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Abstract

Background

Previous studies have demonstrated that S.mansoni infection and inoculation of the para-

site eggs and antigens are able to modulate airways inflammation induced by OVA in mice.

This modulation was associated to an enhanced production of interleukin-10 and to an

increased number of regulatory T cells. The S.mansoni schistosomulum is the first stage to

come into contact with the host immune system and its tegument represents the host-para-

site interface. The schistosomula tegument (Smteg) has never been studied in the context

of modulation of inflammatory disorders, although immune evasion mechanisms take place

in this phase of infection to guarantee the persistence of the parasite in the host.

Methodology and Principal Findings

The aim of this study was to evaluate the Smteg ability to modulate inflammation in an

experimental airway inflammation model induced by OVA and to characterize the immune

factors involved in this modulation. To achieve the objective, BALB/c mice were sensitized

with ovalbumin (OVA) and then challenged with OVA aerosol after Smteg intraperitoneal

inoculation. Protein extravasation and inflammatory cells were assessed in bronchoalveolar

lavage and IgE levels were measured in serum. Additionally, lungs were excised for histo-

pathological analyses, cytokine measurement and characterization of the cell populations.

Inoculation with Smteg led to a reduction in the protein levels in bronchoalveolar lavage

(BAL) and eosinophils in both BAL and lung tissue. In the lung tissue there was a reduction

in inflammatory cells and collagen deposition as well as in IL-5, IL-13, IL-25 and CCL11 lev-

els. Additionally, a decrease in specific anti-OVA IgE levels was observed. The reduction
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observed in these inflammatory parameters was associated with increased levels of IL-10

in lung tissues. Furthermore, Smteg/asthma mice showed high percentage of CD11b+F4/

80+IL-10+ and CD11c+CD11b+IL-10+ cells in lungs.

Conclusion

Taken together, these findings demonstrate that S.mansoni schistosomula tegument can

modulates experimental airway inflammation.

Introduction
Asthma is characterized by chronic inflammation of the airways and lungs with marked Th2
response, as showed by high concentrations of interleukin (IL)-4, IL-5 and IL-13, IgE produc-
tion, mucus and eosinophils influx to airways [1]. It is a global health problem that affects peo-
ple of all ages worldwide and its prevalence is increasing in several countries, especially among
children. It is the commonest cause of medical admission in childhood and has a major impact
on hospital services for adults [2–5]. The allergic diseases treatment is based on the use of corti-
costeroids, humanized anti IgE antibody (omalizumab1) and antihistamines medications.
However, corticosteroids do not cure the pathology, and during extended use, it can cause sys-
temic side effects as easy bruising and bone loss [6–8]. Moreover, omalizumab is used as a
treatment in severely allergic asthmatics to reduce inhaled corticosteroid [9] and still adverse
effects are observed [10]. Therefore, the search for news molecules for asthma prevention and/
or treatment is required.

Some studies support that allergic diseases are suppressed by helminthic infection once hel-
minthes are important modulators of immunity [11–12]. Concerning schistosomiasis, there is
a negative association between the infection and allergic episodes, as in endemic areas is
observed a low prevalence of allergic asthma [11, 13]. It has been described that a modulatory
network with regulatory cells [14–16] and molecules such as IL-10 and TGF-β [1, 17–20] are
important factors for protection against allergy. In experimental models of ovalbumin (OVA)
induced allergy, several compounds with potential to modulate airway inflammation such as
parasite eggs and recombinant proteins were identified in S.mansoni [21–22]. Using this
OVA-induced airway inflammation model, our group has demonstrated the role of Treg cells
and IL-10 in modulating inflammatory responses [18, 21–22].

The S.mansoni tegument is the parasite layer that interacts with the host and it is involved
in several features as nutrition, excretion, osmoregulation, sensorial reception, signal transduc-
tion, evasion and immune response modulation [23–24]. The S.mansoni schistosomula tegu-
ment (Smteg) is an antigen preparation that has been previously demonstrated by our group to
induce increased production of IL-10 by spleen cells and bone marrow derivate dendritic cells
[25]. This regulatory property could serve as an important tool to be used against inflammatory
diseases such as allergic airway inflammation.

In this study, we demonstrated the ability of Smteg to modulate the experimental airway
inflammation induced by OVA, downregulating inflammatory parameters such as number of
eosinophils, proinflammatory cytokines, specific anti-OVA IgE and lung pathology. The modu-
lation was associated with increased percentage of CD11b+F4/80+IL-10+ and CD11c+CD11b+IL-
10+ cells and IL-10 levels in lungs. These findings are significant not only on the search for new
modulatory molecules against airway inflammation, but also an important step toward under-
standing immune evasion mechanisms used by schistosomes to persist in the definitive host.

Smteg Modulates Lung Inflammation in Mice
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Materials and Methods

Mice and Smteg preparation
Female BALB/c mice, 6–8 weeks old, were obtained from the Federal University of Minas
Gerais (UFMG) animal facility. Mice were housed in cages with a maximum number of 5 ani-
mals/cage. The animals had free access to water and food and were monitored every other day.
No animal died before the end of the protocol and it was not necessary to apply a protocol for
early endpoint. The euthanasia was performed by lethal anesthesia using 500 micro liters of a
solution containing 0.002 g of Xilazine and 0.01g of Ketamine injected intraperitoneally. Smteg
was prepared as described by Durães et al. (2009) [26], using cercariae from the LE strain
obtained from the snails from Centro de Pesquisas René Rachou- CPqRR-Fiocruz (MG-Brazil).
Briefly, Cercariae from S.mansoni were mechanically transformed into skin-stage schistoso-
mula according to Ramalho-Pinto et al [27]. The tegument was removed with CaCl2 0.3M by
vortex agitation. The tegument was separated from denuded bodies by centrifugation at 900 g
for 1 min. The supernatants were pooled and centrifuged at 50000 g for 1h at 4°C. The pellet
was dialyzed against 1,7% saline for 48 h and physiological saline for 24 h.

Sensitization, Smteg inoculation and challenge with OVA
Airway inflammation was induced in mice as previously described [21]. Briefly, mice (n = 5)
were grouped according to the following treatment: PBS (phosphate-buffered saline (PBS)-
challenged), Asthma (OVA-challenged) and Smteg/Asthma (inoculated with Smteg and OVA-
challenged). All animals were sensitized with OVA twice (Sigma-Aldrich, St Louis, MO, USA;
10 μg in 1 mg of alum), at days 0 and 14. Seven days after the first sensitization, mice of the
Smteg/Asthma group received 25 μg of Smteg intraperitoneally. Then, during days 21st to 25th

mice were challenged with aerosolized PBS or a solution of OVA 1% in PBS. Twenty-four
hours after the last challenge all mice were euthanised by lethal anesthesia (Fig 1A).

Additionally, mice not sensitized with OVA, received 25 μg of Smteg (Smteg group n = 5)
or 200 μL of PBS intraperitoneally (Non-treated (NT) group n = 5). Fourteen days after inocu-
lation, mice were euthanised and had the spleen collected in individual basis to access the cyto-
kine profile induce by Smteg inoculation (Fig 1B).

Bronchoalveolar lavage (BAL)
The tracheas of lethally anesthetized mice were cannulated and the airway lumen was washed
twice (first with 500 μl and then with 1 mL) of PBS. The recovered fluids were centrifuged, and
cell pellets were ressuspended in 100 μl of Bovine Serum Albumine (BSA) 3%. Total leukocytes
were counted using a haemocytometer. Cytospin slides were made and stained with Panótico
Rápido1 method using triarylmethane, xanthene and thiazin (Laborclin Ltda, Pinhais, PR,
Brazil) to determine the cell counts as previously demonstrated [21].

Measurement of protein extravasation in BAL
The measurement of protein extravasation due to asthma induction was performed using
Bradford kit (BioRad, Hercules, CA, USA) according to manufacturer’s instruction. Standard
protein dilutions were prepared using BSA (2 mg/mL) in duplicate at concentrations ranging
from 0.05 mg/mL to 1.5 mg/mL. Triplicate of BAL samples from animals of each group was
placed in 96-well microtiters plates (Nunc) and Bradford reagent was added. After incubation,
the plate was read at 595 nm using ELISA reader (BioRad).

Smteg Modulates Lung Inflammation in Mice
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Measurement of IL-5, IL-10, IL-13 and CCL11 levels in lungs
The lung tissue (100 mg) of each animal was homogenized in 1 ml of PBS containing antipro-
teases (0.1 mM PMSF, 0.1 mM benzethonium chloride, 10 mM EDTA and 20 KI aprotinin A)
and 0.05% Tween 20. The samples were then centrifuged for 10 min at 3000g and the superna-
tant was immediately used to detect IL-5, IL-10, IL-13 and CCL11. The cytokines and the che-
mokine concentrations were measured in lungs of mice using commercially available kits
(eBiosciences, San Jose, CA, USA for IL-5, IL-10 and IL-13; R&D Diagnostics, Minneapolis,
MN, USA for CCL11) according to the manufacturer’s instructions.

Measurement of anti-OVA specific IgE antibodies
The measurement of anti-OVA specific IgE antibodies was performed using ELISA. Briefly,
Maxisorp 96-well microtiters plates (Nunc) were coated with ovalbumin 10 μg/ml in carbon-
ate-bicarbonate buffer, pH 9.6, for 12–16 hours at 4°C. Then the plates were blocked for 24
hours at 4°C with 100 μl/well of PBS plus 0.05% Tween 20 (PBST)-casein (3%). One hundred
microliters of each serum diluted in PBST 1:100 were added per well and incubated for 24
hours at 4°C. Next, samples were incubated with 100 μl/well of anti-IgE (2 μg/mL) at room
temperature for 1 hour. Plate-bound antibody was detected by streptavidine-HRP (1:1200)
100 μl/well for 30 minutes at room temperature. Color reaction was developed by addition of
100 μl/well of TMB (Microwell Peroxidase Substrate System from Invitrogen, Camarillo, CA,

Fig 1. Induction of airway inflammation and inoculation of Smteg in murine model. (A) BALB/c mice were sensitized with OVA on
days 0 and 14 and received Smteg on day 7. Mice were challenged with aerosol from days 21 to 25 and euthanized on day 26. (B) Mice
received Smteg or PBS and were sacrificed after 14 days. s.c.–subcutaneous, i.p.–intraperitoneal, BAL- bronchoalveolar lavage.

doi:10.1371/journal.pone.0160118.g001
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USA) for 10 minutes and stopped with 50 μl of 5% sulfuric acid per well. The plates were read
at 450 nm in an ELISA reader (BioRad).

Measurement of IL-4, IFN-γ, IL-17 and IL-10 levels in spleen cells culture
Cells that were obtained from the spleens of animals from NT or Smteg groups were washed
with saline and the erythrocytes were lysed with a hemolytic solution (155 mMNH4Cl, 10 mM
KHCO3, pH 7.2). Splenocytes were seeded at 106/well into 96-well plates with RPMI 1640
(Gibco, Carlsbad, CA, USA) that was supplemented with 2 mM L-glutamine, 25 mMHEPES,
10% heat-inactivated FBS (Gibco), penicillin G sodium (100 U/ml), and streptomycin sulfate
(100 μg/ml). The cells were stimulated with Smteg (25 μg/ml) or concanavalin A (ConA; 5 μg/
mL). Unstimulated cells were used as negative controls. After 72 hrs of culture at 37°C, cells
supernatants were collected and cytokines levels were measured by CBAMouse Th1/Th2/
Th17 Cytokine Kit (BD, Franklin Lakes, New Jersey, USA) according to the manufacturer’s
instructions.

Lung Pathology
Lungs were collected 24 hours after the aerosol challenge and fixed in 10% buffered formalin.
The fragments were then dehydrated, cleared and embedded in paraffin. Serial sagittal sections
of the whole lung were cut (3–4 μm thick), stained with Haematoxilin-Eosin (HE) or Gomori
Trichrome and examined for cell infiltration as previously demonstrated [28]. For quantitative
analysis of collagen deposition, images of the lung sections stained with Gomori Trichrome
were captured with a digital camera (AxiocamMRc) connected to a microscope (AxioObser-
ver, Carl Zeiss) using a 10X objective. Collagen deposition (Green area) was measured using
Axiovision Release 4.8 software. Images covering all of the lung area from each animal were
captured and analyzed. Fibrosis areas were determined and divided by the total area of lung
section analyzed in each animal. Results are expressed as fibrosis area (μm2)/mm2 of lung tissue
+/- SD. The number of eosinophils in the lung was determined in HE stained section of 5 ani-
mals per group. Images (at least 40 images per animal) were captured with a digital camera
(Axiocam MRc) connected to a microscope (AxioObserver, Carl Zeiss) using a 63x/1.25
immersion oil objective. The number of eosinophils in each image was determined and the
total number of eosinophils per animal was divided by the total lung area analyzed. Results
were expressed as the eosinophils/100mm2 +/- SD.

Flow cytometry analysis
For cytometry analysis, lungs from PBS, Asthma or Smteg/Asthma were collected and treated
with 100 U/mL of collagenase from Clostridium histolyticum (Sigma-Aldrich) for 30min at
37°C. Subsequently, the digested lung tissue was filtered through a 70 μm cell strainer and
erythrocytes were lysed with a hemolytic solution (155 mMNH4Cl, 10 mM KHCO3, pH 7.2).
The cell suspension was washed in RPMI 1640 (Gibco) and adjusted to 1x106 cells/well. These
cells were cultured overnight at 37°C in RPMI 1640 supplemented with 2 mM L-glutamine, 25
mMHEPES, 10% heat-inactivated FBS, penicillin G sodium (100 U/ml), and streptomycin sul-
fate (100 μg/ml). Brefeldin A (1μg/well, Sigma-Aldrich) was added 4 hrs before staining. Cells
were then stained for surface and intracellular markers. Briefly, cells were incubated for 20 min
with anti-mouse CD16/32 to block Fc receptors (eBioscience, San Diego, CA) in FACS buffer
(PBS, 0.25% BSA, 1 mMNaN3) and were stained for surface markers for another 20 min.
Next, Streptavidin was added. Cells were washed after 20 min, fixed in a 2% formaldehyde solu-
tion, and permeabilized with 0.5% saponin solution in PBS. After that, cells were stained for
intracellular markers for 30 min. Then, cells were washed with permeabilization solution and
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ressuspended in PBS. The events were accquired using a LSRFortessa flow cytometer (BD), and
data were analyzed using FlowJo Software (Tree Star, Ashland, OR, USA). The following mole-
cules were used: FITC-conjugated anti-mouse CD4 (clone GK1.5, BD-Bioscience), FITC-con-
jugated anti-mouse CD11c (clone N418, eBioscience), biotin-conjugated anti-mouse CD3e
(clone 500A2, BD-Bioscience), biotin-conjugated anti-mouse F4/80 (clone BM8, eBioscience),
APC-Cy7-conjugated anti-mouse CD11b (clone M1/70, BD), eFluor 450-conjugated anti-
mouse IFN-γ (clone XMG1.2, eBioscience), APC-conjugated anti-mouse IL-10 (clone JES5-
16E3, BD-Bioscience), PE-conjugated anti-mouse Foxp3 (clone NRRF-30, eBioscience), Strep-
tavidin APC-Cy7 (BD-Bioscience) and Streptavidin PerCP (BD-Bioscience).

Statistical analysis
Statistical analysis was performed following Kolmogorov-Smirnov test to verify if the values
have a Gaussian distribution. Next, it was performed Student's t test, One-way or Two-way
ANOVA test using computer software GraphPad Prism 4 (GraphPad Software, San Diego, CA,
USA).

Ethics
All procedures involving animals were approved by the local Ethics Commission on Animal
Use (CEUA) from Fiocruz (Protocol #LW39-10).

Results

Smteg treatment reduces airway inflammation
During airway inflammation, high levels of proteins are detected in BAL, an evidence for tissue
damage. Moreover, inflammatory cellular infiltrate is characteristic of this condition. The com-
parison between PSB and Asthma groups showed that airway inflammation was successful
induced (S1 Fig).

In this mice model, Smteg treatment led to significant reduction in protein extravasation
and eosinophils in BAL (Fig 2A and 2C). The numbers of total cells and monocytes did not sig-
nificantly change in the Smteg/Asthma group compared to Asthma group (Fig 2B and 2D).
Therefore, the Smteg treatment tested modulates airway inflammation.

Smteg treatment enhances IL-10 production whereas decreases
proinflammatory cytokines and IgE levels
In order to evaluate the immunological microenvironment in lungs, the tissue was collected and
analyzed for the presence of several important cytokines in allergy. As shown in Fig 3, there was
a significant reduction in the proinflammatory cytokines IL-5, IL-13 and CCL11 while a signifi-
cant increase in IL-10 levels was observed. Moreover, it was observed a reduction in anti-OVA
IgE titers in blood samples frommice of the Smteg/Asthma group, compared to the Asthma
group. Smteg injection per se led to an increased production of IL-10 by spleen cells without
inducing the production of important proinflammatory cytokines such as IL-4, IFN-γ or IL-17
(S2 Fig), suggesting an important role of tegument’s molecules in immunomodulation.

Reduced lung pathology in Smteg treated mice
Histological sections of lungs from mice were stained with HE (Fig 4) and used to evaluate the
inflammatory cell infiltrate. Also, a staining with Gomori Trichrome was used to analyze colla-
gen deposit in lungs (Fig 4). An exacerbated inflammatory response, characterized by an
intense presence of inflammatory cells was observed in lungs of mice from the Asthma group

Smteg Modulates Lung Inflammation in Mice

PLOS ONE | DOI:10.1371/journal.pone.0160118 July 25, 2016 6 / 15



(Fig 4B, upper panel) in comparison to PBS control group (Fig 4A, upper panel). Markedly, a
reduction in this pulmonary inflammation was observed in mice from the Smteg/Asthma
group (Fig 4C upper panel) compared to mice from Asthma group. Semiquantitative analysis
indicate that Smteg treatment decrease significantly perivascular, airway and parechymal
inflammation (Fig 4G) Also a decreased number of eosinophil was observed in lung tissue of
animals from the Smteg/Asthma group compared to mice from asthma group (Fig 4H). Con-
cerning collagen, great deposition in perivascullar (red arrows) and peribronchiolar (blue
arrows) areas was observed at lungs in mice from the Asthma group (Fig 4E and 4I) comparing
to PBS group (Fig 4D and 4I). This collagen deposition was reduced in Smteg treated mice (Fig
4F and 4I)

Increased presence of IL-10 producing monocytes in lungs of Smteg
treated mice
The cytokine IL-10 can be produced by several cell types. To investigate the source of this cyto-
kine in lungs of mice with airway inflammation induced by OVA, flow cytometry was per-
formed. The Smteg treated mice presented significant increased percentage of CD11b+F4/
80+IL-10+ and CD11c+CD11b+IL-10+ cells compared to Asthma group (Fig 5). Moreover there

Fig 2. Reduction in airway inflammation induced by Smteg treatment. (A) Proteins extravasation, (B) the numbers of total
cells, (C) eosinophils and (D) monocytes were quantified in BAL. The treatment with Smteg reduced significantly the protein
extravasation and eosinophil counting compared to Asthma group. *p < 0,05; Student's t test. Data are representative of 2
independent experiments. Results are presented as mean ± SD.

doi:10.1371/journal.pone.0160118.g002
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were no differences concerning CD3+CD4+Foxp3+, CD3+CD4+IL-10+, CD3+CD4+IFN-γ+,
CD3+CD4+IL-10+IFN-γ+ or CD3-CD19+IL-10+ cells between Asthma and Smteg/Asthma
groups (S3 Fig). This result suggests an important role of IL-10 producing monocytes in regu-
lating inflammation in the lung of Smteg treated mice.

Fig 3. Smteg treatment reduced inflammatory parameters of airway inflammation. The production of (A) IL-5,
(B) IL-13, (C) CCL11 and (D) IL-10 was evaluated in the lungs of mice. The Smteg/Asthma group presented lower
levels of inflammatory cytokines (A-C) while showed up-regulation of IL-10 (D), compared to Asthma group.
Moreover, (E) OVA-specific IgE levels in sera of mice were reduced due to Smteg treatment. *p < 0,05; Student's t
test; O.D = Optical Density. Data are representative of 2 independent experiments. Results are presented as
mean ± SD.

doi:10.1371/journal.pone.0160118.g003

Smteg Modulates Lung Inflammation in Mice
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Fig 4. Lungs histopathology analysis.Upper panel shows lungs stained with HE and bottom panel shows
lungs stained with Gomori Trichrome. Lungs from PBS control group (A andD) presented almost no infiltrate
and collagen deposition. Asthmatic mice (B and E) presented intense inflammatory infiltrate and collagen
deposit. Animals treated with Smteg (C and F) showed reduced levels of these parameters. Blue arrows point
to peribronchiolar area and red arrows point to perivascullar area. Magnification 10x; bars 100μm.
Semiquantitative analysis of inflammation (G) was performed in lung sections from five animals per group in
magnification of 20x. Increased inflammation was observed in Asthma group compared to PBS and Smteg
treated mice. Eosinophil number was determined in lung section (H) from five animals per group at a
magnification of 63x. Results were expressed as the mean number of eosinophil/100mm2 +/- SD. Smteg
treatment significantly decreased the number of eosinophils in the lung. Collagen deposition was measured
by morphometric analysis of lung sections stained with Gomori Trichrome (I) at a magnification of 10x.
Results are expressed as area of fibrosis (μm2)/mm2 of lung tissue. Significant reduction in collagen
deposition was observed in Smteg treated group. Significant differences between groups are pointed in the
Graphics. Data are representative of 2 independent experiments.

doi:10.1371/journal.pone.0160118.g004
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Discussion
Allergic asthma is an inflammatory airways disease which prevalence is lower in endemic areas
for schistosomiasis [11, 13]. This negative correlation was reproduced in murine model and
had been associated to some schistosomiasis induced features such as IL-10 and TGF-β pro-
duction and increased numbers of regulatory T and B cells [21, 29–30]. Recently, our group
demonstrated that Smteg was able to induce IL-10 production by DCs and by CD4+ cells [25].
Herein, we investigated the ability of Smteg injected intraperitoneally to modulate the experi-
mental airway inflammation induced by ovalbumin.

One of the most important feature of allergic asthma is the lung tissue inflammation where
the eosinophils are important cells for production of proinflammatory mediators that exacer-
bate the inflammatory response against allergens [31–32]. This pathological process can be
indirectly measured by analysis of protein extravasation observed in BAL. Smteg inoculation
reduced markedly both protein extravasation and eosinophils presence in BAL, without influ-
encing significantly monocytes or total cells counting (Fig 2). Additionally, its ability to modu-
late asthma was reinforced by the analysis of histological sections from lungs where asthmatic
mice showed excessive inflammatory infiltrate, increased number of eosinophils and collagen
deposition comparing to Smteg treated animals (Fig 4). Moreover, mice that received Smteg
showed reduction in important inflammatory cytokines and chemokines in lungs, such as IL-5,
IL-13 and CCL11 (Fig 3). IL-5 and CCL11 are important cytokines for the development,
expansion and mobilization of eosinophils from bone marrow, which can leads to eosinophilic
infiltration following antigen exposure [33–35]. The downregulation of these molecules may
be related to the low eosinophils recruitment after asthma induction in Smteg inoculated mice.
Regarding IL-13, one of its marked characteristics is contribution to asthma pathogenesis
through goblet cell hyperplasia and collagen deposition [36], which was reduced in Smteg
treated mice (Figs 3B and 4). The data indicating reduction in all these pro-inflammatory cyto-
kines was accompanied by increased IL-10 levels in lungs of Smteg inoculated mice (Fig 3E).
This cytokine have a central role in down-regulating inflammatory responses. Moreover,
besides the modulatory environment, it was observed reduction in anti-OVA IgE levels in sera
of mice treated with Smteg (Fig 3F). It is important to note that inoculation of Smteg per se
increased IL-10 levels without influencing IL-4, IFN-γ or IL-17A levels in naïve mice (S2 Fig).
The investigation to identify the source of IL-10 in this model revealed increased percentage of
CD11b+F4/80+IL-10+ and CD11c+CD11b+IL-10+ cells in Smteg treated mice (Fig 5). Neverthe-
less, there were no difference in CD3+CD4+Foxp3+, CD4+IL-10+ or CD4+IFN-γ+IL-10+ cells
between Asthma and Smteg/Asthma groups (S3 Fig). In addition, there was no difference in
CD4+IFN-γ+ or CD3-CD19+IL-10+ population between these groups (S3 Fig). These data
suggest that macrophages and dendritic cells are the main source of IL-10 in lungs of Smteg
inoculated mice, being responsible for the modulatory environment in the animal model pre-
sented here. It is noteworthy the role of innate over adaptive immunity in Smteg treated airway
inflammation.

The results presented here demonstrated that Smteg inoculation was able to reduce pro-
inflammatory cytokines and IgE levels while enhanced IL-10 production by monocytes. The
balance of these immune mediators is an important parameter to be evaluated in airway
inflammatory disorders. IL-10 is an anti-inflammatory cytokine, what renders it a promising
molecule for therapeutic intervention [37]. During S.mansoni infection, the transition from
acute to chronic phase is marked by increased levels of IL-10 [38]. This cytokine have an
important role in controlling morbidity of schitosomiasis, contributing to host survival as well
as down-regulating immune response to parasite [39]. High levels of IL-10 induced by Smteg
inoculation shed light to a possible mechanism of modulation induced by schistosomula
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tegument in allergic asthma. However, it is worth mentioning that this study proposes a role
for Smteg in preventing allergy, as its administration occurs before the challenge. The results
suggest that the immunomodulatory environment established by Smteg injection is strong
enough to prevent the development of the inflammatory allergic reaction. Moreover, the data

Fig 5. Increased production of IL-10 by monocytes in lungs of Smteg treatedmice. Lungs cells were stained as
described in Materials and Methods. Analysis strategy was represented inA. Mice of the Smteg/Asthma group presented
higher percentage of IL-10 producing cells expressing (B) macrophage or (C) dendritic cells markers compared to Asthma
group. *p < 0,05; Student's t test.

doi:10.1371/journal.pone.0160118.g005
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presented here corroborates with a previous study that demonstrated a significant production
of IL-10 by bone-marrow derived dendritic cells stimulated with Smteg [25].

The IL-10 augmentation could explain the reduced levels of IgE in sera from mice that
received Smteg. In humans, IL-10 potentiates IgG4 production and decreases IgE synthesis
[40], an action important for asthma modulation. A genetic study reinforce the opposite rela-
tion between IgE and IL-10, showing that polymorphisms in IL-10 promoter were associated
with high total serum IgE and increased risk for asthma [41]. IgE is a hallmark of allergic dis-
ease. The antigen-dependent cross linking of IgE on mast cell surface leads to its degranulation
and inflammatory mediators release, that will promote the asthma symptomatology as mucus
hypersecretion, airway obstruction and hyperresponsiveness, breathlessness and coughing
[42]. The low levels of IgE observed in this work is in agreement with previous studies that
demonstrated an association between low levels of specific anti-OVA IgE and modulation of
induced airway inflammation in murine models [18, 21, 29, 43].

In conclusion, this study demonstrates that Smteg treatment in an experimental model of
airway inflammation induced by OVA reduces eosinophils in BAL and lung tissue, as well as
tissue damage, specific anti-OVA IgE and IL-5, IL-13, IL-25 and CCL11 levels in lungs, dimin-
ishing overall airway pathology. One possible mechanism involved in this modulation is the
production of the regulatory cytokine IL-10 by macrophages and dendritic cells, that was
increased in lungs in this experimental model. This work expands the knowledge of schistoso-
mula tegument properties and its modulatory effect can be used by the lung stage parasite to
evade host immune responses. Furthermore, this study presents a rational to use parasite com-
pounds to a therapeutic intervention. More studies are necessary to elucidate the complete
modulatory mechanism induced by Smteg and determine the crucial molecules involved in
this process.

Supporting Information
S1 Fig. Induction of airway inflammation successfully performed.Mice were submitted to
the protocol described in Materials and Methods. (A) Numbers of total cells, (B) eosinophils
and (C) monocytes were evaluated in BAL. The Asthma group presented increased counting of
cells. �p< 0,05 compared to PBS; Student's t test. Data are representative of 2 independent
experiments. Results are presented as mean±SD.
(TIF)

S2 Fig. Smteg induces production of IL-10.Mice were treated with PBS or Smteg alone and
spleen cells supernatant were analyzed for (A) IL-4, (B) IFN-γ, (C) IL-17A and (D) IL-10.
Smteg treatment induced IL-10 production compared to PBS mice. �p< 0,05 compare do PBS;
TwoWay ANOVA followed by Bonferroni post-test.
(TIF)

S3 Fig. Smteg treatment did not increased regulatory lymphocytes. Lungs cells were stained
as described in Materials and Methods. Analysis strategies were represented in A and B. There
were no difference in (C) CD3+CD4+Foxp3+ cells, (D) CD3+CD4+IL-10+, (E) CD3+CD4+IFN-
γ+, (F) CD4+IL-10+IFN-γ+ or (G) CD3-CD19+IL-10+ comparing Asthma or Smteg/Asthma
groups.
(TIF)
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