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Abstract

Background: The progression from Barrett's metaplasia to adenocarcinoma is associated with the
acquirement of an apoptosis-resistant phenotype. The bile acid deoxycholate (DCA) has been
proposed to play an important role in the development of esophageal adenocarcinoma, but the
precise molecular mechanisms remain undefined. The aim of this study was to investigate DCA-
stimulated COX-2 signaling pathways and their possible contribution to deregulated cell survival
and apoptosis in esophageal adenocarcinoma cells.

Methods: Following exposure of SKGT-4 cells to DCA, protein levels of COX-2, MAPK and PARP
were examined by immunoblotting. AP-| activity was assessed by mobility shift assay. DCA-induced
toxicity was assessed by DNA fragmentation and MTT assay.

Results: DCA induced persistent activation of the AP-I transcription factor with Fra-1 and JunB
identified as the predominant components of the DCA-induced AP-I complex. DCA activated Fra-
| via the Erkl/2- and p38 MAPK while Erkl/2 is upstream of JunB. Moreover, DCA stimulation
mediated inhibition of proliferation with concomitant low levels of caspase-3-dependent PARP
cleavage and DNA fragmentation. Induction of the anti-apoptotic protein COX-2 by DCA, via
MAPK/AP-| pathway appeared to balance the DCA mediated activation of pro-apoptotic markers
such as PARP cleavage and DNA fragmentation. Both of these markers were increased upon COX-
2 suppression by aspirin pretreatment prior to DCA exposure.

Conclusion: DCA regulates both apoptosis and COX-2-regulated cell survival in esophageal cells
suggesting that the balance between these two opposing signals may determine the transformation
potential of DCA as a component of the refluxate.

Background and fat-soluble vitamins [1,2]. Typical Western diets, rich
Bile acids are normal constituents of the gastro-intestinal ~ in fat, are associated with increased incidence of gastro-
tract where they act as trophic factors for the gut epithe-  intestinal cancer [3]. Dietary fat influences bile acid secre-

lium and as detergents for the absorption of cholesterol  tion as well as the composition of gut bacteria, which in
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turn determines the production levels of secondary bile
acids [4-7].

While bile acids such as DCA cannot induce tumors, they
are generally believed to be tumor promoters. The exact
mechanism of their tumor promoting activity is uncertain
but it is thought to involve alterations in cellular signaling
cascades including activation of protein kinase C and gene
expression systems [8]. Bile acids are known mediators of
cellular stress [9] and have been proposed to induce apop-
tosis resulting in compensatory hyperproliferation, allow-
ing for selection of apoptosis-resistant cells [10,11]. Bile
acids are also known to induce survival mechanisms in
parallel with apoptotic pathways in hepatocytes and
colonic cells [12,13].

Over the past two decades there has been a significant
increase in the incidence of Barrett's esophagus [14], a
premalignant lesion leading to esophageal adenocarci-
noma. This condition characterized by small intestinal
metaplasia of esophageal epithelium is strongly associ-
ated with gastroesophageal reflux disease (GERD). Reflux
of duodenal contents, of which bile acids are a major con-
stituent, has been consistently associated with increased
severity of both esophagitis and Barrett's esophagus
[15,16]. Barrett's metaplasia has been reported in patients
with bile reflux without any pathological acid reflux, as
well as in patients on acid suppression therapy, highlight-
ing the importance of refluxate components other than
acid in esophageal cancer progression [17,18]. The con-
centration of bile acids, in particular unconjugated bile
acids, in the refluxate of patients with GERD shows a
strong direct correlation with the degree of esophageal
mucosal damage [16,18]. Compelling evidence for the
involvement of bile acids in Barrett's esophagus has also
emerged from animal studies, where reflux leads to
esophageal inflammation, increased mucosal thickening
[19] and development of malignancy. These epidemiolog-
ical and clinical studies clearly establish a link between
bile acids in the refluxate and esophageal malignancies.
However, the precise molecular mechanisms remain
unexplored.

The transcription factor AP-1 is activated by a variety of
stimuli and can have both anti-apoptotic and pro-apop-
totic functions depending on the cellular context [20]. A
correlation between AP-1 and tumorigenesis has been
suggested. AP-1 shows increased activity in transformed
cell lines [21] and its transactivation is required for tumor
promotion in vivo [22]. The AP-1 complex is composed of
dimers between the Fos (c-Fos, FosB, Fra-1 and Fra-2) and
the Jun (c-Jun, JunB, and JunD) family members. Fos and
Jun proteins can form heterodimers while only the mem-
bers of the Jun family are capable of homodimerisation.
Fos/Jun heterodimers are more stable than Jun homodim-
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ers [23]. AP-1 dimer composition is critical in determin-
ing its functional activity and consequently in the
induction of specific target genes [20,24,25]. Upstream
signalling pathways, mainly mitogen-activated protein
kinases(MAPKs), regulate the transcriptional activity and
half-life of proteins of the Fos and Jun families giving rise
to AP-1 dimers of different transcriptional specificity.
Alterations in MAPK signaling have been correlated with
malignant progression in humans [26,27]. The MAPK
family includes three subfamilies: Erk1/2, p38 and JNK,
all of which have been shown to be activated in response
to DCA in several cell types including colonic cells, hepa-
tocytes and cholangiocarcinoma cells [11,28].

Cyclooxygenase-2 (COX-2), the rate-limiting enzyme in
aracidonic acid metabolism, has been correlated with
resistance to apoptosis, inflammation and cancer in sev-
eral cell types [13,19,29]. COX-2 is upregulated in Bar-
rett's esophagus, esophageal cancer and in animal models
of reflux [19,30,31]. COX2 expression can be regulated by
MAPKs post-transcriptionally through mRNA stabiliza-
tion or via activation of AP-1 complexes [32]. Recently,
Song et al. [33] have demonstrated that unconjugated bile
acids such as deoxycholate induced CREB- and AP-1-
dependent COX-2 expression in esophageal adenocarci-
noma cells and in vivo rat model of bile reflux through
ROS-mediated activation of PI3K/AKT and ERK1/2. In
addition, CREB-specific siRNA and dominant-negative
AP-1 (TAM67) blocked deoxycholate- and chenodeoxy-
cholate - induced COX-2 induction. In the present study,
we investigated the molecular mechanisms underlying
DCA stimulated COX-2 signaling pathway in esophageal
adenocarcinoma cells and their possible contribution to
deregulated cell survival and apoptosis.

Methods

Chemicals

Phorbol 12-myristrate 13-acetate (PMA), acetylsalicidic
acid, sodium deoxycholate (DCA) and ursodeoxycholate
(UDCA) were from Sigma Chemical Co. (St. Louis, MO).
PD 98059 (2'-amino-3'-methoxyflavone), SB 203580 (4-
[4'-fluorophenyl]-2 [4'-methylsulfinylphenyl]-5-[4'-pyri-
dyl] imidazole), Z-VAD-FMK (Z-Val-Ala-Asp-CH,F), Z-
DEVD-FMK (Z-Asp(OCH,)-Glu(OCH,)-Val-Asp(OCH,)-
FMK), U0126 (1,4-diamino-2,3-dicyano-1,4-bis [2-ami-
nophenylthio] butadiene), phorbol 12,13-dibutyrate
(PdBu) and anisomycin were from Calbiochem (LA Jolla,
CA). Poly(dI-dC) and T4 polynucleotide kinase were from
Amersham Biosciences (Buckinghamshire, UK).

Cell culture

The SKGT4 cell line, derived from a well-differentiated
adenocarcinoma arising in Barrett's epithelium of the dis-
tal esophagus [34] was generously provided by Dr. David
Schrump (Bethesda, MA). The gastric adenocarcinoma
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cell line AGS was from ECACC (Salisbury, UK). Both cell
lines were maintained in RPMI 1640 medium supple-
mented with 10% fetal bovine serum, 4 mM L-Glutamine,
50 units/ml penicillin and 50 pg/ml streptomycin
(GIBCO BRL, Life Technologies, Paisley, Scotland) at
37°C in a humidified atmosphere containing 5% CO,.

Electrophoretic mobility shift assay (EMSA)

Control and treated cells were harvested in ice cold phos-
phate buffered saline (PBS) and nuclear extracts were pre-
pared as described previously [35]. EMSA was performed
on nuclear extracts with a double stranded 19-mer oligo-
nucleotides containing the AP-1 binding motif, TGACTCA
(12-O-tetradecanoylphorbol-13-acetate response ele-
ment) as previously described [36]. For supershift analy-
sis, 450 ng of rabbit polyclonal antibodies against c¢-Jun,
Fra-1, and c-Fos or unlabelled oligonucleotides, as a con-
trol, were mixed with 4 pg of nuclear extract 30 minutes
prior to the binding reaction. Samples were subjected to
4% native polyacrylamide gels. Gels were dried and result-
ing AP-1 DNA binding complexes visualised by autoradi-

ography.

Affinity precipitation with biotinylated oligonucleotides
Affinity precipitation of DNA binding proteins was per-
formed with the optimal binding sequence for AP-1 (5'-
CGC TTG ATG AGT CAG CCG GAA-3') (Sigma genosys
UK) as previously described [37] with the following mod-
ifications: total protein content was standardized to 300 -
400 pg/sample using a protein assay (Bio-Rad), according
to the manufacturer's instructions. Equal protein content
during affinity precipitation was assessed on acetone-pre-
cipitated supernatants.

Total cell lysates

SKGT4 cells were stimulated and total cell lysates
obtained using 25 mM Tris-HCI, pH 7.9, 0.2% NP-40, 15
mM NaCl, 1 mM sodium fluoride, 5% glycerol (v/v), 0.05
mM EDTA, 1 mM Na;VO,and 1 mM PMSF and 10 pg leu-
peptin (Sigma) and incubating on ice for 20 minutes. Cell
nuclei and debris were eliminated by centrifugation at
10,000 x g for 10 min. The total protein content per sam-
ple was standardized to 50-100 pg as above.

Western blot analysis

Equal amounts of proteins were separated on a 10% SDS-
polyacrylamide gel and transferred onto a PVDF mem-
brane (Millipore Corp., Bedford, MA). Membranes were
incubated with specific antibodies against Erk1/2, p38
and JNK (at a dilution of 1:1000) (Santa Cruz, CA) or
their corresponding phosphorylated forms Erk1/2 (p-
Tyr204-Erk1/2), JNK (p-Thr-183/Tyr-185-JNK) (Santa
Cruz, CA) and p38 (p-Thr180/Tyr182-p38) (at a dilution
of 1:50) (New England Biolabs, Hertfordshire, UK) over-
night at 4°C. Antibodies against COX-2 (Cayman chemi-
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cals, Alexis Corp, UK) and PARP (Biosource International
UK) (at a dilution of 1:100) were also used and incubated
overnight at 4°C. Membranes were then incubated with
corresponding secondary horseradish peroxidase-conju-
gated antibodies (Dako, Bucks, UK) (at a dilution of
1:2000) for 1 h at room temperature. Specific immuno-
complexes were visualised using the ECL detection system
(Amersham Biosciences, Buckinghamshire, UK). For
sequential detection, membranes were stripped in 100
mM 2-Mercaptoethanol, 2% SDS, and 62.5 mM Tris pH
6.8 for 30-45 min at 50°C.

Cell Proliferation assay

SKGT4 cells (2.5 x 104) were plated in a flat-bottomed
micro-titre plate and incubated for 24 hr at 37°C and 5%
CO,. Cells were incubated either with increasing concen-
trations of DCA (0 - 500 uM) or over a period of 1 - 24
hr with 300 uM DCA. Following stimulation, MTT (3-
[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bro-
mide) (Promega Inc., Madison, WI.) was added and cells
were further incubated for 1 to 3 hr. Absorbance was
measured at 490 nm. Viability is expressed as the percent-
age of cells remaining in cultures treated with bile acids
relative to untreated controls.

DNA fragmentation ELISA

DCA-induced toxicity was quantified using the cell death
detection kit (Roche diagnostics, Penzberg, Germany)
according to the manufacturer's standard protocols.
Absorbance was measured at 405 nm using an ELISA plate
reader.

Results

DCA induces AP-1 DNA binding activity in oesophageal
cells

DCA regulates gene transcription through AP-1 activation
in colonic cells [28]. We examined the possible link
between DCA, AP-1 in esophageal adenocarcinoma
SKGTH4 cells, a cell line derived from a well-differentiated
adenocarcinoma arising in Barrett's epithelium of the dis-
tal esophagus [34]. DCA is present at micromolar concen-
trations (0-300 uM) in esophageal aspirates [18], doses
which have been previously shown to be optimal for DCA
signaling. SKGT4 cells were exposed to 300 uM DCA from
1 - 24 hr and then analyzed for AP-1 DNA binding activity
by EMSA. PMA treated AGS cells were used as a positive
control. DCA induces increased AP-1 DNA binding activ-
ity as compared to unstimulated cells, in a time depend-
ent manner (Figure 1A). DCA-induced AP-1 activation is
biphasic, being markedly induced after 1 hr of stimula-
tion, peaking again at 6 hr and returning to basal levels at
the later time points, 12 hr and 24 hr (Figure 1A). We have
also demonstrated a similar profile of AP-1 activation in
another esophageal adenocarcinoma line OE-33 (data not
shown).
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Fra-1 and c-Jun are members of DCA induced AP-1 Complex. SKGT4 cells were stimulated with 300 uM DCA for 6
hr (B) or the indicated times (A, C, D). Nuclear extracts (4 pg) were prepared and analyzed for AP-1 binding activity by EMSA
(A). For supershift assays the nuclear extracts were incubated for 30 min with 450 ng of antibodies against the various Jun and
Fos proteins or with unlabelled probe prior to incubation with the radiolabelled probe. Gastric adenocarcinoma cells (AGS)
treated with 50 ng/ml PMA were used as a positive control (B). Total cell lysates were prepared and standardized to 350 ug
and DNA affinity purification performed. Affinity purified proteins were resolved by SDS-PAGE and immunoblotted with anti-
Fra-1, anti-JunB or anti-c-Jun antibodies, respectively (C). Unbound proteins were immunoblotted with anti-o-tubulin as load-
ing control. Whole cell lysates were standardized to 50 pig and examined by Western blotting as in C (D). Results are repre-
sentative of at least three independent experiments.
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JunB and Fra-1 are the predominant components of DCA-
induced AP-1 complex

AP-1 dimer composition is crucial in determining the
induction of specific target genes and consequent cellular
responses. EMSA was used to determine which Jun and
Fos proteins form part of the DCA-induced AP-1 complex.
Nuclear extracts from SKGT4 cells stimulated with 300
pM DCA, were incubated with antibodies against c-Fos,
Fra-1 and c¢-Jun prior to incubation with the radiolabelled
AP-1 probe. Blocking antibodies that prevent the binding
of the corresponding transcription factor rather than caus-
ing a supershift were used [38]. The specificity of the DCA-
induced AP-1 complex was further verified by the addi-
tion of unlabeled AP-1 oligonucleotide. DCA induces
clear AP-1 DNA binding activity, which is reduced by
addition of antibodies against Fra-1 and c-Jun but not by
the anti-c-Fos antibody (Figure 1B). Addition of a pool of
all the antibodies completely abrogated the formation of
the DCA-induced AP-1 complex. These data suggest that
Fra-1 and c-Jun, but not c-Fos, are members of the DCA-
induced AP-1 complex.

To further characterize the composition of the DCA-
induced AP-1 complex, total cell lysates were prepared
from SKGT4 cells treated with 300 uM DCA for 1 - 6 hr
and used for DNA affinity precipitation assays with the
AP-1 consensus sequence (5'-CGC TTG ATG AGT CAG
CCG GAA-3'). Only active forms of the Jun and Fos pro-
teins are able to bind to this oligonucleotide and can be
therefore affinity purified and detected by Western blot
analysis with specific antibodies. For these assays, we con-
centrated on c¢-Jun and Fra-1 as suggested by EMSA and
also included JunB and JunD, as they have been shown to
respectively counteract or enhance c-Jun activity [21].
These experiments show that DCA stimulates a time
dependent increase in Fra-1, JunB and ¢-Jun DNA binding
activity (Figure 1C). No activation of JunD was observed
at any stimulation time (data not shown). DCA induces
strong Fra-1 binding activity after 1 hr, which is sustained
for at least 6 hr of stimulation. Fra-1 is detected as two
bands with distinct electrophoretic mobility: a slower
migrating, more prominent band and a fainter faster
migrating band (Figure 1C). After prolonged stimulation,
the slower species is stabilized while the faster migrating
species is no longer detected (Figure 1C). These two elec-
trophoretic mobility forms of Fra-1, which most likely
correspond to different phosphorylation states, have been
previously reported in other cell types [39]. Similarly,
DCA-induced JunB activity is clear at 1 hr and remains ele-
vated for up to 6 hr of stimulation (Figure 1C). On the
other hand, DCA induces a weak and more transient acti-
vation of c-Jun, which is maximal at 4 hr and is consist-
ently weak and even negligible at 6 hr (Figure 1C). These
data indicate that DCA induces AP-1 complexes com-
posed of Fra-1, JunB and c-Jun at early stages of stimula-
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tion, but only of Fra-1 and JunB at 6 hrs. Fos and Jun
proteins can form heterodimers while the only the mem-
bers of the Jun family can homodimerise [23]. Therefore,
the possible types of early induced complexes are c-Jun/c-
Jun, c-Jun/JunB, c-Jun/Fra-1, JunB/Fra-1 or JunB/JunB,
while only the latter two would be present at later stages.

DCA enhances the basal expression levels of Fra-1, JunB
and c-Jun proteins

Induction of AP-1 DNA binding activity can be achieved
by activation of pre-existing Fos/Jun proteins or through
induction of de novo protein expression [40]. To differen-
tiate between these two possibilities, the protein expres-
sion levels of these molecules was assessed by Western
blotting in SKGT4 cells following DCA treatment (300
puM) for 1 - 6 hr. SKGT4 cells express basal levels of Fra-1,
JunB and c-Jun (Figure 1D). The expression levels of all
three proteins are further enhanced by DCA treatment. An
increase in Fra-1 and JunB protein levels is observed
within 1 hour of stimulation and remains constant for up
to 6 hours (Figure 1D). DCA induces a lesser increase in c-
Jun protein expression as compared to Fra-1 and JunB,
which decreases by 6 hours (Figure 1D). JunB is detected
as three distinct bands while c-Jun is generally found as a
doublet. Multiple electrophoretic mobility forms of JunB
and c¢-Jun attributed to different phosphorylation status
have previously been reported [40]. The presence of basal
expression levels together with the matching kinetics of
enhanced protein expression and those of DNA binding
activity for Fra-1, JunB and c-Jun, suggest that DCA
induces AP-1 DNA binding activity through activation of
pre-existing molecules as well as either induction of de
novo protein synthesis or increased protein stability. Sus-
tained activation of AP-1 components has been associated
with oncogenic transformation [41]. As ¢-Jun is only tran-
siently activated by DCA, we concentrated on Fra-1 and
JunB in subsequent experiments.

AP-1 is induced by DCA at concentrations found in
Barrett's esophagus

Increased concentrations of bile acids (> 200 uM) associ-
ated with higher severity of disease, have been observed in
esophageal aspirates in patients with erosive esophagitis
and Barrett's esophagus [16,18]. The contribution of vari-
ous doses of DCA (0 - 500 uM) following prolonged
stimulation (6 hours) was examined on Fra-1 and JunB
DNA binding activity in SKGT4 cells using the affinity pre-
cipitation assay. DCA induces a dose dependent increase
in the DNA binding activity of Fra-1 and JunB at 6 hours
of stimulation (Figure 2). Low concentrations of DCA
stimulate a modest increase while stronger activation of
Fra-1 and JunB is detected at and above 300 uM DCA (Fig-
ure 2). These data show that strong activation of AP-1 is
achieved by DCA at the concentrations observed in vivo in
patients with Barrett's esophagus [18].
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Figure 2

AP-1 is induced by DCA at concentrations found in
Barrett's oesophagus. SKGT4 cells were treated with
DCA over a concentration range of 0 — 500 uM for 6 hr.
Total cell lysates were prepared and standardized to 350 pg.
DNA affinity purification was performed and proteins were
resolved by SDS-PAGE and immunoblotted with anti-Fra-|
or anti-JunB, respectively. Unbound proteins were immunob-
lotted with anti-a-tubulin as loading control. Results are rep-
resentative of at least three independent experiments.

DCA induces sustained activation of Erkl/2 and p38 but
not of JNK

AP-1 activation is mainly regulated by MAPKs. We there-
fore examined the ability of DCA to activate Erk1/2, p38
and JNK in SKGT4 cells using Western blot analysis with
specific antibodies that recognize the active phosphor-
ylated forms of these proteins: Erk1/2 (p-Tyr204-Erk1/2),
p38 (p-Thr180/Tyr182-p38) and JNK (p-Thr-183/Tyr-
185-JNK). The well known Erk1/2, p38 and JNK activators
phorbol 12, 13-dibutyrate (PdBu) and anisomycin
(ANIS) were respectively used as positive controls (Figure
3A-E). Time course analyses show that 300 uM DCA
induces sustained activation of Erk1/2 and p38, which are
detected as early as 15 minutes and persist for at least 6 hr
of stimulation (Figures 3A-C), while JNK is not activated
at any time tested (Figure 3E). DCA does not influence the
protein expression levels of any of these MAPKs (Figure
3A-E lower panels).

Mek1/2 and MKK3/6 are the respective upstream activa-
tors of Erkl/2 and p38 [42,43]. The PD98059 and
SB203580 compounds, known specific inhibitors of
Mek1/2 and MKK3/6 were used to verify activation of
Erk1/2 and p38 in response to DCA. SKGT4 cells were
incubated with 50 uM PD98059 or 2 uM of the SB203580
for 30 minutes prior to the addition of 300 uM DCA.
PD98059 completely abolishes basal, PdBu and DCA-
induced Erk1/2 activity at all the time points tested (Fig-
ure 3B). Similarly, the SB203580 compound inhibits the
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activation of p38 in response to DCA and to anisomycin
at all tested time points (Figure 3D). These data show that
DCA activates the MAPKs Erk1/2 and p38 without affect-
ing their protein expression levels, but it is unable to reg-
ulate JNK activation or protein expression.

DCA mediates AP-1 DNA binding through activation of
Erkl/2 and p38

The pharmacological inhibitors PD98059 and SB203580
were respectively used to corroborate the contribution of
the Raf-Mek1/2-Erk1/2 and the MKK3/6-p38 pathways in
DCA-induced DNA binding of Fra-1 and JunB. SKGT4
cells were pre-treated with 10 uM PD98059 or 2 uM
SB203580 for 30 min prior to stimulation with 300 uM
DCA for 6 hr and DNA affinity precipitation assays were
performed. Pre-treatment of SKGT4 cells with 10 uM
PD98059 impairs and diminishes DCA-induced activa-
tion of Fra-1 and JunB, respectively (Figure 3F). The
SB203580 compound completely abolishes DCA-induced
Fra-1 DNA binding while having no effect on DCA-
induced JunB DNA binding (Figure 3F). These data indi-
cate that both Raf-Mek1/2-Erk1/2 and MKK3/6-p38 are
involved in DCA-induced Fra-1 activation, while only Raf-
Mek1/2-Erk1/2 is upstream of JunB activation.

DCA induces a decrease in cell proliferation that is
accompanied by low levels of apoptosis

Bile acids, in particular DCA, inhibit proliferation and are
potent inducers of apoptosis in several cell types includ-
ing, hepatocytes and colonic cells [10,13,28]. Activation
of AP-1 can have both anti-apoptotic and pro-apoptotic
functions depending on the cellular context [20]. Since
DCA induces sustained (6 hour) activation of AP-1 in
SKGT4 cells (Figure 1A), its possible contribution to
deregulated cell survival and apoptosis was examined.
SKGT4 cells were stimulated with 300 uM DCA or 300 uM
ursodeoxycholic acid (UDCA) for 0 - 6 hr. We have previ-
ously shown that UDCA, in contrast to DCA, does not
induce AP-1 transcription factor activation in colon cancer
cells. In fact, it inhibits interleukin-1 beta and deoxycholic
acid-induced activation of NF-kappaB and AP-1 in these
cells [44]. Cell proliferation was assessed using the MTT
assay. DCA induces a dose and time dependent decrease
in cellular proliferation, which is initially observed within
the first hour of treatment, remains at similar levels up to
8 hr and is more pronounced at 12 and 24 hr (Figure 4A).
This decrease is clear at 300 M DCA and higher concen-
trations, being statistically significant (p < 0.05) at 400 -
500 uM (Figure 4B). Dramatic morphological changes
indicative of apoptosis are also observed at 6 hr of DCA
treatment at concentrations in excess of 300 uM (data not
shown). In comparison, cells stimulated with UDCA
show identical proliferation patterns and morphology as
compared to untreated cells at all times and concentra-
tions tested.
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Figure 3 (see previous page)

DCA induces sustained activation of Erkl/2 and p38 but not of JNK. SKGT-4 cells were treated with 300 uM DCA
for indicated times. Treatment with 50 ng/ml PdBu for 30 min (A, B) or 10 pg/ml anisomycin (ANIS) for 6 hr (C, D, E) were
used as positive controls for Erk or p38 and JNK activation, respectively. In panel C the first two lanes correspond to unstim-
ulated and anisomycin stimulated C-6 glioma cells (positive control). Where indicated, cells were incubated in the presence or
absence of 50 uM PD98059 (B, F) or 2 uM SB203580 (D, F) for 30 min prior to stimulation. Total cellular proteins were stand-
ardized to 50 pg and assessed by Western blotting using antibodies specific for phospho-Erk|/2 and total Erk1/2 (A, B); phos-
pho-p38 and total p38 (C, D); or phospho-JNK and total JNK (E). Total cell lysates were prepared and standardized to 350 pg.
DNA affinity purified proteins were resolved by SDS-PAGE and immunoblotted with anti-Fra-| or anti-JunB, respectively (F).
Unbound proteins were immunoblotted with anti-o-tubulin as loading control. Results are representative of at least three

independent experiments.

DNA fragmentation and PARP cleavage, two of the hall-
marks of apoptosis, were respectively assessed by quanti-
fying cytoplasmic histone-associated DNA fragments
(mono and oligonucleosomes) by ELISA and Western
blotting using a specific antibody that recognizes the 85
kDa cleaved PARP fragment. DCA dose response and
kinetic studies showed that a low level of PARP cleavage
was detected at 6 hr post DCA treatment and persisted for
up to 24 hr (Figure 4C). This effect is dose-dependent,
being observed at 300 - 500 uM DCA but not at lower
concentrations (Figure 4D). Similarly, DCA induced a 1.5-
fold increase in DNA fragmentation after 6 hr, which
increased after 24 hr (3-fold) (Figure 4E). DNA fragmen-
tation with low concentrations of DCA (100 - 200 uM)
was similar to resting cells, while increasing concentra-
tions (300 - 500 puM) resulted in a steady rise in DNA
damage (Figure 4F). Taken together, these data show that
DCA induces a reduction in cell proliferation, which is
accompanied by low levels of apoptosis. These effects are
sustained and dose dependent, being observed at high
DCA concentrations similar to those found in patients
with erosive esophagitis and Barrett's esophagus [16,18].

DCA-induced PARP cleavage is caspase-dependent

PARP cleavage can occur via caspase-dependent and inde-
pendent mechanisms [45]. The broad-spectrum caspase
inhibitor, Z-Val-Ala-Asp-CH,F (Z-VAD-FMK), and the
specific caspase-3 inhibitor, Z-Asp(OCH,)-Glu(OCHj,)-
Val-Asp(OCH;)-FMK (Z-DEVD-FMK), were employed to
assess the role of caspases in DCA-induced PARP cleavage.
SKGT4 cells were pretreated for 1 hr with 50 uM of either
Z-VAD-FMK or Z-DEVD-FMK and stimulated with 400
puM DCA, a concentration which induced significant levels
of PARP cleavage (Figure 4) for 6 hr. Unstimulated SKGT4
cells showed negligible levels of PARP cleavage and DNA
fragmentation. Both Z-VAD-FMK and Z-DEVD-FMK com-
pletely abolished DCA-induced PARP cleavage while par-
tially inhibiting DNA fragmentation (Figures 5A and 5B).
These data indicate that DCA-induced PARP cleavage is
caspase-3 dependent, while DNA fragmentation is only
partially dependent on this pathway.

DCA-induces COX-2 expression via Erkl/2 and p38-
dependent mechanisms

Interestingly, the levels of DCA-induced PARP-cleavage
plateau and do not increase progressively. This suggests
that a compensatory survival mechanism might be con-
comitantly regulated by DCA. Enhanced protein expres-
sion of COX-2 has been correlated with cellular
proliferation and resistance to apoptosis in various cell
types [13,19]. Therefore the induction of COX-2 protein
expression by DCA in SKGT4 cells was examined using
Western blot analysis. COX-2 is not expressed in unstim-
ulated cells, but it is readily induced after 4 hr of DCA
stimulation (Figure 6A). Maximal induction is achieved at
6 hours with 300 uM DCA (Figure 6A). In agreement with
previous reports, COX-1 protein is not constitutively
expressed in this cell line.

COX-2 protein expression can be regulated at transcrip-
tional and posttranscriptional levels by MAPKs and by AP-
1 through binding to the CREB site in the COX-2 gene
promoter in various cell types [29,32]. Since DCA induces
AP-1 activity through the activation of Erk1/2 and p38
(Figure 6B), we explored the involvement of these path-
ways in the regulation of COX-2 protein expression in our
system. SKGT4 cells were pre-treated with 10 puM
PD98059, 2 uM SB203580 or 1 uM Go6976 for 30 min-
utes prior to addition of 300 uM DCA for 6 hr. (GO6976
was used as a positive control in this experiment as it has
previously been shown to inhibit COX-2 expression [46].
The induction of COX-2 protein expression in response to
DCA was strongly inhibited by all three compounds (Fig-
ure 6B). These results demonstrate that the Erk1/2 and
p38 pathways are not only responsible for DCA-induced
Fra-1 and JunB activation but also for induction of COX-
2 protein expression.

DCA-induced COX2 regulates apoptotic markers in
SKGT4 cells

The kinetics of COX-2 protein induction in response to
DCA correlates with those of PARP cleavage and DNA
fragmentation (Figures 4 and 6A). To examine the possi-
ble anti-apoptotic role of COX-2 in our system, the induc-
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Figure 4 (see previous page)

DCA induces PARP cleavage and DNA fragmentation with reduced cell proliferation in SKGT4 cells. SKGT4
cells were incubated with 300 uM DCA at the indicated time intervals (A) and at DCA concentrations ranging from 0 — 500
1M for 6 hours (B). In panels A and B, cellular proliferation was assessed using the MTT assay as described in experimental
procedures. Results are expressed as percentage of proliferating cells relative to untreated controls. Mean + SD. To investigate
DCA induced PARP cleavage (C,), SKGT4 cells were stimulated with 300 uM DCA for the indicated times or with 0 — 500 uM
DCA for 6 hr (D). | uM Staurosporine (ST) was used as positive control. In panels C and D, total cell lysates were standard-
ized to 50 g as described in experimental procedures and assessed by Western blotting using an antibody directed against
cleaved PARP to detect apoptosis. Anti-actin antibody used as loading control. SKGT4 cell lysates were assessed for DNA frag-
mentation as described in Methods (E, F). Results are presented as fold induction of DNA fragmentation relative to unstimu-
lated control. Mean * SD.

tion of COX-2 expression was inhibited wusing ing a potential anti-apoptotic role of COX-2 in this sys-
acetylsalicylic acid (ASA) and the levels of apoptosis  tem.
assessed. Treatment of SKGT4 cells with 5 mM ASA for 30
min prior to the addition of 400 uM DCA resulted in a  Discussion
dramatic reduction in COX-2 expression in response to  Bile acids are major constituents of the gastroesophageal
DCA (Figure 6C). DCA induced clear PARP cleavage in  refluxate and are regarded to have an important role in
comparison to untreated cells, an effect that was enhanced =~ malignant development in the esophagus. [15,17]. A sig-
by pre-treatment with ASA (Figure 6D). Levels of DNA  nificant proportion of the bile acids in patients with
fragmentation were similar in unstimulated cells and cells  extensive mucosal injury was composed of the dehydrox-
treated with ASA alone. DCA induced a four-fold increase  ylated taurodeoxycholic acid and the unconjugated cholic
in DNA fragmentation that was further increased by pre-  and deoxycholic acids. Increased concentrations of bile
treatment with ASA (Figure G6E). These data show that  acids (> 200 uM) have been observed in esophageal aspi-
inhibition of COX-2 expression readily enhances the  rates in patients with erosive esophagitis and Barrett's
apoptotic markers induced upon DCA exposure, confirm-  esophagus. [15,16,18]. The exact molecular mechanism
by which bile acids contribute to this process has not been
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DCA-Induced PARP cleavage and DNA fragmentation is Caspase Dependent. SKGT4 cells were treated with 50
uM Z-VAD-FMK or 50 uM Z-DEVD-FMK for | hr prior to the addition of 400 uM DCA for 6 hr. Whole cell lysates were
standardized to 50 g as described in experimental procedures. PARP cleavage was assessed by immunoblotting with an anti-
PARP antibody followed by anti-o-tubulin as loading control (A). DNA fragmentation was assessed by ELISA (B). Results are
given as fold induction of DNA fragmentation relative to unstimulated cells. Mean * SD. Results are representative of at least
two independent experiments.
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Figure 6 (see previous page)

DCA regulates SKGT4 cell survival through induction of COX-2 expression via Erkl/2 and p38-dependent
pathways. SKGT4 cells were stimulated with 300 uM DCA for 1-6 hr and analyzed for COX-2 expression by Western blot
analysis (A). SKGT4 cells were treated with 10 uM PD98059, 2 uM SB203580 or | uM GO6976 for 30 min prior to the addi-
tion of 300 uM DCA for 6 hr followed by analysis of COX-2 induction (B). SKGT4 cells were treated with 5 mM acetylsalicylic
acid (ASA) for 30 min preceding stimulation with 300 uM (C) or 400 uM (D) DCA for 6 hr. In panels A-D, total cell lysates
were assessed by Western blotting using either anti-COX-2 or anti-PARP antibodies. anti-actin or anti-a.-tubulin antibody used
as loading control. In panels C and D, COX-2 expression and PARP cleavage were assessed by densitometry and normalised
against actin or o-tubulin, respectively. Fold increases in COX-2 expression and PARP cleavage are given relative to resting
cells. ELISA was utilized to assess DNA fragmentation (E). Results are given as fold induction of DNA fragmentation relative to
unstimulated cells. Results are representative of three independent experiments.

defined. Alterations in gene expression underlie the abil-
ity of deoxycholate to deregulate biochemical processes
and control the fate of the cells. The use of in vitro cell cul-
ture model as in our study may be at variance with how
cancer behaves in humans. However, the analysis of genes
and molecules that are important in cancer development
in cancer cell lines is of importance to our understanding
of our interpretation of the in vivo situation.

The purpose of this study was to investigate the mecha-
nisms by which deoxycholate stimulates COX-2 and AP-1
expression and the role of COX-2 in the mediation of pro-
apoptotic and anti-apoptotic mechanisms. Using electro-
phoretic mobility shift assays, we demonstrated that DCA
induced persistent AP-1 DNA binding activity. AP-1 acti-
vation results from dimerisation of either pre-existing or
newly synthesised phosphorylated proteins of the Fos and
Jun families. Fra-1 and JunB are the predominant compo-
nents of the sustained AP-1 complex, while c-Jun is only
transiently induced. Interestingly, this AP-1 dimer compo-
sition is distinct from that induced by DCA in colonic epi-
thelial cells where the induced complex contains JunD,
Fra-1 and c-Fos [47]. DCA-induced activation of Fra-1 was
dependent on both the Mek1/2-Erk1/2 and p38 path-
ways, while JunB activation was mediated solely through
the Mek1/2-Erk1/2 cascade in esophageal cells. It has pre-
viously been demonstrated that levels of Erk1/2 activity
are greater in Barrett's esophagus than in GERD [48]. In
addition, duration of Erk1/2 activation determines com-
position and transcriptional output of AP-1 [49]. Our data
are in agreement with previous reports showing that sus-
tained activation of Erk1/2 results in Fra-1 and JunB acti-
vation with negligible induction of c-Jun [39].

The precise mechanisms utilized by duodenal reflux to
elicit esophageal damage and promote tumorigenesis are
uncertain. Accumulating evidence suggests that COX-2 is
involved in the development of Barrett's esophagus and
esophageal adenocarcinoma. COX-2 is frequently overex-
pressed in esophageal adenocarcinoma cells and tissues.
[19,30,31]. Song et al. [33] reported that the unconju-
gated bile acids chenodoxycholate and deoxycholate

potently upregulate ROS production in the esophagus,
leading to activation of the PI3K and ERK1/2 signaling
pathways, with a subsequent CREB- and AP-1-dependent
COX-2 expression. Here, we demonstrate a significant role
for COX-2 in mediating survival in these cells, which is
dose and time dependent. Exposure to DCA results in
inhibition of proliferation with concomitant induction of
low levels of apoptosis. Furthermore, DCA induces a
dose- and time-dependent increase in COX-2 expression
that parallels with PARP cleavage and DNA fragmenta-
tion. DCA-induced apoptosis is both dose- and time-
dependent and requires caspase-3 activation. Furthermore
the activation of Erk1/2 and p38 is crucial for DCA-
induced COX-2 expression, an AP-1 target gene. Our find-
ings strongly suggest that DCA induces pro- and anti-
apoptotic signaling cascades and their combined activity
determines cell fate.

Previous studies from our laboratory and others have
demonstrated that DCA can induce NF-xB in esophageal
cells [50,51]. DCA-induced PARP cleavage is dependent
on caspase-3 activation [52]. Therefore, simultaneous
activation of caspase-3 and NF-«kB explains the observed
low levels of PARP cleavage induced by DCA. Glingham-
mar et al. [53] observed that in response to DCA, colonic
cells undergo apoptosis and have low caspase-3 activa-
tion, strong activation of NF-kB and AP-1 transcription
factors, and COX-2 expression. In agreement with these
findings, we have demonstrated that SKGT4 cells exposure
to DCA resulted in low levels of caspase-3-dependent
PARP cleavage, activation of NF-xB and AP-1, and sub-
stantial induction COX-2 expression.

AP-1 dimer composition is critical in determining its func-
tional activity and consequently in the induction of spe-
cific target genes [20,24,25]. The Fos family members and
¢-Jun are positive regulators of cell proliferation and have
been shown to mediate oncogenic transformation in
fibroblasts [54]. In the absence of c-Jun in mouse embry-
onic fibroblasts, JunB acts as a positive growth regulator
[20]. However, when both molecules are expressed, JunB
prevents c-Jun DNA binding, transactivation and conse-
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quent transformation potential [55,56]. Hence as both
molecules are constitutively expressed in SKGT4 cells, the
enhanced levels of JunB induced by DCA might poten-
tially have a negative effect on c-Jun DNA binding. Fos
and Jun proteins can heterodimerise while only the mem-
bers of the Jun family are capable of homodimerisation.
Fos/Jun heterodimers are more stable than Jun homodim-
ers [23]. Therefore, our data suggest that a Fra-1/JunB het-
erodimer is the DCA-induced AP-1 complex. In these
circumstances, this complex could act as a growth pro-
moter in response to DCA in esophageal cells.

Bile acids can exert their tumor promoting activity by
affecting intracellular signaling pathways, which alters
proliferation and apoptosis. MAPKs constitute an impor-
tant group of signaling mediators that govern cellular
processes such as proliferation and cell death. DCA pro-
motes cell survival through the induction of MAPKs in pri-
mary hepatocytes and colonic cells [11,28]. The present
study demonstrated that DCA activated the MAPKs Erk1/
2 and p38, but it is unable to regulate JNK activation.
COX-2 expression can also be regulated by MAPKs both
directly by mRNA stabilization as shown in intestinal epi-
thelial cells and monocytes [29,32,57] and indirectly
through activation of AP-1 complexes [33]. Here we used
specific pharmacological inhibitors of the MAPK cascades
to identify the pathways mediating DCA-induced COX-2
expression in SKGT4 cells. COX-2 expression was com-
pletely blocked by the PD98059 and SB203580 com-
pounds demonstrating the involvement of Raf-Mek1/2-
Erk1/2 and MMK3/6-p38 pathways in DCA-induced
COX-2 expression. COX-2 may be specifically important
in esophageal carcinogenesis, as COX-2 expression is fre-
quently upregulated in Barrett's esophagus, esophageal
cancer and in animal models of reflux [19,30,31]. The
specificity of pharmacological inhibitors should be con-
sidered, because many of these inhibitors block various
signal transduction proteins. However, MAPKs inhibitors
such as PD98059 and SB203580 are well-established spe-
cific inhibitors of ERK and p38 pathway, respectively, and
have been tested in many systems for their specificity in
inhibiting MAPKs activity.

In vitro, prolonged exposure of colonic cells to DCA
induced apoptosis and caused morphological changes
that were characteristic of apoptosis [10], however, apop-
tosis resistant clones may be selected after frequent expo-
sure to the cytotoxic bile DCA [58]. In vivo, bile acid-
induced apoptosis has been linked with compensatory
proliferation of crypt epithelial cells [59]. Rates of apopto-
sis have been demonstrated to be low in Barrett's epithe-
lium [60], potentially contributing to the malignant
process. While DCA induced low levels of apoptosis in
this study, the effects on cell survival appear to have been
balanced at least partially through DCA-induced COX-2.

http://www.biomedcentral.com/1471-2407/9/190

Specifically DCA-induced PARP cleavage was enhanced by
COX inhibition. However, other MAPK-regulated path-
ways such as induction of the anti-apoptotic proteins Mcl-
1 and cFLIP and Bcl-2 might also contribute to esophageal
cell survival in response to DCA [61].

Reflux of duodenal contents appears to contribute to the
development of esophagitis and Barrett's adenocarcinoma
[15,17] DCA-induced sustained AP-1 activation is likely
to have important implications in esophageal tumorigen-
esis considering that blockage of DMBA (7,12-dimethyl-
benz [a]anthracene)/PMA-induced AP-1 activity in
transgenic mice has been demonstrated to prevent neo-
plastic transformation in a murine keratinocyte model
[22]. DCA stimulation also results in sustained expression
of the anti-apoptotic protein COX-2. Long-term intermit-
tent exposure of esophageal tissue to DCA such as that
caused by duodenal reflux will therefore likely lead to sus-
tained MAPK and AP-1 activation, as well as over-expres-
sion of COX-2. Persistent activation of MAPK can lead to
enhanced cell proliferation possibly via cyclin D1 expres-
sion [62]. It is well known that MAPKs regulate the down-
stream phosphorylation of nuclear transcription factors
such as AP-1 and NF-«B, which regulate several cellular
events including apoptosis and proliferation. Cytokines
that are stimulated by NF-«B, such as IL-1p and TNF-q,
released in response to chronic gastroesophageal reflux,
can also directly activate the AP-1 and NF-xB pathway.

Conclusion

In conclusion, the experiments presented here clearly
demonstrate that MAPKs and AP-1 participate in the regu-
lation of COX-2 expression. The combination of these
events might be responsible for shifting the DCA-regu-
lated apoptosis/survival balance towards the acquisition
of an apoptosis resistant phenotype, as that associated
with the progression from Barrett's metaplasia to adeno-
carcinoma [63]. This model is in agreement with previous
data showing that sustained activation of AP-1 and COX-
2 are associated with increased invasion and oncogenic
transformation [22]. The present report strengthens the
argument that bile acid reflux is important in malignant
progression in Barrett's patients.
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