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ABSTRACT The chicken reference genome contains 2
endogenous avian leukosis virus subgroup E (ALVE)
insertions, but gaps and unresolved repetitive sequences
in previous assemblies have hindered their precise char-
acterization. Detailed analysis of the most recent refer-
ence genome (GRCg6a) now shows both ALVEs within
contiguous chromosome assemblies for the first time.
ALVE6 (ALVE-JFevA) and ALVE-JFevB are both
located on chromosome 1, withALVE6 close to the p-arm
telomere. ALVE-JFevB is a structurally intact element
containing the ALVE gag, pol, and env genes and is
capable of forming replication competent viruses. In
contrast, ALVE6 contains a 3,352 bp 50 truncation and
lacks the entire 50 long terminal repeat and gag gene.
Despite this, ALVE6 remains able to produce intact
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envelope protein, likely due to a mutation in the recog-
nition site for a known inhibitory miRNA (miR-155).
Whole genome resequencing data sets from layers,
broilers, and 3 independent sources of wild-caught red
junglefowl were surveyed for the presence of each of these
reference genome ALVEs. ALVE-JFevB was found in no
other chicken or red junglefowl genomes,whereasALVE6
was identified in some layers, broilers, and native breeds
but not within any other red junglefowl genome.
Improved assembly contiguity has facilitated better
characterization of the 2 ALVEs of the chicken reference
genome. However, both the limited ALVE content and
unique presence of ALVE-JFevB suggests that the
reference individual is unrepresentative of ancestral
Gallus gallus ALVE diversity.
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INTRODUCTION

Endogenous retroviruses (ERV) constitute approxi-
mately 3% of the chicken (Gallus gallus) genome, a conse-
quence of millions of years of retroviral integrations into
the germline (Mason et al., 2016). The avian leukosis virus
(ALV) is the only known chicken retrovirus with recurrent
exogenous and endogenous activity, with the endogenous
subgroup E (theALVE, historically identified as ev genes)
limited to the domestic chicken and its wild progenitor, the
red junglefowl (RJF) (Frisby et al., 1979; Borysenko et al.,
2008;Payne andNair, 2012).Owing to their recent genome
integration, ALVEs are typically present in low copy
numbers, but many retain some structural integrity,
facilitating persistent retroviral gene expression, and
recombination with other ERV or exogenous retroviruses
(Katzourakis et al., 2005; Payne and Nair, 2012). Recent
in-depth studies have revealed the great diversity present
across chicken populations, with more than 400 different
ALVEs described to date (Benkel, 1998; Rutherford
et al., 2016; Mason, 2018).

In commercial populations, ALVE-induced viremia
elicits reductions in growth rate and total body weight in
broilers (Fox and Smyth, 1985; Ka et al., 2009), and egg
weight, specific gravity, and lifetime egg production in
layers (Kuhnlein et al., 1989; Gavora et al., 1991).
Expression of replication-competent proviruses
(Crittenden et al., 1984; Gavora et al., 1995), or even gag
glycoproteins alone (Astrin and Robinson, 1979;
Robinson et al., 1981), can induce tolerance to novel ALV
infections, resulting in delayed immune response and a
higher incidence of lymphoid tumors. Furthermore,
coinfection with Marek’s disease virus, including
attenuated vaccine viruses, has been shown to reactivate
otherwise silenced ALVE in the genome and increase the
incidence of spontaneous lymphoid tumors (Cao et al.,
2015). However, ALVE effects are complex as expression
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of envglycoproteins prohibits someof these effects by recep-
tor interference (Smith et al., 1990, 1991).

Despite extensive research into the effects of ALVEs,
the 2 ALVEs present in the chicken reference genome
remain incompletely described,most likely due to their lo-
cations within repetitive DNA, including one near the
telomere of chromosome 1 (Benkel and Rutherford,
2014; Mason, 2018). The release of an updated, highly
contiguous assembly (GRCg6a) provides a new
opportunity to fully describe the ALVEs of the chicken
reference genome. This study characterizes the location
and structural integrity of both ALVE6 (ALVE-JFevA)
and ALVE-JFevB in the GRCg6a assembly and deter-
mines their abundance in diverse chicken populations.
MATERIALS AND METHODS

ALVEs were detected in the new chicken genome as-
sembly (GRCg6a; GenBank: GCA_000002315.5) by
BLASTn (Altschul et al., 1990) using the ALVE1 refer-
ence sequence (GenBank: AY013303.1). Open reading
frames (ORFs) were predicted with GLIMMER3
(Delcher et al., 2007), and the miR-155 AGCATTA
recognition site (Hu et al., 2016) was annotated by the
EMBOSS fuzznuc tool (Rice et al., 2000). Sequence sur-
rounding each ALVE was annotated for other repetitive
elements using RepBase CENSOR (Kohany et al., 2006)
and identified repeat abundance was assessed by
BLASTn.

Sixteen whole-genome resequencing (WGS) data sets
(totaling 142 chickens; summarized in Table 1), which
were previously analyzed for their unassembled ALVE
content (Mason, 2018), were used for this study. These
samples included commercially used elite layer lines
(White Leghorn, White Plymouth Rock, and Rhode Is-
land Red breeds), Indonesian native breeds (Black
Java, Black Sumatra, Kedu Hitam, and Sumatera),
wild-caught RJF from Java, Sumatra, and Tibet, and
an experimental research broiler line. WGS data were
reanalyzed to specifically detect the presence of both
ALVE6 (ALVE-JFevA) and ALVE-JFevB. Paired-end
reads from each WGS data set were mapped to the
GRCg6a assembly using BWA-mem v0.7.10 (Li, 2013),
Table 1. Summary of whole genome reseque
ALVE-JFevB.

Name Libr

Hy-Line International elite layer lines
5 x White Leghorn 5 x P
2 x White Plymouth Rock 2 x P
1 x Rhode Island Red 1 x P

Indonesian natives
Black Java Poo
Black Sumatra Poo
Kedu Hitam Poo
Sumatera Poo
Red junglefowl from Java Poo
Red junglefowl from Sumatra Poo

INRA experimental broiler line 16 in
Red junglefowl from Tibet 6 ind

Abbreviation: ALVE, avian leukosis virus sub
filtering out reads with a mapping quality less than 20.
In all cases, average genome coverage across the assem-
bled chromosome exceeded 10X. The presence of
ALVE6 and ALVE-JFevB was detected by identifying
reads with sequence homology to both the ALVE and
the neighboring genome sequence. Such reads reflect
contiguous sequence in the host genome and the presence
of that specific ALVE insertion (Mason, 2018).
RESULTS AND DISCUSSION

For the first time, the current chicken genome assem-
bly (GRCg6a) contains both the endogenous ALV inte-
grations present in the reference genome RJF
(International Chicken Genome Sequencing
Consortium, 2004). Previous assemblies had correctly
assigned ALVE-JFevB to chromosome 1 (1p2.3), but
ALVE6 (ALVE-JFevA) is located near the telomere of
chromosome 1 (1p2.10), so remained unassembled and
incompletely sequenced (Benkel and Rutherford,
2014). With the improvements in the current assembly,
both ALVEs can now be more completely described.
ALVE6 (1:210601-214776) is a 50 truncated, 4,176 bp

insertion in the forward orientation, with the previously
identified target site duplication GGCGCT (Benkel,
1998) assembled at the 30 end (Figure 1). The 50 truncation
has deleted 3,352 bp of the ALVE, without any associated
flanking genomic sequence deletion, removing the 50 long
terminal repeat (LTR), gag domain and 67 bp of reverse
transcriptase. The remaining sequence has 2 ORFs. The
first (ALVE6:43-2013, first frame) encodes the reverse
transcriptase thumb domain, RNaseH, and integrase,
and the second (ALVE6:1877-3736, second frame) encodes
an intact envelope. Chickens containing ALVE6 have long
been known to express high titers of envelope glycoproteins
(Robinson et al., 1981), perhaps due, in part, to a previ-
ously undescribed mutation in the recognition site of
miR-155 ([A . G]GCATTA), a miRNA which typically
regulates ALVE envelope expression by targeting tran-
scripts for degradation (Hu et al., 2016).
ALVE-JFevB (1:32724216-32731739) is an intact,

7,524 bp insertion in the forward orientation, with a
GGCTTG target site duplication assembled at both
ncing datasets surveyed for ALVE6 and

ary preparation Reference/Accession

Kranis et al., 2013
ool of 10
ool of 10
ool of 10

DDBJ: DRA003951
l of 10
l of 10
l of 10
l of 5
l of 3
l of 2
dividuals ENA: PRJNA247952
ividuals ENA: PRJNA241474

group E.



Figure 1. ALVE6 integration site showing 2 putative open reading frames. ALVE6 pol is truncated at the 50 end but encodes the reverse transcrip-
tase (RT) thumb domain, intact RNaseH (RH), and integrase (INT) domains. The envelopeORF is complete and features a mutated recognition site
for the known inhibitory miRNA miR-155 (vertical bar). Abbreviations: ALVE, avian leukosis virus subgroup E; LTR, long terminal repeat; ORF,
open reading frame; SU, surface; TM, transmembrane.
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ends (Figure 2). The ALVE-JFevB LTRs retain 100%
identity and share 97.8% identity with the ALVE1
LTRs, with no variants affecting the TATA box or tran-
scription factor binding sites, including the transcription
start site. ALVE-JFevB contains intact ORF for gag-pol
(ALVE-JFevB:479-5364), taking into account the ribo-
somal -1 frameshift just before the gag termination
codon (Leblanc et al., 2013), and the envelope domain
(ALVE-JFevB:5228-7084). Taken together, the intact-
ness of ALVE-JFevB supports a recent integration and
the ability to form replication competent viral particles.
However, the presence of the intact miR-155 site within
the envelope domain may inhibit complete expression of
ALVE-JFevB.
The ALVE-JFevB integration site is complex because

of its location within another transposable element:
GGERV20, an ERV related to spumaviruses (Huda
et al., 2008; Benkel and Rutherford, 2014). GGERV20
is a 5,827-bp element, which retains the ability to
retrotranspose within the genome and is therefore
polymorphic between chicken populations, with at
least 65 full-length copies throughout the GRCg6a as-
sembly. ALVE-JFevB has inserted within a reverse
orientation GGERV20, 801 bp from the GGERV20
30LTR. While this does disrupt the 30 end of the
GGERV20 pol ORF, the longer 50 fragment contains
all the core polymerase catalytic domains (Figure 2)
and therefore may retain functional activity if expressed.

The Prevalence of ALVE6 and ALVE-JFevB
Among Chickens

ALVE-JFevB was detected in no other analyzed
dataset, including the wild-caught RJF from Java,
Sumatra, and Tibet. Furthermore, the GGERV20
element in which ALVE-JFevB has inserted was also
not found in any other data set, suggesting a sequential
Figure 2. ALVE-JFevB integration site within a GGERV20 element. AL
GGERV20 is in the negative orientation and contains putative gag and pol O
remain unaffected. Abbreviations: ALVE, avian leukosis virus subgroup E C
nucleocapsid; ORF, open reading frame; PR, protease; RH, RNaseH; RT, re
GGERV20 retrotransposition followed by ALVE-
JFevB integration in the reference RJF lineage.
Crucially, the LTR pairs of both ALVE-JFevB and
the outer GGERV20 share 100% identity, supporting
evolutionarily recent integrations.

ALVE6 was also not found in any other RJF genome
in this study. However, ALVE6 was identified in the
INRA broiler population, 4 Hy-Line elite layer lines (2
White Leghorn and 2 White Plymouth Rocks), and in
the Black Java and Black Sumatra birds from Indonesia.
Although this distribution is quite broad, it does not
unambiguously support the presence of ALVE6 in the
common G. gallus ancestor.

Recent work has revealed the large diversity of
chicken ALVEs within and between populations.
Noncommercial chicken populations harbor large
numbers of low frequency and lineage-specific ALVEs,
with individual bird genomes typically containing more
than 6 ALVE loci (Rutherford et al., 2016; Mason,
2018). The presence of only 2 ALVEs in the RJF
reference genome is another measure of how
unrepresentative this ‘reference’ bird is of extant G.
gallus genomic diversity (Ulfah et al., 2016). Conse-
quently, great care needs to be taken when using the
reference genome as a background for the study of
ALVEs, such as the recent work by Sun et al., 2017,
who identified postdomestication piRNA-mediated de-
fense against these elements. Such comparative genomic
approaches, particularly those attempting to unpick the
complex chicken domestication process (Rubin et al.,
2010), should only be undertaken once the complete
ALVE complement of that bird or line has been ascer-
tained by methods such as obsERVer (Mason, 2018).
This is indicative of a wider issue of confidence in refer-
ence genomes, as ALVEs are just one marker, which
highlights how unrepresentative of chicken diversity
the reference genome can be.
VE-JFevB is intact with gag, pol, and envORF with detectable subunits.
RFs. pol is truncated at the 30 end, but the 4 core catalytic components
A, capsid; INT, integrase; LTR, long terminal repeat; MA, matrix; NC,
verse transcriptase; SU, surface; TM, transmembrane.
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The GRCg6a assembly contiguity improvements facil-
itate more comprehensive ALVE and broader structural
variant identification from WGS projects. However,
ALVEs may still be missed when present on the largely
incomplete, or absent, assemblies of chromosomes 29,
34–38 and W, or in the poorly assembled centromeres
and telomeres.
CONCLUSIONS

The current chicken genome assembly (GRCg6a) now
shows both the genomic location and complete sequence
of the 2 ALVEs known to exist with the reference RJF.
ALVE-JFevB is structurally intact and is unique to
the reference genome. ALVE6 (ALVE-JFevA), while
truncated by nearly half its length, is found across
diverse chicken breeds and is capable of producing enve-
lope protein, potentially due to a mutation identified
here in the miR-155 recognition site, a miRNA which
typically marks envelope transcript for degradation. Ex-
amination of genome sequences from diverse chicken
populations and wild-caught RJF did not reveal the uni-
versal presence of either of these 2 ALVEs, and showed
that, on average, individual chicken genomes typically
contain over 6 ALVE integrations. These 2 observations
suggest that the reference genome is not representative
of G. gallus ALVE abundance and diversity and is un-
likely to represent ALVE content in ancestral RJF.
Therefore, caution must be applied when using the cur-
rent reference genome as a baseline for the predomesti-
cated state.
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