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Abstract

A meta-analysis of the effects of vector saliva on the immune response and progression of vector-transmitted disease,
specifically with regard to pathology, infection level, and host cytokine levels was conducted. Infection in the absence or
presence of saliva in naı̈ve mice was compared. In addition, infection in mice pre-exposed to uninfected vector saliva was
compared to infection in unexposed mice. To control for differences in vector and pathogen species, mouse strain, and
experimental design, a random effects model was used to compare the ratio of the natural log of the experimental to the
control means of the studies. Saliva was demonstrated to enhance pathology, infection level, and the production of Th2
cytokines (IL-4 and IL-10) in naı̈ve mice. This effect was observed across vector/pathogen pairings, whether natural or
unnatural, and with single salivary proteins used as a proxy for whole saliva. Saliva pre-exposure was determined to result in
less severe leishmaniasis pathology when compared with unexposed mice infected either in the presence or absence of
sand fly saliva. The results of further analyses were not significant, but demonstrated trends toward protection and IFN-c
elevation for pre-exposed mice.
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Introduction

Vector-borne diseases are a major cause of morbidity and

mortality in many areas of the world. In addition to their cost to

human health, vector-borne diseases can have a high economic

cost primarily affecting impoverished nations and the people with

the least resources. While there have been efforts to control or

eradicate certain vector-borne diseases, these goals have proved

frustratingly elusive and the incidence of some vector-borne

infections, such as leishmaniasis, is rising [1]. Emerging and

reemerging diseases such as Chikungunya threaten to become

major public health concerns. More familiar diseases, like malaria

and dengue fever, are infecting new populations due to lapses in

vector control programs, human migration and increasing vector

habitat due to climate change and other human activities [1–8].

Although vaccines have been developed for some vector-borne

diseases (e.g. yellow fever,) the vast majority and the most

problematic still lack vaccines and viable treatment options. The

quest for vaccine development has included assessing the potential

protective effect of long-term exposure to insect vector saliva.

Results have been mixed at best, and there is some controversy as

to whether saliva exacerbates disease or protects against its more

severe manifestations.

When an arthropod vector bites a host and transmits a

pathogen, it releases some of its own saliva into the bite site as

well as the pathogen. It is well established that this saliva is highly

immunogenic, containing vasodilatory and immunosuppressive

compounds [9]. Perhaps the most studied vectors in this regard

have been that of sand fly vectors of leishmaniasis. A landmark

study in 1988 by Titus and Ribeiro demonstrated that Lutzomyia
longipalpis saliva exacerbates Leishmania major infection in naı̈ve

mice [10]. Many similar studies have followed, consistently

demonstrating that naı̈ve animals either infected via sand fly or

coinoculation with salivary gland homogenate along with Leish-
mania parasites have generally developed larger, longer lasting

lesions than animals inoculated with parasites alone [11–25].

Furthermore, these effects appear to be consistent across all sand

flies, though the salivary composition differs widely between

species. In Lutzomyia species, the vasodilatory peptide maxadilan

has been implicated in upregulating Th2 cytokines (e.g. IL-4 and

IL-10) and down-regulating Th1 cytokines (e.g. IFN- c) in vitro
and in vivo, presenting a potential mechanism for the observed

differences in disease progression [18,26–31]. Belkaid et al. further

demonstrated that disease enhancement is IL-4 driven, as

Phlebotomus papatasi saliva did not enhance disease in IL-4

deficient mice. Furthermore, disease enhancement was even

greater in IL-12p40 deficient mice [12]. The infection-enhancing

effects of saliva, however, have been demonstrated to be negated

by prior exposure to uninfected sand fly saliva [11,13,18,24,32–

45]. Immunity to the salivary peptides is theorized to elicit a strong

Th1 response in the host, which adversely affects Leishmania
parasites. This effect appears to apply to immunization with
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uninfected sand fly bites and with individual salivary proteins,

though laboratory-colonized sand fly saliva is much more effective

than wild-caught in providing protection against disease [11,13].

Studies assessing the effects of mosquito saliva began soon after

those of sand flies, with Bissonnette et al and Cross et al
demonstrating that Aedes aegypti saliva inhibits IFN-c, TNF-a,

and IL-2 release from murine cells [46,47]. As with the sand fly

studies, the reports that followed have consistently demonstrated

that mosquito saliva from all genera also up-regulates Th2

cytokines and down-regulates Th1 cytokines [46–56]. Mosquito

saliva has also been shown to increase infectivity of various viruses

[57–62], as well as enhancing viral replication [63], mortality [64–

66] and even being necessary for infection [57]. However, there

has been some controversy with regard to its effect on malaria,

with some studies claiming exacerbation of disease and others

claiming no effect or even protection from prior immunization

[67–70].

Hard ticks are a third group of well-studied arthropod vectors

with immunomodulatory saliva. These ticks can take up to two

weeks to take a complete bloodmeal, so it is necessary for them to

secrete these compounds to avoid rejection from the host. Tick

saliva has been demonstrated to inhibit pro-inflammatory (Th1)

cytokine production [71–79], T cell proliferation [71] and

neutrophil activity [80]. Accordingly, it has also been implicated

in increasing Borrelia and viral infectivity, and immunity against

tick saliva may also correspond to decreased effectiveness of the

pathogen [81–90].

While several review papers on this topic have been published, to

date there has not been an analytical comparison of these studies.

Here we present a meta-analysis of the effects of vector saliva on

disease progression as it applies to three outcomes: pathology,

pathogen load, and cytokine levels. Only transient-feeding vectors

were included (i.e. sand flies and mosquitoes), as long-term feeding

results in a more complicated and not directly comparable

interaction. The proportion of mosquito experiments included in

each of the analyses varied (22–52% for pathogen load, 25–37.5%

for cytokine levels, and 0% for pathology) due to the limited number

of published studies including these parameters. Also as a result of

paucity, human studies and research on trypanosomes and their

vectors were also excluded. For comparability, only in vivo

infection, as opposed to macrophage and other in vitro cell studies,

and quantification by ELISA and PCR were used for the cytokine

evaluation. Furthermore, only IFN-c, IL-4, and IL-10 were

included, as they were the most often studied.

Experiments were placed into two groups: naı̈ve animals

exposed to saliva during infection compared with a control group

exposed to only pathogens, and animals pre-exposed to saliva

before infection compared with a control group of naı̈ve animals

exposed to saliva only during infection. A third group, pre-exposed

animals compared with those that were needle inoculated and not

exposed to saliva at all, was included in the leishmaniasis

pathology evaluation. Other than expanding our knowledge of

the biology of infection, the results of the analyses concerning the

first group could have ramifications for vector control programs

and vaccine studies. If control programs are allowed to lapse,

newly naı̈ve populations could end up with more severe disease. As

for vaccine trials, it would be important to test against vector-

borne infection as opposed to needle inoculation. This has been a

problem especially with vaccines against leishmaniasis; they may

work for needle-inoculated mice but fail to protect against

infection via sand fly [91,92]. The second group mimics natural

conditions for endemic populations and naı̈ve ones such as

travelers and deployed military service members. It is important to

understand potential elevated risks in these populations, as well as

potential for vaccine studies. The third group assesses whether

immunity induced by saliva pre-exposure just negates the

exacerbative effect of saliva, or if there is an added protective

effect. While there are certainly limits to this type of analysis, it can

be very useful in determining whether observed trends across the

published literature are statistically significant effects.

Methods

Data Sources and Extraction
For consistency and comparability, this analysis included only

murine studies concerning transient-feeding vectors. A thorough

literature search was performed using Pubmed (http://www.ncbi.

nlm.nih.gov/pubmed/) for papers published until May 2013.

Search terms combined vector saliva, immune response, and

specific vectors and diseases such as leishmaniasis, malaria,

dengue, sand fly saliva, and mosquito saliva. Other papers were

found using the references in previously located articles. Criteria

for inclusion were studies using wild-type mouse strains (as

opposed to certain immunodeficient) that contained information

on one of three outcomes: pathology (leishmaniasis papers only),

cytokine levels in vivo (ELISA or PCR), and infection level

(parasite or viral load in tissues or parasitemia/viremia). Due to

the constraints inherent in a meta-analysis, we limited our focus on

pathology to studies evaluating leishmaniasis. The statistical

analyses required a certain number of data points and we were

unable to find enough studies assessing other pathogens to make

comparisons on their own and we could not combine the studies

with leishmaniasis pathology studies because the types of assays

were not comparable (e.g. lesion size compared to mortality

analysis). Similarly, flow cytometric analysis of cytokine expression

was excluded because there was not enough conformity across

studies in the experimental set up, cells assessed, and gating

strategies to be controlled properly.

The Studies were organized into three broad categories of

experiments for analysis:

1. Studies comparing a control group of naı̈ve mice inoculated

with the pathogen only to an experimental group of naı̈ve mice

infected with the pathogen either by vector feeding or by co-

Author Summary

Arthropod vectors transmit a wide variety of diseases
resulting in substantial human morbidity and economic
costs worldwide. When hematophagous arthropods blood
feed, they release saliva into the host. This saliva elicits a
strong immune response and has recently been a focus for
vaccine research. There is evidence that the saliva
enhances infection in naı̈ve hosts, but that prior exposure
to saliva results in less severe infection. This analysis
endeavored to determine whether there was a statistically
significant enhancement or protective effect with regard
to saliva exposure and the progression of disease, and to
determine the underlying immune mechanism driving
these effects. We found that saliva does indeed enhance
infection levels of vector-transmitted pathogens and
leishmaniasis pathology in naı̈ve mice and elevates Th2
cytokine levels (IL-4 and IL-10). We also determined that
pre-exposure to saliva results in less severe pathology of
experimental leishmaniasis in mice. These results are
important for vaccine trials and vector control programs,
though more studies are needed with regard to pre-
exposure.
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inoculation with the pathogen and a vector salivary gland

extract (Saliva vs Control).

2. Studies comparing a control group of naı̈ve mice infected with

the pathogen by vector feeding or by co-inoculation with the

pathogen and saliva to an experimental group of mice pre-

exposed to vector saliva then infected with the pathogen along

with saliva (Pre-exposed vs Saliva).

3. Studies comparing a control group of naı̈ve mice inoculated

with the pathogen only to an experimental group of mice pre-

exposed to vector saliva then infected with the pathogen along

with saliva (Pre-exposed vs Control).

Cytokines were divided into IFN-c, IL-4, and IL-10 groups, as

these proteins were most commonly measured. Mean values and

standard deviations of the mean for each outcome were extracted

from either data reported in the papers or from figures using the

‘‘grabit’’ function in MATLAB (Mathworks). When standard

errors were reported, they were converted to standard deviations

with the formula SE = SD/!N. When no standard deviation or

error was reported, standard deviation was calculated as 1/N. The

mean was taken for multiple measurements over time.

Data Analysis
The data were analyzed with the metafor package in R (r-

project.org). A random effects model was used as there is

considerable variation in both mouse strain and vector and

pathogen species. The natural log of the ratio of the experimental

mean to the control mean was taken [Yi = ln(Xe/Xc)]. Using a

ratio allowed us to directly compare studies and provided a means

of controlling for differences in experimental design. Variance was

calculated by the formula Vi = [SDe2/(Ne*Xe2)]+[SDc2/

(Nc*Xc2)]. The code used in R was as follows:

dat1,-read.csv(‘‘[file name]’’, header = TRUE)

res1,- rma(Yi,Vi, data = dat1)

summary(res1)

forest(res1, slab = paste(dat1 Author, dat1 Year, sep = ‘‘,’’))

This code sequence provided a summary of the analysis (most

importantly overall effect and p value) and a forest plot of the data

for each group.

Results

Infection Level
The infection level analysis combined measurements of parasite

and viral load in tissues and parasitemia or viremia. Various sand

fly and mosquito vectors were included, as were various pathogen

species (namely Leishmania species, Plasmodium species, and West

Nile virus) (Table S1). Infection of naı̈ve mice in the presence of

vector saliva was found to significantly increase infection level

(estimate 1.2440, p value 0.0029) compared to pathogen alone

(Fig. 1). These results are broadly applicable, considering the

variation in vectors (Lu. longipalpis, Ph. papatasi, Culex tarsalis,
and Ae. aegypti) and pathogens (L. amazonensis, L. major, L.
braziliensis, West Nile Virus, and Rift Valley Fever Virus).

Pre-exposure to saliva, however, was not demonstrated to

significantly decrease infection level across all vectors and

pathogens (estimate 20.6266, p value 0.0868, Table S2) or even

across just the sand fly vectors and leishmaniases (estimate 2

0.8063, p value 0.0865, Table S2). The general trend, however,

did indicate protection. There was unfortunately not enough

information available to perform an analysis of the third group,

that of pre-exposed mice compared with control mice infected

without saliva.

In some of the studies, a salivary protein was used as a proxy for

saliva as a whole (maxadilan [18] and rLMJ11 [38]). The analysis

was conducted both including these studies (Fig. 1; Table S2) and

excluding them (Table S2), and the results were not significantly

different from each other. Although saliva is a complex cocktail of

proteins and the protocols utilized for vaccination utilize greater

amounts of a single protein than is found in salivary extracts, this

result indicates that maxadilan and LmJ11 are both likely major

factors in saliva’s immunogenic properties, and that they alone

have nearly the same effect as the entire salivary gland

homogenate.

Pathology
Due to the low number of studies concerning other aspects of

pathology, here pathology is synonymous with the size of

Leishmania induced lesions. Though all of the studies in this

analysis concerned sand flies and Leishmania, they varied

considerably with regard to mouse strain, sand fly species,

Leishmania species, and experimental design (e.g. infected ear or

footpad, experimental group infection by vector feeding or

inoculation, amount and times of pre-exposure, etc). Consistent

with the infection level results, naı̈ve mice infected in the presence

of saliva had significantly larger lesions than those in the control

group (estimate 0.319, p value,0.001) (Fig. 2). These results were

consistent regardless of whether the saliva came from the natural

vector or another species of sand fly (natural vector estimate

0.6183, p value,0.0001; other vector estimate 0.7837, p value,

0.0001; Table S2), or even whether the vector was of the natural

genus (natural genus estimate = 0.6388, p = ,0.0001, other genus

estimate 0.8644, p value,0.0001) (Table S2). Saliva also appeared

to increase the duration of the lesions, though this factor was not

included in the analysis due to inconsistencies in the lengths and

intervals of time measured between studies.

Pre-exposure to saliva, however, was shown to significantly

decrease lesion size (estimate 20.7781, p value,0.0001) when

compared with naı̈ve mice infected in the presence of the same

saliva (Fig. 3). Interestingly, the only study to show the opposite

[35] was also the only study conducted on the natural pairing of L.
braziliensis and L. intermedia. However, the overall results again

remained significant regardless of whether the saliva came from

the natural vector or even the natural genus (natural vector

estimate 2.5839, p value 0.0074, other vector estimate 21.0174, p

value,0.0001, natural genus estimate 20.6909, p value 0.0008,

other genus estimate 209326, p value 0.0010) (Table S2). It is

noteworthy that two of the experiments (bThiakaki Fig. 2A and
cThiakaki Fig. 2A [24]) included, trend more toward enhance-

ment, though not statistically significant. The mice in these studies

were pre-exposed to Ph. papatasi and Ph. sergenti saliva,

respectively, and subsequently exposed to Lu. longipalpis saliva

upon infection. The third experiment by the same authors(aThia-

kaki Fig. 2A [24]), where mice were pre-exposed to Lu. long-
ipalpis saliva, demonstrated protection. These results imply that

the protection gained by prior exposure may be somewhat species

(or at least genus)- specific.

When compared with a control group infected without any

saliva at all, mice pre-exposed to saliva developed smaller lesions

(estimate 20.4889, p value 0.0254) (Fig. 4). As with the infection

level studies, the analysis did not vary by excluding the studies

using only maxadilan or rLMJ11 (Table S2).

Cytokines
Studies included in the cytokine analysis were those that

measured IFN-c, IL-4, or IL-10 by either ELISA or PCR. Other

cytokines and those measured via flow cytometry were excluded

Effect of Insect Saliva on Vector-Transmitted Disease
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for consistency and due to low numbers and only measurements

from in vivo infections were included. IFN-c analysis of pre-

exposed versus naı̈ve mice (n = 5), as well as, of naı̈ve mice infected

in the presence versus absence of saliva (n = 9) were inconclusive

(Table S2). Though general trends were observed, they were not

significant (IFN-c levels were lower in naı̈ve mice exposed to saliva

than in control mice and higher in pre-exposed mice than in the

control group, Table S2). Naı̈ve mice exposed to saliva during

infection, however, had significantly higher IL-4 levels than

control mice exposed only to the pathogen (estimate 1.7196, p

value 0.0185) (Fig. 5).

Likewise IL-10 levels were shown to be significantly higher in

naı̈ve mice exposed to saliva during infection (estimate 0.8398, p

value,0.001) (Fig. 6). Unfortunately there were not enough

measurements of IL-4 or IL-10 in mice pre-exposed to saliva

versus naı̈ve mice to conduct an analysis. Both of the cytokine

findings were consistent across studies using both mosquito and

sand fly vectors and various pathogens (parasitic and viral),

suggesting a common mechanism of disease enhancement in the

saliva of diverse vectors.

Discussion

Here we performed a meta-analysis of available data concerning

the effects of vector saliva on host immunity. While a vast amount

of heterogeneity existed between studies, the use of a ratio allowed

us to control for the variability. Overall, our study indicates that

saliva enhances infection in naı̈ve mice. Pathogen levels in host

blood and tissues are consistently higher in those mice exposed to

saliva during infection and this effect holds true for both sand fly

and mosquito vectors and for different pathogen species. As such,

one would imagine that these results could be extended to other

transient-feeding vectors as well, and indeed that has been

demonstrated to be the case with Glossina morsitans morsitans/
Trypanosoma brucei brucei [93,94] and Rhodnius prolixus/
Trypanosoma cruzi [95]. Both of these studies report higher

parasitemia in naı̈ve mice infected in the presence of saliva. More

studies need to be performed on these and other vectors, however,

to see if the findings are truly consistent. In addition to its effects

on infection level, vector saliva also influences leishmaniasis

pathology. Here we demonstrated that sand fly saliva enhances

Leishmania-induced lesion size. Furthermore, higher levels of

morbidity and mortality in mice infected with West Nile virus in

the presence of mosquito saliva have been reported [61,64–66].

Thus, the higher infection levels that result from saliva exposure

have a demonstrable effect on the disease pathology.

An important consideration in this analysis was whether the

vector/pathogen pairing was natural or unnatural. Several sand

fly/Leishmania studies used an unnatural combination of Lu.
longipalpis saliva with L. major, where the natural vector is one

Figure 1. Forest plots of the relationship of vector saliva and infection level in naı̈ve mice (Category 1). Symbols represent the mean
response ratio of the individual studies (squares) and of the entire analysis (diamond) using a Random Effects Model; the size of the square is
proportional to the weight of an individual study. Error bars represent 95% Confidence Interval (CI). Squares to the right of the dotted line indicate
larger measurements in the experimental (saliva) group, while those on the left indicate larger measurements in the control group. Those that cross
the center indicate no significant difference.
doi:10.1371/journal.pntd.0003197.g001
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of several Phlebotomus species [10,18,22,23,38,41,96]. Likewise

there have been studies using Lu. longipalpis saliva paired with L.
amazonensis or e. braziliensis [14–16,18,19,21,22,24,97,98].

While the genus is correct, these Leishmania species are naturally

transmitted by different sand fly species [99]. These studies have

the potential be both helpful and misleading. What is true for an

unnatural pairing may not hold for a natural combination and

thus the results may have little practical application. On the other

hand, if the effects are similar regardless of the pairing, there may

be potential for a more comprehensive vaccine, or at the least

important implications for travelers already exposed to different

sand fly species. We found that including or excluding the

unnatural pairings made no difference in the overall results of the

analyses, and that both natural and unnatural pairings (species

and genus) generally demonstrated the same results in all

categories.

Figure 2. Forest plots of the relationship of exposure to vector saliva and Leishmania lesion size in naı̈ve mice (Category 1). Symbols
represent the mean response ratio of the individual studies (squares) and of the entire analysis (diamond) using a Random Effects Model; the size of
the square is proportional to the weight of an individual study. Error bars represent 95% Confidence Interval (CI). Squares to the right of the dotted
line indicate larger measurements in the experimental (saliva) group, while those on the left indicate larger measurements in the control group.
Those that cross the center indicate no significant difference.
doi:10.1371/journal.pntd.0003197.g002
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A proposed mechanism for the salivary enhancement of

infection has been the up-regulation of host Th2 cytokines. Indeed

our analysis demonstrates a marked increase in IL-4 and IL-10

levels in groups exposed to saliva, both sand fly and mosquito,

suggesting a strong Th2 response. These results, taken with the

lack of enhancement in IL-4 deficient mice [12], strongly imply

that the proposed Th2 driven mechanism is in fact correct. In
vivo, cytokines function in a milieu of other cytokines and factors

and it is the relative balance (or ratio) or these proteins that set the

tone of a particular immune response. Whether Th1 cytokines are

were regulated in response to saliva exposure is another question

we investigated. While IFN- c levels were generally lower in mice

exposed to saliva, the results were not significant. However, upon

further examination of the data, the only study to report the

opposite also contained the only unnatural vector/pathogen

pairing ([96], Lu. longipalpis/L. major). Eliminating this study

lowered the p value, but not enough that the results were

significant.

The potential for vaccines developed from vector saliva has

been an important research topic in recent years. Therefore, a

major aim of this study was to determine whether pre-exposure to

vector saliva results in less severe infection. In the infection level

analysis, while the trend was toward lower levels in pre-exposed

mice, the results were not significant and therefore inconclusive.

However, the leishmaniasis pathology analysis demonstrated less

severe lesions in pre-exposed mice, and this result holds true even

when compared with mice unexposed to saliva even during

infection. Therefore, with respect to leishmaniasis pathology, pre-

exposure does not just negate the infection-enhancing effects of

saliva in naı̈ve mice, it actually confers a significant protective

effect compared to infection in the absence of saliva. It is

interesting to note, however, that while pre-exposure to Lu.
intermedia saliva does decrease infection level, it appears to have

the opposite effect on lesion size [35]. More studies are necessary

to investigate this phenomenon.

While a comprehensive cytokine analysis would be extremely

informative with regard to the mechanism of the demonstrated

protective effect, unfortunately there were not enough pertinent

studies to conduct an analysis on IL-4 or IL-10 levels, and the IFN-

c analysis results were inconclusive. Kamhawi et al. found little

change in the level of IL-4 producing cells in pre-exposed mice

compared with naı̈ve mice [39], though IFN- c levels were

Figure 3. Forest plots of the relationship of exposure to vector saliva before infection and Leishmania lesion size (Category 2).
Symbols represent the mean response ratio of the individual studies (squares) and of the entire analysis (diamond) using a Random Effects Model; the
size of the square is proportional to the weight of an individual study. Error bars represent 95% Confidence Interval (CI). Squares to the right of the
dotted line indicate larger measurements in the experimental (pre-exposed) group, while those on the left indicate larger measurements in the
control group. Those that cross the center indicate no significant difference.
doi:10.1371/journal.pntd.0003197.g003

Effect of Insect Saliva on Vector-Transmitted Disease
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Figure 4. Forest plots comparing pre-exposure to vector saliva to control groups infected in the absence of saliva on leishmaniasis
pathology (Category 3). Symbols represent the mean response ratio of the individual studies (squares) and of the entire analysis (diamond) using
a Random Effects Model; the size of the square is proportional to the weight of an individual study. Error bars represent 95% Confidence Interval (CI).
Squares to the right of the dotted line indicate larger measurements in the experimental (pre-exposed) group, while those on the left indicate larger
measurements in the control group. Those that cross the center indicate no significant difference.
doi:10.1371/journal.pntd.0003197.g004

Figure 5. Forest plots of the relationship of vector saliva and IL-4 levels in naı̈ve mice. Symbols represent the mean response ratio of the
individual studies (squares) and of the entire analysis (diamond) using a Random Effects Model; the size of the square is proportional to the weight of
an individual study. Error bars represent 95% Confidence Interval (CI). Squares to the right of the dotted line indicate larger measurements in the
experimental (saliva) group, while those on the left indicate larger measurements in the control group. Those that cross the center indicate no
significant difference.
doi:10.1371/journal.pntd.0003197.g005

Effect of Insect Saliva on Vector-Transmitted Disease
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elevated in pre-exposed mice. Interestingly, all of the studies

reported much higher IFN- c levels in pre-exposed mice except for

one using a natural pairing of Ph. papatasi/L. major in BALB/c

mice [12]. The same pairing with C57BL/6 mice indicated

elevated IFN- c in pre-exposed mice. This study is the only

incidence in the analyses where mouse strain makes a difference,

but it illustrates that while these results may be true for some

mouse strains and vector/pathogen combinations, they may not

be true for other strains or indeed other animals or humans.

Not surprisingly, studies assessing human immune responses to

insect bites in disease settings are few and do not present a unifying

theme for all vector-transmitted diseases or for a single disease or

vector. Some studies suggest that saliva exposure skews the human

immune response toward Th2-type immunity [100–103] and

others suggest a more mixed response [104–106].

This meta-analysis has demonstrated conclusively the infec-

tion-enhancing effect of transient-feeding vector saliva in murine

models of infection and the Th2 driven mechanism behind it;

however, more studies need to be conducted on the effects of pre-

exposure. A significant protective effect exists with regard to sand

fly saliva and leishmaniases, but the mechanism still needs to be

clarified. More cytokine studies are needed, as well as additional

studies with other. Overall, the vaccine potential of saliva needs

to be further investigated. There are many important consider-

ations in the potential development of vaccines, not least that

humans may be affected very differently than specific mouse

strains, saliva differs widely between vectors, and immunity to

saliva has only been demonstrated to result in less severe disease,

not prevent infection entirely. Indeed, while the human response

to vector saliva has been demonstrated to be similar to the

murine one in that saliva enhances infection in naı̈ve human cells

[107–109], the effects of pre-exposure have been more contro-

versial and appear to be more complicated than in mice [100–

102,105,106].

This study, perhaps most importantly, emphasizes the impor-

tance of maintaining vector control programs once started. If

allowed to lapse, not only will the protective immunity be lost

when vector populations rebuild, but disease may be much more

severe in newly naı̈ve populations.
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