, (v) walking, and (vi) running.

To facilely transmit the multi-channeled sensor data to a terminal
computing device, the seven Mn sensors were interfaced with a Blue-
tooth chip for the fabrication of a wireless sensormodule. Thewireless
sensor module was composed of sevenMn sensors with joint-matched
linear working windows, an analog-to-digital converter (ADC) with
multi-data-acquisition channels, a microcontroller unit (MCU), and a
Bluetooth chip. The equivalent circuit is illustrated in Fig. 4g, and the
digital photo is shown in Supplementary Fig. 31. Each Mn sensor was
connected in series with standard resistors, and the resistor value was
specifically selected to be 100 kΩ to ensure wireless data transmission
with high accuracy (see Supplementary Note 4, Supplementary Fig. 32,
andMethods for more details). By applying a constant voltage of 5.0 V
(Vin), the voltage outputs (Vi) were measured by the ADC unit and
derived in Eq. 5,

Vi =Vin
Ri ×RADC

Ri ×RADC +Rs × ðRi +RADCÞ
ð5Þ

where Vi is the voltage output of ith sensor channel (i = 1–7), Vin is the
applied voltage (i.e., 5.0 V), Rs is the resistance of the standard resistor
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(i.e., 100 kΩ), RADC is the input impedance of ADC unit (i.e., 1MΩ), and
Ri is the varying resistance of theMn sensor at ith channel. Afterward,
the MCU was programmed with the customized codes to collect the
multi-channeled voltage outputs in real time (as recorded in
Supplementary Fig. 33), which were then sent out by the Bluetooth

chip. Our wireless sensor module demonstrated a data transmission
rate (S) at ca. 450 bps (bits per second), which was defined in Eq. 6,

S=
A
t

ð6Þ
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lost their strain sensing capabilities. f Signal outputs, Sε, of sevenMn sensors for
full-body motion monitoring, including (i) left/right elbow lifting, (ii) left/right
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g Equivalent circuit of a wireless sensor module. h Multi-channeled Mn sensor
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where A is the data bits of the Bluetooth chip and t is the data trans-
mission time. As we adopted a commercial Bluetooth HC-06, our
wireless sensor module maintained its S value above 400 bps in a
broad space (>80 meters) and long-term (>100 h) continuous
operation.

As shown in Fig. 4h, the wirelessly transmittedMn sensor data was
input as the training data (Supplementary Table 2 in GitHub) to train a
ML model based on ANN. Detailed ML framework is discussed in
Supplementary Note 5. Figure 4i shows the t-distributed Stochastic
Neighbor Embedding (t-SNE) scatterplot ofmulti-channeledMn sensor
data in response to six full-body motions (see detailed description in
Supplementary Note 6), and six distinct clusters were formed after
dimension reduction. Without the use of image/video data, the ANN
model was able to achieve a accuracy of 100% for full-body motion
classification. The accuracywasdefined in Eq. 7 and evaluated by using
independent testing data (Supplementary Table 3 in GitHub),

Accuracy= 100%� 1
N

Xi =N

i = 1

∣Pi � Ti∣
Ti

ð7Þ

where Pi is the determined type of ith full-body motion, and Ti is the
recorded label of ith full-body motion in testing data.

Edge sensor module for in-sensor avatar reconstruction
Although the wireless sensor module ensured facile data connectivity
to a terminal computing device, continuous transmission of multi-
channeled sensor data led to high energy consumption for long-term
monitoring29,63. In addition, the wireless transmission approach always
faces interruption and disconnection challenges, especially when the
wireless sensor modules are applied in distant fields or in underwater
scenarios64,65. To address these challenges, edge data computing in a
ML chip becomes an emerging approach to monitoring and deter-
mining full-body motions in high accuracy. By integrating seven Mn

sensorswith aML chip, an edge sensormodule was fabricatedwith the
equivalent circuit illustrated in Fig. 5a; the digital photo is shown in
Supplementary Fig. 34. The edge sensor module was composed of
sevenMn sensors with joint-matched linear working windows, a multi-
channeled ADC unit, a ML chip (with integrated Bluetooth function). It
should be noted that the Bluetooth functionwas used to intermittently
send the processed results out of the ML chip.

Our edge sensor module with in-sensor ML models was able to
reconstruct personalized avatars that mimicked the continuous full-
body motions in high precision and accuracy. Precise monitoring of
continuous humanmotions has long been a primary center for various
applications, such as gesture/gait recognition26,27, animation
production66,67, remote healthcare6,68, and virtual reality9,11. During the
coronavirus pandemic, the technologies for sensing delicate body
motions (e.g., trembling, shivering) become necessary, as the doctors
can monitor the patients’ symptoms in real time1,69. Also, the human
motion sensing technologies have significant impacts in various
industries, including sports4,5, healthcare69, and gaming
entertainment70,71.

In thiswork, the in-sensorMLmodel for avatar reconstructionwas
built up in two steps. First, the figure aspects and 15 joint locations of a
volunteer were extracted from a pre-recorded video through an OPEN
POSE program72. The detailed description of OPEN POSE program is
provided in Supplementary Note 7. As shown in Fig. 5b, the stationary
stickman avatar with 15 joints was constructed. Afterward, seven Mn

sensors with joint-match working windows were attached onto the
joints of a volunteer, and the time-resolved Mn sensor data were col-
lected in a multi-channeled fashion, which were input as the training
data (Supplementary Table 4 in GitHub) to train a ML model offline
based on CNN (see details in Supplementary Note 8). The CNN model
with optimal hyperparameters was then uploaded to activate the edge
sensor module. When the volunteer performed a series of full-body

motions, the seven Mn sensors were able to monitor the localized
strain changes of different joints. As shown in Fig. 5c, the multi-
channeled resistance change profiles were collected and transformed
into the voltage outputs through ADC. By continuously receiving the
voltage data, the ML chip with in-sensor CNNmodel enabled real-time
and high-accuracy determination of 15 avatar joint locations, which
were then transformed into personalized avatar animations by the
OPEN POSE program (as shown in Supplementary Movie 4).

The determination error of in-sensor avatar reconstruction was
calculated bymeasuring the difference between the real joint locations
(extracted from camera-recorded videos, Supplementary Table 5 in
GitHub) and the determined joint locations (computed by edge sensor
module, Supplementary Table 6 in GitHub). The average determina-
tion error is defined in Eq. 8,

Average Determination Error =
1
15

×
170cm
830

×
Xi= 14

i =0

Xt

0
∣Pi

t � Ti
t ∣ ð8Þ

where Pi
t is the CNN-determined location of ith joint at the time t, Ti

t is
the camera-recorded locations of ith joint at the time t, 170 cm is the
volunteer’s physical height, and 830 is the corresponding avatar height
in the virtual coordinate system, and 15 is the number of monitored
joints. By comparing 15 joint locations (Fig. 5d and Supplementary
Fig. 35), the average avatar determination error was calculated to be
3.5 cm. As shown in Fig. 5e, the CNN-determined avatar animations
successfully mimicked the volunteer’s full-body motions in high
precision and accuracy. It is worth mentioning that the avatar
animation sometimes moved ahead of the full-body motions,
specifically the squatting motions. As shown in Supplementary Fig. 36
and Supplementary Movie 4, the avatar’s squatting movement (at the
22.6th second) was ahead of the video-recorded squatting motion (at
the 23.0th second). The ahead motion determination was due to the
early signals from the Mp sensor on the back waist, where the
preparatory muscular stretching happened before the squatting
motions (seedetails in SupplementaryNote 9). SupplementaryNote 10
and 11 discuss more potentials of the edge sensor modules, including
the improvement of the comfort levels of wearableMn sensormodules
and themethod to re-construct a 3D avatar (Fig. 5f and Supplementary
Movie 5).

The edge sensor module demonstrated a critical advantage in
power consumption over the wireless sensor module. Figure 5g com-
pares the power consumption of wireless and edge sensormodules to
reconstruct avatar animations (see detailed calculation in Methods).
The wireless sensor module showed power consumption of 31.5mW,
the majority of which was used to wirelessly transmit multi-channeled
sensor data to a terminal computing device (20mW). It is worth noting
that the power consumption of avatar reconstruction in the terminal
computing device was neglected. On the other hand, the edge sensor
module consumed 9mW to achieve the same task of avatar recon-
struction, which was 71% lower than the wireless one. The edge sensor
module with high power efficiency is beneficial for full-body motion
monitoring, as miniature batteries with limited energy capacities are
normally used for wearable applications.

Discussion
In this work, through harnessing the interfacial instability during
localized thermal contraction, a variety ofMn sensors with engineered
MXene microtextures were fabricated, where the in-plane crack pro-
pagations and thus the strain sensing characteristics were system-
atically tuned (Fig. 6a). Four kinds of Mn sensors with ultrahigh
sensitivity (GF > 1000) and joint-matched working windows were
attached onto the multi-joint surfaces of a volunteer to monitor full-
body motions with high signal-to-noise ratios. As shown in Fig. 6b, by
interfacingMn sensorswith a Bluetooth chip, a wireless sensormodule
was assembled to achieve continuous and real-time streamingofmulti-

Article https://doi.org/10.1038/s41467-022-33021-5

Nature Communications |         (2022) 13:5311 8



600

800

21
P

600

800

P
8

0

10

20

30

40)
W

m(
noitp

mu sn o
C

re
wo

P

Mn Sensors

 ADC&MCU
 Wireless Transmission

Wireless Sensor Module
(Mn Sensor Data)

 Edge Sensor Module
(Avatar Joint Location)

31.5 mW

9.0 mW

P0

P5P2

P3

P4

P6

P7
P8

P9 P12

P10

P11

P13

P14

P1

+5 s +12 s +27 s +39 s +53 s +69 s

C
am

er
a-

dedroce
R

V
id

eo
s

E
dg

e -
den i

mr ete
D

noita
min

Ara tav
A

b c

e

a

0 100 200 300 400 500 600

Le
ft

K
ne

e
R

ig
ht

K
ne

e
Le

ft
E

lb
ow

R
ig

ht
E

lb
ow

Le
ft

S
ho

ul
de

r
R

ig
ht

S
ho

ul
de

r
B

ac
k

W
ai

st

Time (Second)

5.0 V Avatar Joint Locations

Mn Sensors Resistors

ADC

1
2
3
4
5
6
7S

en
so

r
slen nah

C

ML Chip

300

600

P
5

Joint Locations Extracted from Recorded VideoJoint Locations Predicted by Edge Sensor Module

5 s 5 s 5 s 5 s

d

g

71% Energy
Saving

600

800

P
9

f

E
dg

e-
D

et
er

m
in

ed
 

3D
 A

va
ta

r A
ni

m
at

io
n

C
am

er
a -

R
ec

or
de

d
V

id
eo

s

+3 s +4 s +5 s

Fig. 5 | Edge sensor module for in-sensor avatar reconstruction. a Equivalent
circuit of an edge sensor module. b Stickman avatar with 15 joints was customized
based on a camera-recorded video. c Time-dependent Mn sensor data in response
to various full-body motions of a volunteer. d Joint location comparison between
the determination results from an edge sensor module and the extracted

information from a recorded video. e Comparison of full-body motions between
the volunteer and the avatars constructedby the edge sensormodule. fA 3Davatar
was constructed by the edge sensormodule. g Comparison of power consumption
of wireless sensor module and edge sensor module toward avatar reconstruction.

Article https://doi.org/10.1038/s41467-022-33021-5

Nature Communications |         (2022) 13:5311 9



channeled Mn sensor data, and an ANN model was trained with 100%
accuracy to classify various full-body motions. By further integrating
Mn sensors with a ML chip, an edge sensor module was fabricated for
the in-sensor reconstruction of personalized avatar animations that
mimic diverse full-bodymotions with an average avatar determination
error of 3.5 cm, without external computing devices. Also, the stan-
dalone edge sensor module avoided wireless data streaming and
demonstrated 71% less power consumption for avatar reconstruction
than the wireless sensor module.

Our work has demonstratedmultiple interdisciplinary advances.
Our first advance is to develop a low-cost, scalable, and controllable
approach to engineering wrinkle-like MXene microstructures via
localized thermal contraction, which cannot be easily achieved by
conventional buckingmethods (Supplementary Figs. 37 and 38). Our
second achievement is to control the crack propagation behaviors of
piezoresistive nanolayers through topographic design including the
Mn nanolayers under different stretching directions, the Mn nano-
layers with varying the areal percentages of wrinkle-like region(s),
and the Mn nanolayers with varying positions and distribution of
wrinkle-like region(s). As a result, the strain sensing characteristics of
wearable strain sensor can be customized. Most of the reported
works in the literature focuses on adjusting the piezoresistive
nanolayer compositions to pursue high GFs, yet few strategies were
developed to customize the linear working windows23,30,35,47,62. In this
work, the linear working windows of our Mn sensors can be tuned
without sacrificing their ultrahigh strain sensitivity (GF > 1000).
Third, compared with the state-of-the-art works in Table 1, our edge
sensor module showed advances in terms of versatile integration
method. As mentioned by multiple important review articles29,69,73,74,

an urgent challenge in wearable sensors is to enable efficient trans-
mission of large amounts of sensor data followed by in-sensor
machine learning with power-efficient local computing. Multi-
disciplinary efforts are required to address this challenge by advan-
cing hardware/software development and optimizing the sensor/
circuit interfaces. In this work, our edge sensor module was carefully
designed to achieve full-body motion monitoring coupled with edge
data processing and in-sensor machine learning, which has not been
reported before. We believe that the integration method (i.e., wear-
able/stretchable sensors with edge computing chip(s)) demon-
strated in this work is highly versatile and can benefit the advances in
other fields, including wearable performance devices in sports and
underwater soft robots.

Methods
Materials
Lithium fluoride (LiF, Sigma-Aldrich, BioUltra, ≥99.0%), hydrochloric
acid (HCl, Sigma-Aldrich, ACS reagent, 37%), Ti3AlC2 MAX powders
(MAX, Tongrun Info Technology Co. Ltd, China), single-walled carbon
nanotubes (SWNTs, Timesnano Co. Ltd, China), sodium dodecyl sul-
fate (SDS, Sigma-Aldrich, >99.9%), poly(vinyl alcohol) (PVA) (Mw

67,000, Sigma-Aldrich), ethanol (Thermo Fisher, >99.5%), and DCM
(J.T. Baker; 99.9%) were used as received without further purification.
Biaxial PS shrink films were purchased from Grafix. Thermally
responsive shrink films (with uniaxial contraction mode) were pro-
duced by EVERGREEN SCIENTIFICS. VHBTM Tape 4910 (1 inch× 36
yards) was purchased from 3M. Silver paste was purchased from Ted
Pella Inc. Commercial standard resistors were purchased from TELE-
SKY. Deionized (DI) water (18.2MΩ) was obtained from aMilli-Q water
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purification system (Merck Millipore) and used as the water source
throughout the work.

Preparation of Ti3C2Tx MXene nanosheets
Ti3C2TxMXenenanosheetswereprepared according to the literature75.
1.0 g of LiF was added to 6.0M HCl solution (20mL) under vigorous
stirring. After the dissolution of LiF, 1.0 g of Ti3AlC2 MAX powder was
slowly added into the HF-containing solution. Themixture was kept at
35 °C for 24 h. Afterward, the solid residue was washed with DI water
several times until the pH value increased to ca. 7.0. Subsequently, the
washed residue was added into 100mL of DI water, ultrasonicated for
1 h, and centrifuged at 1308 g for 30min. The supernatant was col-
lected as the final suspension of Ti3C2Tx MXene nanosheets with the
concentration of ca. 5mgmL–1.

Preparation of SWNT dispersion
The SWNT dispersion was obtained by adding the SWNT powders into
the SDS solution (at the SDS concentration of 2mgmL–1) at the mass
ratio of SWNT:SDS = 1:20. Then, themixture was ultrasonicated for 2 h
by a probe sonicator, and the concentration of the final SWNT dis-
persion was about 0.1mgmL–1.

Calculation of dimension contraction of uniaxial shrink films
A uniaxial shrink film was cut into multiple rectangle-shaped pieces
followed by thermal contraction in an oven at 100 °C. The dimensions
of the uniaxial shrink film before and after thermal contraction were
quantified by taking photographs and sampling their gray-scale line
profiles using ImageJ. The dimension contraction of a uniaxial shrink
film was calculated by Eq. 9,

Dimension contraction �ð Þ= 1� Dimension after thermal contraction
Dimension before thermal contraction

ð9Þ

Fabrication of freestanding Mp nanolayers
Two dispersions of SWNTs and MXene nanosheets were mixed at
different ratios, and 5 wt.% of PVA was then added into the
SWNT–MXene dispersions. The as-prepared SWNT–MXene–PVA dis-
persions were next deposited onto PVDF membranes (0.22 µm pore,
Merck Millipore) through vacuum-assisted filtration systems. To
remove SDS residues, the filtered SWNT–MXene–PVA thin films
(abbreviated as ps-MXene nanolayers) were rinsed with excessive DI
water. Afterward, freestanding ps-MXene nanolayers were detached
from the PVDF membranes by immersing them in ethanol. The planar
ps-MXene nanolayers were categorized and abbreviated as Mp

nanolayers.

Fabrication of freestanding Mw nanolayers
A uniaxial shrink film was cut into multiple rectangle-shaped pieces
(4 × 8 cm2), washed with ethanol, and dried under N2 flow. The cut
shrink films were next treated with oxygen plasma for 2min to
enhance the hydrophilic interactions between PS substrates and Mp

nanolayers76. Afterward, the Mp nanolayers were carefully transferred
onto the plasma-treated uniaxial shrink films followed by overnight
drying. The Mp nanolayer-coated shrink films were then heated in an
oven at 100 °C for 120 s to induce uniaxial thermal contraction. By
harnessing surface instability during thermal contraction, the Mp

nanolayers were deformed into wrinkle-like microtextures (abbre-
viated as Mw nanolayers). The shrunk samples were then immersed in
DCM to dissolve the PS substrates to obtain freestanding Mw nano-
layers (see SEM image in Fig. 1b), which were sequentially rinsed with
DCM, acetone, and ethanol. TheMw nanolayers were stored in ethanol.Ta
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Fabrication of freestanding Mp-w-p nanolayers
A uniaxial shrink film was cut into multiple rectangle-shaped pieces
(4 × 8 cm2), washed with ethanol, and dried under N2 flow. The cut
shrink films were next treated with oxygen plasma for 2min to
enhance the hydrophilic interactions between PS substrates and Mp

nanolayers. Afterward, the Mp nanolayers were carefully transferred
onto the plasma-treated shrink films followed by overnight drying.
Then, the two ends of the uniaxial shrink films were fixed by adhering
thin glasses at their backside (see schematic illustration in Fig. 1a). The
Mpnanolayer-coated shrinkfilmswere thenheated in anoven at 100 °C
for 120 s to induce uniaxial thermal contraction. By harnessing surface
instability during thermal contraction, the Mp nanolayers were
deformed into the Mn nanolayers with wrinkle-like microtextures
localized only in the middle region (abbreviated as Mp-w-p nanolayer).
The shrunk samples were then immersed in DCM to dissolve the PS
substrates to obtain freestandingMp-w-p nanolayers (see SEM image in
Fig. 1b). It is worth to note that theMp-w-p nanolayers were attached on
PS shrink films, and the glass slides were adhered at the backside of
shrink film. In other words, the texturedMp-w-p nanolayer and the glass
slides were attached to the two sides of a shrink film (see Supple-
mentary Fig. 10). After theMp-w-p-coated PS samples were immersed in
a DCM bath, the middle PS shrink film was dissolved, and the Mp-w-p

nanolayers were detached and became freestanding. The freestanding
Mp-w-p nanolayers were sequentially rinsed with DCM, acetone, and
ethanol. The Mp-w-p nanolayers were stored in ethanol.

Fabrication of freestanding Mw-p-w nanolayers
A uniaxial shrink film was cut into multiple rectangle-shaped pieces
(4 × 8 cm2), washed with ethanol, and dried under N2 flow. The cut
shrink films were next treated with oxygen plasma for 2min to
enhance the hydrophilic interactions between PS substrates and Mp

nanolayers. Afterward, the Mp nanolayers were carefully transferred
onto the plasma-treated shrink films followed by overnight drying.
Then, the middle sections of the uniaxial shrink films were fixed by
adhering thin glasses at their backside (see schematic illustration in
Fig. 1a). The ps-MXene-coated PS device was then heated in an oven at
100 °C for 120 s to induce uniaxial thermal contraction. By harnessing
surface instability during thermal contraction, the Mp nanolayer was
deformed into the Mn nanolayers with wrinkle-like microtextures
localized only in the edge regions (abbreviated as Mw-p-w nanolayer).
The shrunk samples were then immersed in DCM to dissolve the PS
substrates to obtain freestandingMp-w-p nanolayers (see SEM image in
Fig. 1b). It is worth to note that theMw-p-w nanolayers were attached on
PS shrink films, and the glass slides were adhered at the backside of
shrink film. In other words, the texturedMw-p-wnanolayer and the glass
slides were attached to the two sides of a shrink film (see Supple-
mentary Fig. 10). After theMw-p-w-coated PS samples were immersed in
a DCM bath, the middle PS shrink film was dissolved, and the Mp-w-p

nanolayers were detached and became freestanding. The freestanding
Mw-p-w nanolayers were sequentially rinsed with DCM, acetone, and
ethanol. The Mw-p-w nanolayers were stored in ethanol.

Finite element analysis (FEA) simulation
The 3DmodelsofMp,Mw,Mp-w-p, andMw-p-wmicrostructureswere built
by using SolidWorks 2018, and their surface characteristics were
modelled by the Freeform feature. The FEA models of Mp, Mw, Mp-w-p,
and Mw-p-w nanolayers were further built by the Static Structural
module of ANSYS Workbench 19.0 (see Supplementary Fig. 39). The
simulation parameters for ps-MXene nanolayers were set as follows:
Young’s modulus ~1.7 GPa, Poisson’s ratio 0.227, and mass density
1.25 g cm–3. Cartesiancoordinatewas chosen for themeshmethod, and
the element size was set to be 100 µm. The FEA simulation was con-
ducted as shown in Supplementary Fig. 40, where the left boundary of
the 3D model was fixed, while the right boundary was set to be
movable along x and y directions. Uniaxial stretching was simulated by

moving the right boundary, and the equivalent elastic strains and the
overall deformation were recorded.

Fabrication of Mp, Mw, Mp-w-p, and Mw-p-w strain sensors (Mn

sensors)
The freestandingMp,Mw,Mp-w-p, andMw-p-w nanolayers in ethanol were
carefully transferred onto VHBTM tapes followed by overnight drying.
Copper wires were connected to the two ends of the Mn nanolayers,
and silver pastewas appliedbetweenps-MXenenanolayers and copper
wires to ensure good electrical contacts. The resistance profiles ofMp,
Mw, Mp-w-p, and Mw-p-w strain sensors were monitored by Industrial
Multimeters (EX503).

Calculation of crack-to-width ratios (φ) and crack densities (ρ)
of Mn sensors
The crack-to-width ratios (φ) and crack densities (ρ) ofMn sensor were
investigated via in situ SEM. The definitions ofφ and ρ are described in
Eqs. 10 and 11, respectively,

φ=
max Lcrack

� �

W
ð10Þ

ρ=
PðLcrack Þ

A
ð11Þ

where max Lcrack
� �

is the length of the longest surface crack,
PðLcrack Þ

is the cumulative length of all surface cracks, and A andW are the area
and width of a Mn nanolayer, respectively.

Circuit design of a wireless sensor module
The equivalent circuit of the wireless sensor module is described in
Fig. 4g. The wireless sensor module was designed with seven data
collection channels, which consisted of seven Mn sensors (including
oneMp, twoMp-w-p, twoMw, and twoMw-p-w sensors), an ADC (AD7606,
Risym), a MCU (MCU-PCA9658, DeXin Electronics), and a Bluetooth
module (HC-06, XinTaiWei Electronics). Each Mn sensor was con-
nected to a standard resistor (100 kΩ) in series. By applying a constant
voltageof 5.0 V, theADCunitmeasured the voltage outputs (Vi

s) in real
time, which were derived in Eq. 5. Afterward, the multi-channeled
voltage signals were processed by MCU, and sent out by Bluetooth,

Circuit optimization of a wireless sensor module
First, to achieve high sensitivity of wireless sensor module, a high-
resolution 16-bit ADC (AD7606, Risym)was adopted. Second, standard
resistors were used as the regulator to enable high measurement
accuracy with low wireless transmission errors, which were calculated
by following Eq. 12,

Wireless Transmission Error =
∣Rinput � Routput ∣

Rinput
ð12Þ

whereRinput is the resistance value of aMn sensormeasured directly by
a digital multimeter, and Routput is the output resistance value of a Mn

sensor wirelessly transmitted and converted from the ADC-recorded
voltage value.

In thiswork,wemeasuredwireless transmission error by using the
Mn sensors under different strains. As shown in Supplementary Fig. 32,
with 100 kΩ standard resistors, the wireless sensor module exhibited
low and strain-stable transmission errors <4%. In the otherwords, aMw-

p-w sensor under 48% strain (with a 39.1 kΩ resistance) was read as
37.7 kΩ after wireless data transmission, showing a transmission error
of 3.6%. On the other hand, with 5 kΩ standard resistors, the wireless
sensor module exhibited higher and strain-dependent transmission
errors (the average error >20%). For instance, a Mw-p-w sensor under
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48% strain (with a 39.1 kΩ resistance) was read as 13.3 kΩ after wireless
data transmission, showing a transmission error of 65%.

On the other hand, to simultaneously record the signals of
multipleMn sensors, the execute codes were programmed into MCU
(the codes were provided in GitHub: https://github.com/jiali1025/
Wearable-MXene-Sensors-with-In-Sensor-Machine-Learning-for-Full-
Body-Avatar-Reconstruction).

Power consumption of a wireless sensor module
Thepower consumption (P) of thewireless sensormodule is calculated
based on Eqs. 13 and 14

1
Rmodule

=
1

RMp
+Rs

+
2

RMw
+Rs

+
2

RMp�w�p
+Rs

+
2

RMw�p�w
+Rs

ð13Þ

P =
V 2

Rmodule
+PADC +PMCU +PBLE ð14Þ

where Rs is the resistance of the standard resistor (i.e., 100 kΩ), and
RMp

, RMp�w�p
, RMw

, and RMw�p�w
are the resistances ofMp,Mp-w-p,Mw, and

Mw-p-w sensors, respectively; Rmodule is the resistance of the wireless
sensor module,PADC , PMCU , andPBLE are the power consumptions of
ADC (ca. 5mW), MCU (ca. 5mW), and Bluetooth units (ca. 20mW),
respectively. V is the applied voltage (i.e., 5.0V).

Circuit design of an edge sensor module
As shown in Supplementary Fig. 34, sevenMn sensors were integrated
with an ADC unit and a ML chip (ARDUINO, Element14 Pte Ltd) in
series. The equivalent circuit is illustrated in Fig. 5a. Basically, the ADC
unit collected multi-channeled Mn sensor data and send them to the
ML chip. Then, the ML model (which was trained offline) was able to
process theMn sensor data followed by the determination of full-body
avatar joint locations. The generated avatar joint locations were then
transmitted by using the Bluetooth chip integrated in theML chip. The
execute codes were programmed into the ML chip (the codes were
provided in GitHub: https://github.com/jiali1025/Wearable-MXene-
Sensors-with-In-Sensor-Machine-Learning-for-Full-Body-Avatar-
Reconstruction).

Power consumption of an edge sensor module
The power consumption (P) of the edge sensor module is calculated
based on Eqs. 15 and 16

P =
V

Rmodule
+ PADC +PMLChip ð15Þ

PMLChip =V � IMLChip �
1477

60000
ð16Þ

whereRmodule is the resistanceof the edge sensormodule calculated by
Eq. 13, PADC is the power values of ADC (ca. 5mW), and V is the applied
voltage (i.e., 5 V), IChip is the current required for the ML chip (the
average current dissipation is 21.5mA). For the ML chip, it required
1,477 regressions for 1min avatar motion reconstruction, and each
regression took about 1ms.

Characterization
XRD analyses were conducted using an X-ray diffractometer (Bruker,
D8 Advance X-ray Powder Diffractometer, Cu Kα (λ = 0.154 radiation))
at a scan rate of 4°min–1. The as-prepared MXene nanosheets were
characterized by using a high-resolution transmission electron
microscopy (HRTEM, JEOL 2010F). The surface morphologies of Mp,
Mw, Mp-w-p, and Mw-p-w nanolayers were characterized by using a SEM
(FEI Quanta 600) and a field emission SEM (JEOL-JSM-6610LV)

operating at 15.0 kV. Surface roughness of Mp, Mw, Mp-w-p, and Mw-p-w

nanolayers was measured by AFM (Model: Bruker Dimension ICON).
The characteristic crack lengths and the crack densities ofMp,Mw,Mp-

w-p, and Mw-p-w nanolayers were quantified by using ImageJ. Fatigue
tests were performed on the Mw strain sensor for 2000 cycles under
repeated uniaxial strains, which were performed on a tensile tester
(Instron 5543, Instron, USA) with a 500N load cell.

Data availability
The data generated in this study are provided in the Supplementary
Information/Source Data file. Supporting files of Supplementary
Tables 2–6 generated in this study have been deposited in the
public GitHub (https://github.com/Haitao008/Supporting-Tables) and
Zenodo77 (https://doi.org/10.5281/zenodo.7012006) without any
restrictions. Source data are provided with this paper.

Code availability
The Pythoncode to implement themachine learning tasks in this study
have been deposited in the public GitHub (https://github.com/
jiali1025/Wearable-MXene-Sensors-with-In-Sensor-Machine-Learning-
for-Full-Body-Avatar-Reconstruction) and Zenodo77 (https://doi.org/
10.5281/zenodo.7012006) without any restrictions.
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