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The future of Southeast Asia’s forests
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While Southeast Asia's forests play important roles in biodiversity conservation and global
carbon (C) balance, the region is also a deforestation hotspot. Here, we consider the five
shared socioeconomic pathways (SSPs) to portray a range of plausible futures for the region’s
forests, employing a state-of-the-art land change modelling procedure and remotely sensed
data. We find that by 2050 under the worst-case scenario, SSP 3 (regional rivalry/a rocky
road), the region's forests would shrink by 5.2 million ha. The region's aboveground forest
carbon stock (AFCS) would decrease by 790 Tg C, 21% of which would be due to old-growth
forest loss. Conversely, under the best-case scenario, SSP 1 (sustainability/taking the green
road), the region is projected to gain 19.6 million ha of forests and 1651 Tg C of AFCS. The
choice of the pathway is thus critical for the future of the region’s forests and their ecosystem
functions and services.
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ropical forests occupy only about 7% of the earth’s land

surface but are home to nearly two-thirds of the world’s

floral and faunal diversity!2. They play a pivotal role in
global carbon (C) balance and climate change mitigation3, storing
228.7 Pg C in their woody vegetation* and accounting for 68% of
global C stock®. They also contribute to ecosystem-based adap-
tation, a concept that relates to the use of biodiversity and eco-
system services in an overall climate adaptation strategy®’. Yet,
there has been an unprecedented loss of tropical habitats, owing
to a multitude of anthropogenic activities!8-1>. In fact, tropical
deforestation is responsible for around one-tenth of total
anthropogenic C emissions. Most significantly, while they were
once considered a moderate sink for atmospheric C13, a recent
study indicated that the C balance of tropical forests has tilted
towards net source!* due to extensive deforestation and a
reduction in C density!416.

Southeast Asia is home to nearly 15% of the world’s tropical
forests!”, and includes at least four of the twenty-five globally
important biodiversity hotspots®. The region, however, is also
among the world’s major deforestation hotspots, responsible for
the bulk of deforestation in tropical humid and low-land
forests®*18-20 Estimates suggest that habitat loss in Southeast
Asia is among the highest>!® and most severe in terms of bio-
diversity loss®!1, while deforestation rate is comparable only to
that of Latin Americal®. Between 1990 and 2010, Southeast Asia
registered an average net loss of 1.6 million ha yr~! (0.6% yr—1),
reducing the region’s forest cover from 268 million ha to 236
million hal”. Given these rates, and the fact that over 90% of
Southeast Asia's forests were still unprotected in the early 2000s8,
it is feared that over 40% of the region's biodiversity may vanish
by 210011,

Numerous studies have indicated that some of Southeast Asia’s
intact forests (IFs) and protected areas (PAs), which are among
the prime reserves for tropical biodiversity and aboveground
forest carbon stocks (AFCS), have been degraded and converted
to non-forest purposes!$20. Forest clearance and canopy loss in
the region are attributed to several large-scale, anthropogenic
drivers, including logging and clear-cutting for food production,
cash crops and agriculture®11:17.20-22_ Yet, it is difficult to gen-
eralise these drivers owing to the diverse demographic, economic
and policy settings of the respective countries. Moreover, while it
is evident that uncontrolled exploitation and degradation will
continue to affect the future state of the region’s forests, the future
might not be entirely bleak. In fact, over the last decade there
have been significant indications of favourable landscape changes
leading to afforestation and forest regrowth!7-22,

Considering the multiple interacting uncertainties and the
dynamics of socioeconomic systems, charting the path of the
region’s forest future is a challenge, and requires exploratory
scenario-based analyses. Scenario analysis is a useful technique
for assessing the social and ecological impacts of interventions,
and is thus an integral part of planning and decision-making?3-2°.
Scenario analysis is a structured process of exploring and evalu-
ating alternatives aimed at providing insights regarding plausible
rather than probable futures?3-24:27,

In this study, we aimed to develop spatially explicit forest cover
change scenarios for Southeast Asia and to monitor potential
future forest cover changes and their consequent environmental
impacts. Our approach is based on the recently formulated shared
socioeconomic pathways (SSPs), a new generation scenario fra-
mework developed in coherence with future radiative forcing (the
representative concentration pathways or RCPs) and their asso-
ciated socioeconomic trajectories?®?°. These SSPs provide sig-
nificant advances from the previous scenario frameworks,
especially the Intergovernmental Panel on Climate Change
(IPCC) Special Report on Emissions Scenarios (SRES)3C, by

considering the uncertainty space in mitigation and adaptation
challenges. The five SSPs outline different storylines and
assumptions of global development pathways and focus on qua-
litative descriptions of likely future changes in demographics,
human development, economy and lifestyle, policies and insti-
tutions, technology, and land use and forest resources?%-28:29:31,32,

The five SSPs are: SSP 1, or the sustainability/taking the green
road scenario; SSP 2, or the middle of the road scenario; SSP 3, or
the regional rivalry/rocky road scenario; SSP 4, or the inequality/
road divided scenario; and SSP 5, or the fossil-fuelled develop-
ment/taking the highway scenario?%-28:2931.32_ Of these five sce-
narios, SSP 1 presents the highest increase in forest cover in the
Asian region (one of the five SSP regions) from 2015 to 2050, and
SSP 3 presents the greatest decrease (see Methods). SSP 1 assumes
inclusive development and respect for perceived environmental
boundaries, as well as high investment in human capital, educa-
tion and awareness?8. Conversely, SSP 3 assumes fragmentation,
comparatively weak global institutions and a lack of cooperation
in addressing global environmental concerns, together with poor
investments in education and awareness?. In a nutshell, these
two scenarios represent the two opposing ends of the scenario
spectrum, in which SSP 1 signifies low mitigation and adaptation
challenges, whereas SSP 3 signifies the opposite.

The SSPs, however, are primarily designed for global scale
projections and analyses, and although forest cover change pro-
jections are available, they are limited to quantities and have no
spatial dimension. There is thus a need to spatially allocate these
projected forest cover changes in order to facilitate impact ana-
lysis and, at the same time, support local studies and environ-
mental monitoring.

In this study, we have spatially allocated the projected future
forest cover changes under the five baseline SSPs by employing a
state-of-the-art land change modelling approach and using
remotely sensed data (2015-2050). We examined the potential
implications of these spatially allocated forest cover changes by
quantifying their consequent AFCS changes at the country and
province levels, across forest cover classes, and within the IFs and
PAs in Southeast Asia, given their important roles as prime
reserves for tropical biodiversity and AFCS (see Methods).

Results

Past-to-present forest and carbon stock losses. Southeast Asia
lost about 80 million ha of forest between 2005 and 2015, which
translates to a forest loss rate of around 8 million ha yr—!
(Supplementary Table 1). Of this forest loss, Indonesia accounted
for almost two-thirds with a 62.0% share. Malaysia came second
with a 16.6% share. The other top forest-losing countries in the
region were Myanmar and Cambodia, with respective shares of
5.3 and 5.0%. The region therefore lost a total of 998 Tg C AFCS
(year 2000 equivalent) during the 2005-2015 period, equivalent
to a loss rate of around 100 Tg C yr—!l. Indonesia was also the
largest contributor with a 62.1% share. Malaysia had a share of
17.4%, while Cambodia and Myanmar had 53 and 4.6%,
respectively.

Projected changes in forest cover and carbon stock. Southeast
Asia was covered with 206.5 million ha of forest in 2015, con-
taining a total of 21,172 Tg C AFCS (Figs. 1 and 2). Indonesia is
the largest contributor both in terms of forest cover and AFCS at
56 and 65%, respectively (Fig. 2). Among the five SSPs, SSP 1
would result in the highest net forest cover gain by 2050, with
19.6 million ha, followed by SSPs 2 and 4 with 14.7 million ha and
10.6 million ha, respectively (Fig. 2; Supplementary Table 2).
Under SSPs 3 and 5, however, the region is projected to experi-
ence a net forest cover loss of 5.2 million ha and 3.1 million ha,
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Fig. 1 Maps showing the spatially allocated projected forest cover changes in Southeast Asia under the five shared socioeconomic pathways (SSPs)
(2015-2050). The four insets show the spatially allocated projected forest cover changes in some parts of Laos and Vietnam (inset 1), Cambodia (inset 2),

Malaysia (inset 3) and Indonesia (inset 4)

respectively. Under the best-case scenario (i.e. SSP 1), therefore,
Southeast Asia would be able to gain a total of 1651 Tg C AFCS,
and under the worst-case scenario (i.e. SSP 3), the region would
lose a total of 790 Tg C AFCS. Both projected values are 2050
equivalent (see Methods).

At the country level under the best-case scenario, Indonesia
would be the highest gainer both in terms of forest cover and
AFCS gain, with a 41 and 49% share of the region’s total forest
cover and AFCS gains, respectively (Fig. 2). The other top
gaining countries both in terms of forest cover and AFCS are

Myanmar, Malaysia and the Philippines. Under the worst-case
scenario, Indonesia would also be the highest loser, at 48
and 55%, respectively. The other top losing countries are
Malaysia, Cambodia, Myanmar and Vietnam. At the province
level, in terms of AFCS gain under SSP 1, 57% of the top 30
gaining provinces would be in Indonesia, and 23 and 10%
would be in Myanmar and Malaysia, respectively (Fig. 3;
Supplementary Table 3). In terms of AFCS loss under the
worst-case scenario, majority of the top 30 losing provinces
would also be coming from Indonesia (57%), while most of the
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Fig. 2 Country-level distribution of current forest cover and aboveground forest carbon stock (AFCS) and the projected forest cover and AFCS gains
and losses (2015-2050) in Southeast Asia. In each section of the pie charts, the first numerical value refers to the country number, which corresponds to
the country number in the figure legend, and the second refers to the percentage share of the country relative to the region’s total. Base AFCS is based on
the extent of forest cover in 2015. In this figure, only the best-case (SSP 1) and worst-case (SSP 3) scenarios are presented. The data for SSPs 2, 4 and 5,
including the complete statistics of forest cover and AFCS changes, are given in Supplementary Table 2
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Fig. 3 Province level distribution of the projected aboveground forest carbon stock (AFCS) gains and losses in Southeast Asia (2015-2050). Under the
worst-case scenario (SSP 3), 17 of the top 30 AFCS-losing provinces were found in Indonesia, while the rest were found in Cambodia (3), Malaysia (3),
Myanmar (3), Laos (2) and Vietnam (2). Under the best-case scenario (SSP 1), 17 of the top 30 AFCS-gaining provinces were also found in Indonesia, while
the rest were found in Myanmar (7), Malaysia (3), Philippines (1), Laos (1) and Thailand (1). The top 30 provinces under each SSP are given in
Supplementary Table 3. Note: Indonesia—regency level; Myanmar and Malaysia—district level
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Fig. 4 Forest cover and aboveground forest carbon stock (AFCS) in Southeast Asia, and their respective losses by 2050 across forest classes under the
worst-case scenario (SSP 3). Country-level distribution of the current forest cover and AFCS considering forest classes (a, b) and country-level distribution
of projected forest cover and AFCS losses across forest classes (¢, d). For (b), the extent of forest in 2015 was used. The graph for the other forest-losing

scenario, SSP 5, is presented in Supplementary Figure 3

rest would be coming from Cambodia (10%), Malaysia (10%)
and Myanmar (10%).

Projected forest and carbon stock losses by forest class. Our
results revealed that 35% of Southeast Asia’s forest cover was old
growth forest in 2015 (Fig. 4a; Supplementary Figure 1), as per
our forest reclassification procedure which considers IFs and
aboveground carbon density (ACD) (Supplementary Figure 2).
Most of the region’s current old growth forest is found in Indo-
nesia (83%) and Malaysia (15%). This forest class currently stores
half of the region’s current AFCS (Fig. 4b). Based on IPCC’s
approximate threshold for age and carbon sequestration rates
(CSRs) across forest classes and types (Supplementary Table 4;
Supplementary Figure 2), 20% of the region’s forest is classified as
old secondary forest, and the rest is classified as young secondary
forest (Fig. 4a). Under SSP 3, 18% of the projected forest cover
loss in the region by 2050 would be old growth forest (Fig. 4c),
and this would be responsible for 21% of the region’s projected
AFCS loss by 2050 (Fig. 4d). Under SSP 5, 17% of the projected
forest cover loss would be old growth forest, and this would be
responsible for 19% of the region’s projected AFCS loss (Sup-
plementary Figure 3).

Projections in intact forests and protected areas. Currently,
Southeast Asia has 38.3 million ha of IFs in total, accounting for
about 19% of the region’s 2015 total forest cover (Supplementary
Figure 4; Supplementary Table 5). Our projections revealed that,
by 2050, the region’s IFs would be losing forest cover ranging

from 22 thousand ha (SSP 5) to 39 thousand ha (SSP 3), resulting
in an AFCS loss of 3 Tg C (SSP 5) to 5 Tg C (SSP 3). Such a loss
in AFCS accounts for <1.0% of the projected total AFCS loss
under SSPs 3 and 5 (Fig. 2 and Supplementary Table 2). The
region is also home to 38.5 million ha of PAs (Supplementary
Figure 4; Supplementary Table 5). However, with 362 thousand
ha (SSP 5) to 580 thousand ha (SSP 3) of projected forest cover
loss, the region’s PAs would be losing some fifteen times more
forest cover than that in IFs. This forest cover loss would result in
an AFCS loss ranging from 44 Tg C (SSP 5) to 71 Tg C (SSP 3),
which would account for about 9% of the total AFCS loss under
SSPs 3 and 5 (Fig. 2; Supplementary Table 2).

Model validation. Our modelled forest transition potential maps
(TPMs) (Supplementary Figures 5 and 6) played a key role in the
spatial allocation of the projected future forest cover changes.
Here, the Skill Measure (SM) statistic was used to assess the
predicted power of these TPMs (see Methods). This statistic is a
robust validation parameter because it compensates for the
dependence of expected accuracy on the number of transitions
and persistence classes. In this study, the SM values derived for
the 11 countries in Southeast Asia had an overall average of 0.56
(Supplementary Table 6). As this overall average SM value is well
above 0 (a case where the model is no better than chance), but
more especially above —1 (a case where the model is worse than
random chance), our modelled TPMs have the predictive power
to correctly simulate the past-to-present spatial patterns of forest
cover changes in the region, which are likely to continue into the
future. Needless to say, the transition potential modelling was
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performed on a large scale, at country level. Generally, our
derived SM values are either close to, or within the range reported
in other studies33-3%.

Discussion

Translating the projected changes in AFCS into rates, the forest-
gaining scenarios suggest that Southeast Asia would be able to
sequester C at a rate ranging from 25 Tg C yr~! (SSP 4) to 47 Tg C
yr=! (SSP 1) (Fig. 2; Supplementary Table 2). By contrast, the
forest-losing scenarios suggested that the region would be emitting
C at a rate ranging from 14 Tg C yr—! (SSP 5) to 23 Tg C yr—1 (SSP
3) (Fig. 2; Supplementary Table 2). At a ratio of 1 Mg C to 3.67 Mg
CO,3, the projected changes in AFCS translate to a total projected
gain (sink) of 6.1 Pg CO, under the best-case scenario, SSP 1, and a
total projected loss (source) of 2.9 Pg CO, under the worst-case
scenario, SSP 3. To put these projections into perspective, in 2015
alone, Southeast Asia emitted a total of 1.4 Pg CO, due to fossil fuel
use and cement production3”. This shows that the projected forest
cover gain under SSP 1 (Figs. 1 and 2; Supplementary Table 2)
would be able to absorb 173 Tg CO, yr~1, about 12% of the above-
mentioned 2015 CO, emissions of the region. On the other hand,
the projected forest cover loss under SSP 3 (Figs. 1 and 2; Sup-
plementary Table 2) would result in an emission of 83 Tg CO, yr—1,
which is about 6% of the region’s 2015 CO, emissions.

As mentioned earlier, Southeast Asia’s IFs and PAs are impor-
tant reserves for tropical biodiversity and AFCS. However, based
on the past-to-present spatial pattern of forest cover changes, our
results showed that the region’s IFs, as in the recent past!®, would
continue to lose forest cover. These projected forest cover losses
(Supplementary Table 5) translate to a net loss rate ranging from
636 hayr~! (SSP 5) to 1121 hayr~! (SSP 3). While previous stu-
dies have shown that PAs would have relatively lower deforestation
rates compared to unprotected areas>38, they too would continue
to lose forest cover, and even at a much higher rate, from 10.3
thousand ha yr—! (SSP 5) to 16.6 thousand ha yr—! (SSP 3), when
compared to IFs. A related study reported that one-third of global
PAs are under intense human pressure3® and this magnifies the
likelihood of habitat degradation, ultimately leading to loss and
extinction of species?(. Efforts in forest protection and conserva-
tion across Southeast Asia’s IFs and PAs thus need to be
strengthened if the aim is to alter the past-to-present trajectories of
forest cover loss. A strong commitment and political will among
government leaders toward regular monitoring and evaluation are
likewise needed, considering that, according to our analysis, over
88% of Southeast Asia’s forests are unprotected, being outside the
PAs, and only about 14% of the region’s IFs are within the PAs
(Supplementary Figure 4; Supplementary Table 5).

Indeed, it is imperative for decision makers to preserve the
remaining IFs in the region!”, which represent about 9% of the
world’s total tropical IFs!3. IFs are not only better at providing
ecosystem services compared to degraded forests, but also help in
the restoration of surrounding areas!341. IFs are better at storing
carbon than fragmented landscapes*2. Intact peat swamp forests
also have ground water tables that are close to the forest floor,
making neighbouring forest biomass permanently moist and
resilient to fire*3. Meanwhile, PAs are important strategies for
habitat and biodiversity conservation. Deforestation rates within
PAs are significantly lower than outside PAs>38, and thus areas
where IFs have suffered and/or are currently experiencing habitat
loss should be included within the PAs.

Not surprisingly, the projected AFCS gains and losses would
not be uniformly distributed across space, that is, across countries
and among the provinces within each country. At the country
level, Indonesia, Malaysia, Myanmar and the Philippines would
be the top nations in terms of future AFCS gain, and Indonesia,

Malaysia, Cambodia, Vietnam and Myanmar would be hotspots
for future AFCS loss (Fig. 2; Supplementary Table 2). Our results
also revealed the top provinces in terms of AFCS changes across
the five SSPs, allowing the identification of hotspot provinces for
future forest cover and AFCS losses (Fig. 3; Supplementary
Table 3). While old growth forests and IFs need to be protected
and preserved!>#4, secondary forests that are outside PAs should
also be properly managed. As IFs and PAs gain more attention
and protection®33, the pressure on secondary forests outside PAs
is expected to intensify in the coming years. In fact, our projec-
tions showed that almost 80% of the projected future AFCS loss
under the worst-case scenario would be from secondary forests
(Fig. 4d).

In the SSPs official documentation?82%32, land use is strongly
regulated under SSP 1, and tropical deforestation rates are greatly
reduced, whereas SSP 2 broadly follows historical patterns, with
some exceptions and regional disparities in environmental con-
servation. As such, the countries progress slowly towards the
realisation of sustainability goals, and the pressure on tropical
forests is reduced due to higher energy efficiencies and
mitigation-induced afforestation. Conversely, land use under SSP
3 has limited regulation. Forest mitigation activities are minimal,
and deforestation would continue due to competition over land,
coupled with the rapid expansion of agriculture. SSP 3, the worst-
case scenario, gives little consideration to environmental protec-
tion, and so it would result in comparatively high pressure on the
global land use system. Under SSP 4, deforestation is also
reduced, primarily through international collaboration and the
transition to a low-carbon economy. Finally, SSP 5 is char-
acterised by a fossil fuel-intensive economic growth scenario,
where a high demand for land for intensive agriculture, coupled
with delayed international cooperation, results in deforestation,
but at a slower rate compared to SSP 3. Overall, based on these
five SSP storylines?82%32 and our results (Figs. 1-4; Supplemen-
tary Table 2), SSP 1 is the best-case scenario and thus considered
to be the most desired pathway. However, one may ask: Is it likely
to happen?

The forest transition theory can perhaps help to explain the
plausibility of this scenario. The theory suggests that the socio-
economic development of a country can prompt the transition
from a shrinking to an expanding forest area, as demonstrated in
many of the now so-called developed countries where forests
contracted in the past when they were still developing#>—47.
Although not framed in the context of this theory, a recent
analysis of global land change provides indications that there has
indeed been forest expansion in recent decades (from the 1980s to
2010s)#8. This study found that global tree cover had increased
by 7.1% (2.24 million km?) over a 35-year period, owing to the
net gain in the extra-tropics outweighing the net loss in the
tropics®8.

Some countries in Southeast Asia demonstrated a substantial
amount of forest cover gain over the 1992-2015 period, as shown
by our results (Supplementary Figure 7), which are consistent
with those of other studies!”-2248, However, the total forest cover
loss still outweighed the total gain. It is therefore necessary to at
least slow down the deforestation rate and continue, or even
increase the efforts in reforestation and afforestation. Another
recent study found that population pressure and food production
are important factors driving forest contraction in Southeast Asia,
and that agricultural efficiency is among the possible factors
affecting forest expansion in the region?2. As developing nations
improve economically, their capacity to provide off-farm
employment and improve agricultural productivity may
increase, thus leading to the abandonment of marginal agri-
cultural lands2247-49, Forest transition hypothesises that such land
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abandonment is to be followed by forest regeneration and tree
plantation®47->0, thus supporting the likelihood of SSP 1.

Economic development may also strengthen the capacity of
developing nations to implement reforestation programmes°!
and/or conserve their own forest resources®>>3. There is, how-
ever, a possible drawback in the latter, relating to the leakage
effect, where deforestation may be displaced to neighbouring
locations due to the migration of deforestation agents or the trade
of timber and agricultural products, thus decreasing the regional
and global environmental benefits of policies aimed at conserving
natural ecosystems>3. In addition to socioeconomic development,
forest scarcity is another key driver of forest transition?2>4, The
scarcity of forests drives forest conservation and protection aimed
at stabilising the market prices of forest products and restoring
depleted ecosystem services®»>>. In Southeast Asia, it has been
found that countries experiencing forest expansion since 1990 are
also those with relatively less remaining forest area, and that
countries with relatively more remaining forest area continue to
lose forest cover??.

The New York Declaration on Forests (http://forestdeclaration.
org), if realised, can certainly help improve the likelihood of SSP
1. The declaration is a voluntary and non-binding international
initiative that aims to end natural forest cover loss and calls for
the restoration of degraded and deforested lands. The New York
Declaration’s aim also overlaps with the UN’s sustainable devel-
opment goals (SDGs) (https://sustainabledevelopment.un.org),
the Paris Agreement (https://unfccc.int/process-and-meetings/
the-paris-agreement/the-paris-agreement), the Bonn Challenge
(http://www.bonnchallenge.org) and the legally binding Aichi
Biodiversity Targets (https://www.cbd.int/sp/targets). Target 11 of
the Aichi Biodiversity Targets (2011-2020) states that, by 2020, at
least 17% of terrestrial and inland water areas are conserved, a
measure that would certainly help in reducing direct deforesta-
tion>®. While Target 11 is currently partly achieved, at 14.8% as of
June 2017, it is believed that a similar or more ambitious target
would follow in the post-2020 Strategic Plan for Biodiversity°.
This would, to a great extent, facilitate regional progress in halting
deforestation and the better conservation and management of
both IFs and PAs.

These international initiatives are important as they, to some
extent, help guide our actions and shape our visions for the
future. Other international programmes are also available, like the
United Nations Programme on Reducing Emissions from
Deforestation and Forest Degradation (UN-REDD Programme)
which supports developing countries to develop capacities needed
to meet the requirements for reducing emissions from defor-
estation and forest degradation and the role of conservation,
sustainable management of forests and enhancement of forest
carbon stocks in developing countries (REDD+) (https://www.
un-redd.org/; https://redd.unfccc.int/; http://www.fao.org/redd/
en/). In addition, the awareness that government leaders and
their respective peoples have of various global environmental
issues, including deforestation and its widespread consequences,
has also undoubtedly increased in the last few decades. Arguably,
all of these things can have a significant impact towards forest
protection, conservation and expansion, sustaining the likelihood
of SSP 1—the sustainability scenario.

It should be stressed, however, that for the projected forest
cover gains to be achieved, especially under SSP 1, efforts should
focus on both the protection and conservation of the remaining
forests and the expansion of forest cover through reforestation
and/or afforestation. We recognise the importance of tree plan-
tations for economic purposes in most of the countries in the
region, but tree plantations for ecological purposes must also be
considered. An example is the Philippines’ 2011 forest rehabili-
tation initiative, called the National Greening Program (NGP),

which initially aimed to plant 1.5 billion trees on 1.5 million ha by
2016, and is a government priority programme to reduce poverty,
promote food security, environmental stability and biodiversity
conservation, and enhance climate change mitigation and
adaptation®’>°8, The programme has been expanded (ENGP;
2016-2028) with the aim of reforesting all remaining unpro-
ductive, denuded, and degraded forestlands nationwide, com-
prising about 7.1 million ha, which also contribute to
environment-related risks such as soil erosion, landslides, and
flooding™. Perhaps, at this stage and in relation to SSP 1, it is
important for individual countries to formulate, if not yet avail-
able, similar initiatives that also consider the future environ-
mental goal of tree planting or re-greening (i.e. reforestation and/
or afforestation for biodiversity and regulating and supporting
services), focusing not only on its economic prospect (i.e. tree
planting for a near-future harvest of provisioning services). In this
regard, strong policy support is needed.

With regards to uncertainties, our results are mostly dependent
on the extent of forest cover changes (loss and gain) in recent
decades, and that the choice of input data was therefore critical
for this study. Without prejudice to the other possible data
sources and considering our requirements for data selection (see
Methods), we used the ESA-CCI land cover maps as our data
source to detect forest cover changes from the recent past to the
present. Our derived forest/non-forest (F/NF) maps enabled us to
detect both forest cover losses and gains at the same time at the
country and province levels (Supplementary Figure 8). Other
important databases, such as the Forest Resources Assessment’s
(FRA) records®, could not provide such information (i.e. refer-
ring to both gains and losses). The FRA’s statistics could only
provide a net change estimate, but more importantly, do not
assess the spatial patterns of forest cover changes and, unlike our
study, employ a land use definition of forest that also includes
bare areas where trees are expected to regenerate, while excluding
areas with tree cover under agricultural or urban land use®l. In
this study, the derived past-to-present forest cover losses and
gains were useful in the quantification of the potential future
forest cover losses under SSPs 3 and 5 and the potential future
forest cover gains under SSPs 1, 2 and 4 in each country (Sup-
plementary Figure 8a). The spatial locations of these past forest
cover gains and losses were helpful in the calibration and mod-
elling of TPMs for future forest cover gains and losses (Supple-
mentary Figures 8b, 5 and 6).

Our detected C emission rate of 100 Tg C yr~! in Southeast
Asia due to AFCS loss over the 2005-2015 period, through the
use of the ESA-CCI land cover-derived F/NF maps, is close to the
118 Tg C yr~! emission rate found by Baccini et al.!* over the
2004-2014 period (Supplementary Table 1). While Baccini et al.’s
emission rate is slightly higher, this is expected because their
estimation of C emission was performed on an annual basis, thus
also including the increment in biomass due to the growth of
trees that occurred before deforestation. Some difference is also
related to the discrepancy between the 2000 AGB map that we
used and the time-series AGB maps (2004-2014) used by Baccini
et al. Nonetheless, this comparative analysis offers confidence in
our input data and results.

On the other hand, based on the same input AGB dataset (see
Methods), the forest loss data for the 2005-2015 period by
Hansen et al.!? resulted in a C emission rate of 235 Tg C yr~1,
more than twice as high as our finding based on the ESA-CCI
land cover-derived F/NF maps and that of Baccini et al.l4 (Sup-
plementary Table 1). The large difference in quantity between
Hansen et al.’s forest loss and our detected forest loss over the
2005-2015 period could explain the apparent large difference in
C emission rates. In turn, the difference in forest loss is probably
due to the interaction of the different forest definitions and spatial
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and temporal resolutions of the two datasets, making it difficult to
disentangle the various factors. Certainly, the relatively coarse
(300 m) ESA-CCI maps may have missed fine-scale deforestation
events which were captured by the high-resolution map (30 m) of
Hansen et al. The fine-scale forest losses are mostly typical of
continental Southeast Asia, where about 20% of the total forest
loss was detected by Hansen et al.’s dataset®2, while the large-scale
deforestation events occurring in insular Southeast Asia are
considered detectable by the ESA-CCI maps (Supplementary
Table 1). That said, the use of fine resolution data is advisable
where possible, especially in areas characterised by small-scale
forest dynamics.

A global study on greenhouse gas emissions from tropical
forest degradation and deforestation between 2005 and 2010
found that 41% (2.56 Gt CO, yr—1) of the emission due to
deforestation came from Southeast Asial®. At a ratio of 1 Mg C is
to 3.67 Mg CO,3¢, this translates to an emission rate of 697 Tg C
yr—L. However, a comparison could not be made, as this estimate
includes not only aboveground live biomass, but also other pools,
including belowground live biomass, dead organic matter and soil
organic matter, which were not considered in our study. This is
especially true given that most of the emissions from the peatland
forests of Southeast Asia are from the soil carbon pool®3-64,

As in the FRA’s records®?, the SSP Public Database, Version 1.1
(https://tntcat.ilasa.ac.at/SspDb) only reports values that would
result in a net change estimate when the difference between two
projected values at two different time points is determined. As a
result, we could only simulate the net change: whether a parti-
cular SSP would either be gaining or losing forest cover. A
database or study that also reports on both gross forest cover
gains and losses!®1719 would allow land change models to
simultaneously simulate the potential gains and losses of forest,
making the forest cover change scenario more realistic. This
aspect of the SSP Public Database could thus be considered in its
future development.

There is also a need to downscale the SSP’s projected socio-
economic variables, such as population and gross domestic pro-
duct®>-%7, to enable researchers to examine how these projected
variables would relate to the spatial pattern of future forest cover
changes. In such a case, a forest cover change scenario modelling
can be conceptualised, and be based purely on the projected
quantities and spatial locations of future forest cover changes. The
other limitations of our study relate to our land change modelling
procedure and our approach in sub-classifying forest. Our land
change modelling procedure could not capture the fluctuation
(quantity) and direction (loss or gain) of forest cover changes in
every 10-year interval within the whole 2015-2050 period, as
depicted in the SSP Public Database, Version 1.1. Our approach
in sub-classifying the forest class might also have resulted in a
conservative result, suggesting that there is much less old growth
and old secondary forests (Fig. 4; Supplementary Figure 3). This
is because the approach, which is based mainly on IFL, ACD and
CSR, did not explicitly take forest degradation into account. For
instance, an old growth, or an old secondary forest stand, which
has been experiencing forest degradation might have been clas-
sified as young secondary forest due to its low ACD. Thus, our
results should be interpreted on the basis of the assumptions
made (Supplementary Figure 2).

Methods

Research design. In this study, we focused on the spatial allocation of the pro-
jected quantities of future forest cover changes in Southeast Asia from 2015 to 2050
under the five baseline SSPs, employing a state-of-the-art spatially explicit land
change modelling approach and using remotely sensed data. The potential impli-
cations of these spatially allocated projected forest cover changes were examined by
quantifying their consequent AFCS changes at the country and province levels,
within the IFs and PAs, and across forest classes in Southeast Asia.

Projected future forest cover data. The data on projected quantities of future
forest cover were downloaded from the SSP Public Database, Version 1.1 (https:/
tntcat.iiasa.ac.at/SspDb)28:2932, More specifically, the downloaded Microsoft Excel
file contained projected areas of various land uses, including forest, from 2005 to
2010, and then at a 10-year interval from 2010 to 2100. For this study, we con-
sidered only the forest cover projections from 2015 to 2050 under the five baseline
SSPs. The said projected areas of forest cover are limited only to quantities at the
global and regional levels and have no spatial dimension. At the regional level, the
world is divided into five regions, the OECD, Reforming Economies, Asia, Middle
East and Africa, and Latin America and the Caribbean. In the Asian region, SSPs 1,
2 and 4 show an increasing trend in forest cover between 2015 and 2050, and SSPs
3 and 5 show a decreasing trend. SSP 1 would have the highest increase (c. 38
million ha), while SSP 3 would have the greatest decrease (c. 10 million ha)
(Supplementary Figure 9).

Past-to-present forest maps for spatiotemporal modelling. Past-to-present
forest maps were needed in this study to facilitate the analysis. Various global forest
and land cover datasets are available, including Hansen et al.’s data (global tree
canopy cover in 2000 and c. 2010, forest cover loss between 2000 and 2018 and
forest cover gain between 2000 and 2012, all in 30 m spatial resolution) (https://
earthenginepartners.appspot.com; https://landcover.usgs.gov)!?, the GLOBE-
LAND30 (30 m 2010 land cover map) (www.globallandcover.com)®®, the ALOS
PALSAR Forest/Non-Forest maps (25 m forest/non-forest map for 2007-2010,
2015-2016) (www.eorc.jaxa.jp)®’, the Landsat Tree Cover (30 m tree cover con-
tinuous field for 2000, 2005, 2010, 2015) (http://glcf.umd.edu)?%, the ESA-CCI
(300 m land cover for 1992-2015, annually) (www.esa-landcover-cci.org)’!, and
MODIS data (c. 250 m vegetation continuous fields for 2000-2010, annually; c. 500
m land cover for 2001-2012, annually) (http://glcf.umd.edu)’2. We selected the
dataset for this study based on two basic requirements. First, the dataset should be
able to cover a span of at least 20 years. And second, the dataset should be spatially
and thematically consistent across the years it covers.

The Landsat Tree Cover dataset’? was a candidate, but a larger time span (from
the 1990s) was needed for this study in order to facilitate the detection of forest
cover changes, especially forest cover gains, which were needed in the calibration
process of the land change model used in this study (Supplementary Figure 8). A
decadal time span is often necessary for forest cover gain to become clearly
detectable from medium spatial resolution satellite imagery such as those of
Landsat. Furthermore, to separate the forest from the non-forest pixels in the
Landsat Tree Cover dataset would require an intensive classification procedure via
thresholding, as well as rigorous validation of the classification results. A previous
study found that the forest classification errors detected for the Landsat Tree Cover
dataset, including those of the global tree canopy cover and the MODIS vegetation
continuous field, were sensitive to the thresholds used’>.

The ESA-CCI land cover dataset (v2.07), produced by the European Space
Agency (ESA)—Climate Change Initiative (CCI)”!, was also among the datasets
assessed in the previous study’3. Focusing on Philippine forests, this study found
that the ESA-CCI land cover dataset had the least disagreement with the reference
dataset used among the various datasets examined and compared in terms of forest
cover’3, Taking this into consideration, alongside the data selection requirements
explained above (i.e. a time span of at least 20 years and spatial and thematic
consistency), we decided to use the ESA-CCI land cover dataset. The spatial and
thematic consistency requirement ensures that the selected land cover dataset can
facilitate forest cover change detection and spatiotemporal analysis.

We downloaded the 1992, 2005 and 2015 ESA-CCI land cover maps from the
official website (www.esa-landcover-cci.org) and projected them onto the Asia
South Albers Equal Area Conic projection system, hereafter the Albers projection
system. The land cover maps have a thematic resolution of 37 land cover categories,
which we reclassified into two categories, forest and non-forest, following the
reclassification procedure used in Estoque et al.”3. Forest is therefore defined here
as lands classified under any of the following categories as per the ESA-CCI land
cover dataset (v2.07): (class codes 50, 60-62) tree cover, broadleaved, evergreen and
deciduous, closed to open; (class codes 70-72, 80-82) tree cover, needleleaved,
evergreen and deciduous, closed to open; (class code 90) tree cover, mixed leaf type
(broadleaved and needleleaved); and (class codes 160, 170) tree cover, flooded,
fresh or brackish water, saline water. The resulting maps are herein called forest/
non-forest (F/NF) maps.

Spatiotemporal modelling. The future projections of forest cover under the five
SSPs enabled us to calculate the extents of potential future forest cover changes
(losses and gains) between 2015 and 2050 across the countries in Southeast Asia.
As mentioned earlier, however, these derived future forest cover changes are
limited to quantity and have no spatial dimension. To make these projected future
forest cover changes more meaningful and useful, they needed to be spatially
allocated.

Studies that are closely related to this present study include those of
Kubiszewski et al.” and Hasegawa et al.”%. Kubiszewski et al.?’ spatially allocated
the quantities of future global land use/land cover changes projected under the four
great transition scenarios at 1 km x 1 km grid resolution. In their spatial allocation
of future forest cover change, they applied a rule based on adjacency or
neighbourhood. More specifically, under a scenario in which forest area would
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increase by 2050, the forest category was set to gain only from its adjacent grids of
different land use/land cover categories. Similarly, under a scenario in which the
forest category would decrease by 2050, the forest category was set to decrease
through its outermost grids. In cases where the total area available was not enough
to meet the land change demand, a slack variable and random terrestrial layer were
used to absorb gains and losses.

On the other hand, Hasegawa et al.”%. developed a land use allocation model
and applied it in the context of SSP 2. They used carbon stock density in their
spatial allocation of projected future global forest cover quantities by 2100 under
two scenarios (baseline and mitigation) at 0.5° x 0.5° grid resolution. More
specifically, afforestation was assumed in non-forest areas with a carbon stock
density lower than 2 kg C m~2, a definition used to differentiate forest and non-
forest areas in an earlier study’®. Forest and other natural vegetation were allocated
on other lands based on the carbon stock density in each grid but excluding
pasture. For the allocated forest area and the statistically determined forest area to
be the same, a level of carbon stock density between forest and grassland was
determined’.

In this study, we developed and applied an alternative approach for spatially
allocating the projected future forest cover changes (Supplementary Figure 8). Our
method was built on a state-of-the-art spatially explicit, pattern-based land change
modelling approach”®, and employed the Land Change Modeler (LCM)”7, which is
available in a software package called TerrSet. The approach included three major
parts: forest cover change quantification, transition potential modelling, and forest
cover change spatial allocation.

Forest cover change quantification. Using the reclassified F/NF maps, forest
cover losses and gains were detected between 1992 and 2015 for the whole of Asia,
one of the five SSP regions as described above. The percentage share of each
country to the region’s past total forest cover loss and gain was determined. These
per country percentage shares of forest cover loss and gain were used as a multi-
plicative factor to proportionally allocate the region’s projected forest cover losses
and gains (2015-2050) among all the countries in the region under the five SSPs.
The entire process resulted in a projected quantity of forest cover loss or gain per
country under each SSP (Supplementary Figure 8a). Here, we only focused on
Southeast Asia, and thus, we only used the results for the 11 Southeast Asian
countries. The country boundary layer was sourced from https://gadm.org.

Transition potential modelling. The overall purpose of our transition potential
modelling was to locate or identify the areas or pixels with higher propensity or
likelihood to gain (under SSPs 1, 2 and 4) and lose (under SSPs 3 and 5) forest, so
that the projected quantities of forest cover loss and gain per country in Southeast
Asia (2015-2050) can be spatially allocated. To do this, we used LCM’s Multi-Layer
Perceptron Neural Network (MLP NN), which employs the back-propagation
algorithm (see also TerrSet Help System’®). Country by country, the F/NF maps for
2005 and 2015, together with seven spatial driver variables, were used as input into
the transition potential modelling framework in which MLP NN was used. The
seven spatial driver variables included elevation, slope, distance to road, distance to
urban area, forest cover loss or gain share per province, distance to deforested or
reforested area, and distance to forest edge, inward or outward (Supplementary
Figure 8b). The elevation map, resampled (bilinear) to 300 m, was derived from the
30-m Shuttle Radar Topography Mission (SRTM) data (www2.jpl.nasa.gov/srtm/).
The slope map was derived from the elevation map. The distance to road map was
produced based on the road network map available from www.diva-gis.org. Dis-
tance refers to Euclidean distance for all the distance variable maps. The province
boundary layer was sourced from https://gadm.org. Like the derived F/NF maps, all
the spatial data were projected onto the Albers projection system.

The transition potential modelling (Supplementary Figure 8) included the
processes of training and testing using sample pixels that were randomly selected
by the LCM’s MLP NN (Supplementary Table 7). For instance, for the transition
forest to non-forest, samples of equal size were randomly selected from both the
pixels that experienced forest loss and those pixels that were eligible to change but
did not (persistence). Of the total samples selected, half (50%) was used for
training, while the other half (50%) was used for testing. Based on the training
samples and the resulting transition potentials of the pixels, the model performed a
F/NF classification, the results of which were compared against the testing samples
(see Model Validation section below). The pixel values of the TPMs
(Supplementary Figures 5 and 6) were considered probability of change given that
the prior probability of change was 0.5 because of the equal size of samples from
the changed pixels and non-changed pixels (persistence). More details can be found
in TerrSet Help System’8.

Forest cover change spatial allocation. Two types of input were needed in our
country level forest cover change simulation per SSP, and these were the quantified
forest cover change (loss or gain) and the TPM for forest cover change (loss or
gain) (Supplementary Figure 8c). The LCM allows the user to input a transition
matrix. In our case, this was a 2 X 2 transition matrix that contained the quantities
of forest and non-forest pixels that would change and persist at the end of the
simulation period (2050). These quantities were expressed as proportions of the
total number of pixels in the forest and non-forest categories at the start of the

simulation period (2015) (see Supplementary Table 8 for details). The model then
allocated the quantity of change based on the TPM, first selecting the pixels with
the highest probability to change until the change demand was met. We assumed
that forest would not replace the existing pixels of built-up (urban areas) and water
bodies. The results of our simulations were F/NF maps per country per SSP by
2050, which we later mosaicked. Forest cover change maps (2015-2050) were
produced for the whole of Southeast Asia and used in the subsequent analyses.

Model validation. The MLP NN algorithm in LCM outputs a statistic called SM
which indicates the predicted power of the TPMs (Supplementary Figures 5 and 6).
SM is a robust validation measure because it compensates for the dependence of
expected accuracy on the number of transitions and persistence classes. It is cal-
culated as Eq. (1)78:

A—E(A)

M5

(1)
where A is the measured accuracy based on a confusion matrix. E(A) is the
expected accuracy, expressed as: E(A) = 1/(T + P), where T is the number of
transitions in the model and P is the number of persistence classes or the number
of from in the sub-model. SM has a value ranging from —1 (worse than chance) to
+1 (perfect prediction), where zero indicates no better than chance. Our model
validation results are given in Supplementary Table 5.

Detecting losses in carbon stock from 2005 to 2015. We detected the AFCS
loss in Southeast Asia between 2005 and 2015 based on the forest loss detected
from our derived F/NF maps and an aboveground biomass (AGB) dataset for the
year 2000, which we sourced from http://data.globalforestwatch.org. The 2000 AGB
represents aboveground live woody biomass density and has a spatial resolution of
~30 m, with data values expressed in Mg ha~!. We first projected this dataset to the
same projection we used for the ESA-CCI land cover dataset before aggregating
(mean) it to 300 m spatial resolution to be consistent with our F/NF maps. The
carbon (C) content of the biomass data was then determined using a ratio of 0.57°.
The pixel values of the resulting aboveground C density (ACD) map were
expressed as Mg C ha~!. We then masked this ACD map with the detected forest
cover loss before proceeding with the calculation of the total AFCS loss in each
country, Y, between 2005 and 2015 (Eq. (2)):

n
AFCS LOSSY(ZOOS—ZOIS) = Z ACD; 5009 % 4; (2)
i=1
where ACD; and A; refer to the 2000 aboveground carbon density (Mg C ha—1) and
the land area (ha), respectively, of pixel i; and » is the number of pixels of the
detected forest cover loss (2005-2015) with an ACD value within each country, Y.
For purposes of comparison, we repeated the above procedure using a different
forest loss dataset over the same period (2005-2015), this time from Hansen
et al.!%. To maintain consistency in procedure and facilitate geoprocessing, we also
projected Hansen et al’s 30 m forest loss data to the same projection we used for
the other datasets before aggregating (majority) them to a 300 m spatial resolution.
We also compared our results on AFCS loss per country with the results from
Baccini et al.14.

Projecting changes in carbon stock from 2015 to 2050. To estimate the
potential future AFCS loss under SSPs 3 and 5 due to forest cover loss by 2050, we
first sub-classified the forest class into old growth forest, old secondary forest and
young secondary forest based on the spatial coverage of the 2016 intact forest
landscape (IFL)%0, the 2010 ACD data and CSRs (see Supplementary Figure 2;
Supplementary Table 4). This is because primary or old growth forests and sec-
ondary or second growth forests differ in their respective C stocks and CSRs.
Primary forests store at least 30% more C than secondary forests (including
degraded and logged forests), primarily because most living biomass C is contained
in large, old trees8*81. In the Moluccas, Indonesia, for instance, the AGB of pri-
mary forests was 2.5 times higher than that of secondary forests in the areas?. On
the other hand, the CSRs of secondary forests are higher than those of old growth
forests (Supplementary Table 4). Secondary forests even differ in CSRs between
themselves. For instance, old secondary forests have lower CSRs than young sec-
ondary forests®2. CSRs are also dependent on geographic location, for example,
continental vs. insular®2. Supplementary Figure 2 outlines our approach in sub-
classifying the forest class into old growth forest, old secondary forest and young
secondary forest and its annual sub-classes, and Supplementary Table 4 provides
the CSRs we used, considering forest classes and types and geographic location.
The three most important input data sources in our approach for forest sub-
classification were the 2015 F/NF map, the 2016 IFL dataset®? and the 2010 AGB
dataset®3, converted into ACD (Supplementary Figure 2). The 2016 IFL dataset is
in the form of a polygon layer. The 2010 AGB dataset has a spatial resolution of
100 m and it is the most recent publicly available dataset at 100 m spatial
resolution. A 2015 AGB dataset, coinciding with the year of our current F/NF map,
would have been ideal, but such data are not available. To our knowledge, the most
recent pantropical ACD dataset (2014) with an approximate spatial resolution of
500 m was produced by Baccini et al.!4. Unfortunately, the 2014 ACD raster layer is
not publicly available (www.thecarbonsource.org). We thus used the 2010 AGB
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dataset from Santoro et al.3? in this study. The results of Baccini et al.'4 have,
however, been considered in our comparative analysis, as described above. The
other datasets used included the polygon layers of the 2010 ecological zones
(ecozones)®* and the continental and insular geographic areas®. Like the other
datasets, all these datasets were also projected onto the Albers projection system.
The 2010 AGB dataset, with data values expressed in Mg ha~!, were also
aggregated (mean) to 300 m spatial resolution. The C content of this biomass data
was also determined by using a ratio of 0.57% and values were also expressed in Mg
C ha~! (ACD).

After the sub-classification of the forest class, we projected the future (2050)
ACD of all the 2015 forest pixels with corresponding 2010 ACD data, and those
that were within the spatial extents of the ecozones and geographic location data
layers. Our calculations considered the CSRs across forest classes, types, sub-classes
and geographic location (Supplementary Table 4). Eq. (3) was used for old growth
forest and old secondary forest.

ACDj, 505) = ACD), + (CSR;, x GP) 3)

where ACDj; and CSR;; refer to the 2010 above ground carbon density (Mg C
ha~!) and carbon sequestration rate (Mg C ha~! year—1), respectively, of pixel j
which is a member of sub-class s of old growth forest and old secondary forest; and
GP refers to the growth period (40 years) for old growth forest and old secondary
forest from 2010 (the year of the ACD) to 2050 (the end year of the projection).
Examples of old growth forest and old secondary forest sub-classes are Old Growth
Forest-Tropical Rainforest-Insular and Old Secondary Forest-Tropical Dry Forest-
Continental, respectively (Supplementary Table 4).

The ACD values of the sub-classes of young secondary forest (i.e. age < 20
years) were first projected to old secondary forest-equivalents (i.e. 21-year-old
equivalent) using their respective CSRs and based on their respective ages
(Supplementary Table 4) (Eq. (4)), where their respective ages were obtained by
dividing their ACD by their respective CSRs (Supplementary Figure 2).

ACDks.Zlyo = ACDks + (CSRks>< (T - Gks)) (4)

where ACDy;, CSRy; and G, refer to the 2010 above ground carbon density (Mg C
ha~1), carbon sequestration rate (Mg C ha—! year—!) and age, respectively, of pixel
k which is a member of sub-class s of young secondary forest; and T is the
minimum age for old secondary forest (21 years). An example of a young
secondary forest sub-class is Young Secondary Forest-Tropical Rainforest-Insular-
Age 1 (Supplementary Table 4).

The ACD projection to 2050 was then performed using Eq. (3), with GP
becoming (GP = (2050 — 2010) — (T — Gy,)), where 2010 is the year of the ACD
and 2050 is the end year of the projection. This process considers the transitioning
of young secondary forest into old secondary forest during the AFCS projection
period (2010-2050), requiring the use of different CSRs. The transition of old
secondary forest into old growth forest, however, could not be considered because
of the lack of a threshold for age that could separate these two forest classes
(Supplementary Table 4).

After projecting the 2010 ACD to the year 2050, the forest classes, types and
their sub-classes were all mosaicked. The pixels that corresponded to the projected
forest losses from 2015 to 2050 under SSPs 3 and 5 (Fig. 1) were then extracted
from the mosaicked 2050 ACD map, and the total potential future AFCS loss in
each country, Y, and province, V, was calculated (Eq. (5)):

n
AFCS LOSSY7V<2015,2050) = Z ACD; 5950 % 4A; (5)
i=1

where ACD; and A; refer to the 2050 projected above ground carbon density (Mg C
ha~!) and the land area (ha), respectively, of pixel 4; and # is the number of pixels
of the projected forest cover loss (2015-2050) with an ACD value within each
country, Y, or province, V. Here, it is assumed that deforestation will happen in
2050.

To estimate the potential future AFCS gain due to forest cover gain under SSPs
1, 2 and 4, we assumed that trees would be planted not at one time, but rather across
the 35-year period (2015-2050). Thus, to estimate the potential future AFCS gain,
we used 17.5 years as the GP for afforestation/reforestation, along with the CSRs for
young secondary forest (Supplementary Table 4). The projected forest cover gains
were first sub-classified according to ecozones and geographic locations to match
with the CSRs, followed by the calculation of the 2050 ACD values (Eq. (6)):

ACD, 350 = CSR,, x GP (6)

where CSR,; refers to the carbon sequestration rate (Mg C ha~! year™!) of pixel g
of the projected forest cover gain which is a member of sub-class s of the new
young secondary forest; and GP refers to the growth period (17.5 years) for the
projected young secondary forest.

After calculation, the new young secondary forest sub-classes, now with 2050
ACD values, were mosaicked and the total potential future AFCS gain by each
country, Y, and province, V, under SSPs 1, 2 and 4 was calculated (Eq. (7)):

m
AFCS Gainy y;015-2050) = Z ACD, 5050 % Aq (7)
q=1

where ACD, and A, refer to the 2050 projected aboveground carbon density (Mg C

ha=!) and A, is the land area (ha), respectively, of pixel g; and m is the number of
pixels of the projected forest cover gain (2015-2050) within each country, Y, or
province, V.

Carbon stock losses in intact forests and protected areas. Following Eq. (5), we
summarised the projected future AFCS losses, including the projected forest cover
losses themselves, across forest classes (old growth forest, old secondary forest and
young secondary forest) and the other landscape types of high ecological impor-
tance, the IFs and PAs. The IFs dataset was the 2016 IFL dataset!®> (www.
intactforests.org), which had been used earlier (Supplementary Figure 2). The PAs
dataset was the World Database on Protected Areas (WDPA) dataset3¢ (www.
protectedplanet.net). Like the IFL dataset, the WDPA dataset comes in the form of
a polygon layer, which we also projected onto the Albers projection system.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The sources of all the data used are given in the Methods section. All the geospatial data
associated with the results presented, as well as the R code used, are available from the
first and corresponding author upon request.
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