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Abstract: Every metal and metallurgical industry is associated with the generation of wastewater,
influencing the living and non-living environment, which is alarming to environmentalists. The
strict regulations about the dismissal of acid and metal into the environment and the increasing
emphasis on the recycling/reuse of these effluents after proper remedy have focused the research
community’s curiosity in developing distinctive approaches for the recovery of acid and metals
from industrial wastewaters. This study reports the synthesis of UiO-66-(COOH)2 using dual lig-
and in water as a green solvent. Then, the prepared MOF nanoparticles were introduced into the
DMAM quaternized QPPO matrix through a straightforward blending approach. Four defect-free
UiO-66-(COOH)2/QPPO MMMs were prepared with four different MOF structures. The BET char-
acterization of UiO-66-(COOH)2 nanoparticles with a highly crystalline structure and sub-nanometer
pore size (~7 Å) was confirmed by XRD. Because of the introduction of MOF nanoparticles with
an electrostatic interaction and pore size screening effect, a separation coefficient (SHCl/FeCl2) of 565
and UHCl of 0.0089 m·h−1 for U-C(60)/QPPO were perceived when the loading dosage of the MOF
content was 10 wt%. The obtained results showed that the prepared defect-free MOF membrane has
broad prospects in acid recovery applications.

Keywords: UiO-66; diffusive dialysis; cation separation; acid recovery

1. Introduction

A large amount of acidic wastewater comes from metallurgy [1], printing and
dyeing [2], chemical production [3], mining of mineral resources [4], etc. In China, the
pickling process of stainless steel in metallurgy alone produces at least 650,000 tons of
acidic waste liquid every year [5]. The main hazards of acid mine drainage (AMD) to the
environment are acid, sulfate, and metal ion pollution. Fe2+ is the most common metal
ion in AMD, accounting for the vast majority of its content. Fe2+ and dissolved oxygen in
the water will oxidize and precipitate into iron hydroxide, making the water brownish-
yellow AMD have a low pH value and corrosion. It can dissolve metals in the soil, rocks,
and sediments and increase the concentration of metal ions in the water environment [6].
Dumping these waste acids into the environment can corrode metal pipes and contaminate
water and soil, posing a severe threat to human and animal health. Therefore, acid recovery
from acidic waste liquid can save resources and play a significant role in protecting the
environment. The emerging diffusion dialysis (DD) membrane separation technology
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driven by osmotic pressure has a high selectivity for acid recovery with no by-products, so
it is cost-saving and more environmentally friendly. The development of effective and eco-
friendly regeneration methods to recover acids from these industrial wastes has attracted
the attention of many researchers and has excellent ecological and economic prospects.
To improve the performance of the anion exchange membrane (AEM) in the DD process,
Lin et al. [7] prepared a porous membrane using brominated polyphenylene ether (BPPO)
with a high chemical stability and mechanical properties through non-solvent induced
phase separation. They then performed one-step cross-linking and quaternization of porous
BPPO membrane substrates with 1, 4-diazacyclic [2.2.2] octane. The acid dialysis coefficient
was as high as 0.066 m·h−1, and the acid/salt separation coefficient was up to 96.9, which
is more promising than the commercial AEM.

Metal-organic framework (MOF) is a new crystalline material characterized by a
high porosity, elastic pore properties, ordered nanochannels, large functional groups, high
thermal stability, and chemical stability [8]. Because of its simple synthesis, clear geometric
structure, and excellent performance, MOF has been applied in many fields, such as energy
recovery and storage [9], gas separation [10], catalysis [11], and sensors [12], and drug
delivery [13]. Most MOF has a pore size distribution in the angstroms range, such as
ZIF-8, MIL-101, and UiO-66, with a pore size of 6.0~8.0 A, and has been used in screening
MOF-based films [14,15]. Large functional groups on the surface of MOF can make it
charged, and MOF with functional groups can achieve the attraction/repulsion of target
ions in water treatment. Therefore, when MOF is prepared into a membrane, H+ with a
high activity, low charge, and small radius can quickly pass through the MOF membrane.
At the same time, other metal cations (Fe2+, Zn2+, etc.) in the solution are trapped by
electrostatic reactance and aperture screening due to the large hydration radius, so that the
selective ion separation can be realized. Many MOF membrane separation works include
the separation of single/multiple ions [16], seawater desalination [17,18], etc., but there
are few studies on the application of MOF in acid recovery. UiO-66 is one of the most
stable MOF in porous materials, which is used in gas separation [19], heavy metal ion
separation [20,21], and dye adsorption [22–25] due to its stable pore size and framework
structure. In addition, MOF nanoparticles are dispersed into the polymer matrix through
mechanical agitation or ultrasonic methods, as well as the resulting MOF-based membrane.
However, because of the different physical properties of the polymer matrix, high-load
MOF particles tend to aggregate in the matrix [26,27], resulting in an uneven distribution
of MOF in the membrane and interfacial voids, which further affects the selectivity of the
membrane to the target ions. In long-term operation, these voids also reduce the mechanical
strength of the membrane [28].

In this study, we designed UiO-66-(COOH)2 in a green solvent using the dual ligand
method based on the background above. A series of defection-free mixed matrix mem-
branes for four kinds of structures of MOF with different mass fractions were prepared by
blending to realize the separation performance of HCl/FeCl2 (Scheme 1). In order to reduce
the aggregation caused by the loading MOF, dimethylamine methacrylate (DMAM) was
used for the quaternary ammonium reaction of BPPO. The -CO- in DMAM and -COOH in
UiO-66-(COOH)2 formed hydrogen bonds, thus improving the dispersion of nanoparticles
in the membrane. The design idea of the MOF membrane provides a broader platform for
obtaining high-performance acid recovery membranes.
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2. Materials and Methods
2.1. Materials

Zirconia octadeconium chloride (ZrOCl2·8H2O, AR, 99%), 2-amino-terephthalic acid
(2-NH2-BDC, AR, 98.0%), benzenetetracarboxylic acid (H4BTEC, AR, 98.0%), sodium
hydroxide (NaOH, AR, 96.0%), dimethylamine methacrylate (DMAM, 98%), and sodium
chloride (NaCl, AR, 99.5%) were purchased from Aladdin Reagent. Acetic acid (CH3COOH,
GR, 99.8%), chemical reagent of the Sinopharming Group; N-methylpyrrolidone (NMP,
99.73%), Shanghai Bidde Medical; ethanol (C2H5OH, AR, 99.7%), general purpose reagent;
sodium sulfate, anhydrous (Na2SO4, AR, 99%), Shanghai McLean; hydrochloric acid (HCl,
AR, 37%), Shanghai Test; ferrous chloride, tetrahydrate (FeCl2·4H2O, AR), Gansu Science;
and brominated polyphenyl ether (BPPO, 42% bromination), lab made.

2.2. Synthesis of UiO-66-(COOH)2

UiO-66-(COOH)2 was prepared using the dual organic ligand [29–33]. The detailed
process is as follows: 0.322 g (1 mmol) of ZrOCl2·8H2O was dissolved in 3 mL of water,
then 1.23 mL of glacial acetic acid was added and heated at 60 ◦C for 2 h to form the
metal precursor solution. Two organic ligands (2-NH2-BDC and H4BTEC) were added to
5 mL of deionized water in the proportions shown in Table 1. Then, 0.12 g (3 mmol) of NaOH
was added, and it was heated at 60 ◦C for 10 min. Then, we allowed it to dissolve until it
formed a brownish-red ligand solution, and cooled it to room temperature for later use.
Finally, the ligand solution was added to the metal precursor solution to form a yellow
solid. The mixture was heated at 80 ◦C for 12 h. The obtained product was washed with
deionized water and ethanol three times and was centrifuged at 8000 RPM to remove the
unreacted ligands and metal solution. The received UiO-66-(COOH)2 crystals were dried at
80 ◦C for 12 h to acquire a light-yellow solid powder. According to the different proportions
of ligands, the four different types of UiO-66-(COOH)2 obtained were named U-C(50),
U-C(60), U-C(70), and U-C(80).

Table 1. Ligand ratios for the preparation of four kinds of UiO-66-(COOH)2.

Ligands U-C(50) U-C(60) U-C(70) U-C(80)

2-NH2-BDC 0.322 g 0.322 g 0.322 g 0.322 g
H4BTEC 0.091 g 0.072 g 0.054 g 0.036 g

2.3. Structure of UiO-66-(COOH)2/QPPO Membrane
2.3.1. Preparation of QPPO Matrix

First, 10 g of BPPO was dissolved in 35 mL of NMP to make a transparent poly-
mer solution. Then, a separate DMAM (3.467 g/30 mL of NMP) solution was prepared
and added slowly to the BPPO solution (designated as QPPO) to avoid gelation for a
quaternarization reaction.

2.3.2. Preparation of UiO-66-(COOH)2/QPPO Mixed Matrix Membrane

The pre-ultrasonicated U-C(50) dispersion solutions, i.e., 0 wt%, 5 wt%, 7 wt%,
10 wt%, and 20 wt%/3.5 mL NMP, were added to the QPPO solution and stirred for
12 h. The well-dispersed MOF and QPPO solution was cast on a glass plate of 6 × 10 cm
and was dried at 80 ◦C for 6 h. The obtain membrane (U-C(50)/QPPO) was immersed
in deionized water for further analysis. The preparation methods of U-C(60)/QPPO,
U-C(70)/QPPO, and U-C(80)/QPPO were the same as above.

2.4. Characterization

The X-ray diffraction (XRD) measurement was determined by SmartLab 9 KW,
Rigaku Co., Ltd. (Tokyo, Japan). The BET was conducted using a fully automatic multi-
station gas physics analyzer, ASAP 2460, McMortic Instruments LTD (Shanghai, China).
Scanning electronic microscopy (SEM) J and electron microscopy (TEM) were carried out
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using a Regulus 8230, Hitachi, Japan, and field emission transmission electron microscope,
Jeol, JEM-2100, Tokyo, Japan. The ICAPQ was examined using an inductively coupled
plasma mass spectrometer, Thermo Fisher Technologies (Waltham, MA, USA). Diffusion
dialysis (DD) unit device with an effective area of 4.9 cm2, which was self-made.

2.5. Water Uptake (WU) and Linear Elongation (LER)

WU and LER refer to the content of water and the membrane expansion (%). QPPO
film with a size of 4 × 1 cm was dipped in deionized water for 24 h to make it fully absorb
the water. The water attached to the film surface was removed using tissue paper, and we
recorded the dimension changes of the wet film, which were denoted as Wwet and Lwet,
respectively. Then, the film was dried at 80 ◦C, and the quality and length of the dry film
were recorded as Wdry and Ldry, respectively. The WU and LER were calculated as follows:

WU =
Wwet − Wdry

Wdry
× 100% (1)

LER =
Lwet − Ldry

Ldry
× 100% (2)

2.6. Ion Exchange Capacity (IEC)

The IEC is generally expressed in terms of the number of exchange groups per gram of
dry film (mmol/g). The QPPO membrane was dipped in a 1 mol/L NaCl solution for 24 h.
The H+ in the membrane was completely exchanged with the Na+ in the solution. After
that, the membrane was soaked in deionized water, and the fresh deionized water was
replaced every 2 h. The process was repeated more than 10 times to completely clean the
remaining NaCl solution on the membrane surface in order to obtain the chlorinated QPPO
membrane. The membrane was dried at 80 ◦C and the dry membrane quality was recorded
as Wdry. Then, the membrane was soaked in the 100 mL 0.5 mol/L Na2SO4 solution for 8 h
to release the Cl−. K2CrO4 and 0.1 mol/L AgNO3 were used as an indicator of the titrant
for titration, respectively. The volume of AgNO3 solution was recorded as VAgNO3. The
IEC calculation method was as follows:

IEC =
VAgNO3

× 0.1
Wdry

(3)

2.7. Ion Separation Performance Test

The diffusion dialysis device consisted of two compartments, a feeding and a diffusion
chamber, and the membrane was fixed in the middle of the two compartments. The effective
area of the membrane was 4.9 cm2. The membrane was first immersed in a simulated waste
acid solution (1 mol·L−1 HCl and 0.2 mol·L−1 FeCl2) for 12 h, and was then thoroughly
cleaned with deionized water to remove the residual acid on the surface before DD. During
the experiment, 40 mL of feed solution and 40 mL of deionized water were injected into
the feeding chamber and diffusion chamber, respectively, and the mixture was stirred
to eliminate the concentration polarization. Each film was tested for 1 h at 25 ◦C. The
concentration of H+ was titrated with 0.01 mol·L−1 NaOH solution using methyl red
and bromocresol green as a mixed indicator (V methyl red/V bromocresol green ratio
of 1:3), and the solution changed from red to blue-green, which was the endpoint of the
titration. At the same time, the concentration of Fe2+ was determined using an inductively
coupled plasma mass spectrometer (ICP, ICAPQ, Thermo Fisher Technologies, Waltham,
MA, USA). The diffusion coefficients (U) of HCl and FeCl2 can be calculated using the
following equation:

U =
M

S·t·∆C
(4)

where M represents the mole amount of diffusion of a single component (HCl or FeCl2),
S represents the effective membrane area, and t represents the diffusion time. C represents
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the logarithmic mean of the concentration difference between two chambers, as defined in
the following formula:

∆C =
C0

f − Ct
d − Ct

f

ln[(C0
f − Ct

d)/Ct
f]

(5)

where C0 f and Ct f are the concentration of a single component (HCl or FeCl2) in the feed
at time 0 and t, respectively. Ct

d represents the concentration of a single component (HCl
or FeCl2) in the dialysate at time t.

The ratio of diffusion coefficients of HCl (UHCl) and FeCl2 (UFeCl2) is the separation
factor (S):

S =
UHCl

UFeCl2
(6)

3. Results and Discussion
3.1. Preparation and Characterization of UiO-66-(COOH)2 Crystal

The X-ray diffraction spectra show the crystal structure of the MOF nanoparticles. As
can be seen from Figure 1a, the synthesized UiO-66-(COOH)2 shows intense diffraction
peaks at 2θ = 7.4◦, 8.5◦, 14.8◦, 17.1◦, 25.8◦, and 30.8◦. The peaks at the six locations
correspond to the crystal planes of (111), (200), (222), (400), (442), and (711). Compared with
the XRD of the simulated UiO-66, there is no visible peak shift, which confirms the highly
crystalline structure of the MOF nanoparticles. In addition, compared with the XRD of the
standard UiO-66, the diffraction peaks of four kinds of UIO-66-(COOH)2 were diffused and
widened. According to the Debye-Scherrer formula [34], this is as a result of the smaller
particle size of the MOF nanoparticles (~50 nm), which is consistent with the results of the
transmission electron microscopy.

D =
Kγ

Bcosθ
(7)
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and simulated UiO-66. (b) Zeta potential of four different carboxyl groups of UiO-66-(COOH)2

nanoparticles. (c) Zeta potential of UiO-66-(COOH)2 with different H4BTEC contents as a function of
pH. (d) SEM and (e) TEM images of the U-C(50) nanoparticles.
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Sherrer’s formula describes the relationship between grain size and half peak width of
the diffraction peak. K is Scherrer’s constant, K = 0.89; D is the average thickness of grain
perpendicular to the grain plane (A); B is the half-height width of the diffraction peak of
the measured sample, i.e., the half-peak width; and θ is the Bragg diffraction angle, and the
unit is Angle (◦). γ is the wavelength of the X-ray, which is generally 1.54056 Å

The zeta potential results characterize the degree of charge of nanoparticles. It can
be seen from Figure 1b that the Zeta potentials of the synthesized nanoparticles are all
negative, indicating that the surface of the particles is negatively charged, which proves that
UiO-66-(COOH)2 was successfully synthesized using the dual ligand method. In addition,
with the increase of the proportion of in the organic ligand, the Zeta potential decreases
from −20.3 mV to −27.3 mV, and the electrostatic repulsion between the particles increases
gradually, indicating that the proportion of -COOH in the nanoparticles presents a trend
of gradual increase. The electrostatic interaction between cation and the UiO-66-(COOH)2
was modulated by varying the pH of electrolyte solution. Due to the existence of carboxyl
groups (-COOH) on the UiO-66-(COOH)2 framework, the charge properties of the channel
wall are dependent on the pH of ionic solutions. We measured the Zeta potential of
UiO-66-(COOH)2 with different from pH 3.0 to 7.0 of FeCl2 solution and obtained the
isoelectric point at ≈3.2~4.0, which means the channels of are neutral when the pH is
around 3.2~4.0 with different H4BTEC content (Figure 1c). Consequently, the channels
of UiO-66-(COOH)2 were positively charged when the pH is below 3.2~4.0, while the
channels of UiO-66-(COOH)2 were negatively charged when the pH is above 3.5~4.0. The
morphology of UiO-66-(COOH)2 nanoparticles was characterized by SEM and TEM. As
can be seen from Figure 1d,e, the size of MOF nanoparticles is around 50 nm, which also
explains the diffraction peak broadening in XRD characterization.

As can be seen from the Figure 2a, N2 adsorption capacity increased with the in-
crease of H4BTEC content for U-C(50) (544.4 m2·g−1), U-C(60) (596.7 m2·g−1), and U-C(70)
(617.9 m2·g−1). However, due to the steric hindrance caused by the high content of car-
boxylic acid, the gas adsorption process was affected and the nitrogen adsorption capacity
decreases of U-C(80) decreased to 570.3 m2·g−1. It can be seen from the pore size distri-
bution diagram that the pore size of the four UiO-66-(COOH)2 nanoparticles are all at
7 Å, and the pore size distribution at 11–16 Å is caused by the stacking of nanoparticles
(Figure 2b). In the process of acid recovery, H+ with a small radius can quickly pass
through the MOF membrane and increase the diffusion rate of acid, while Fe2+ is trapped
by the MOF membrane due to the large hydration diameter, thus improving the selective
separation performance of H+/Fe2+.
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Figure 3a,b shows WU and LER of UiO-66-(COOH)2/QPPO with different filler
loading. The WU of blank QPPO (D-QPPO) was 25%, and the water content increased
with the increase of filler content. In addition, with the increase of H4BTEC content, the
water content also increased when the filler amount remained unchanged. This is because
the carboxyl group is a hydrophilic group. When the carboxyl content in the system
increases, the hydrophilicity of the film increases, and then the water content increases, up to
31.7% (U-C(80)/QPPO-4). This result is also reflected in the change of the linear elongation
of the membrane. After the membrane absorbs water and expands, the linear elongation
increases from 4.9% (D-QPPO) to 7.9% (U-C(80)/D-QPPO). Figure 3c shows the IEC of
UiO-66-(COOH)2/QPPO films with different filler loading. The IEC value of D-QPPO was
1.759 mmol/g. With the increase of filler loading, the IEC value of UiO-66-(COOH)2/QPPO
gradually decreased, due to the stronger electrostatic interaction between the carboxyl
group in U and the quaternary ammonium group in QPPO. However, such IEC values can
still meet the requirements of ion exchange.
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3.2. H+/Fe2+ Separation Performance of UiO-66-(COOH)2/QPPO Membrane

In order to characterize the application of UiO-66-(COOH)2/QPPO in acid recovery,
DD experiments were carried out using HCl/FeCl2 as a mixed feed solution. Figure 4
shows the acid recovery results of UiO-66-(COOH)2/QPPO with different carboxyl contents
of MOF and different packing amounts. The separation factor of HCl/FeCl2 was relatively
low (S = 191) because the D-QPPO membrane did not contain UiO-66-(COOH)2 with a pore
size screening function that could intercept Fe2+. With the increase in UiO-66-(COOH)2
loading, the ability of UiO-66-(COOH)2/QPPO to separate ions gradually increased, and
the separation factor of HCl/FeCl2 was up to 565 (U-C(60)/QPPO, 10 wt%). When the filler
loading increased to 20 wt%, the separation factors of the four UiO-66-(COOH)2/QPPO
membranes decreased, because UiO-66-(COOH)2 with a high loading would aggregate
in the membrane matrix, resulting in pore defects of the membrane, and Fe2+ diffused
through the membrane pores to the permeable side, resulting in a reduced separation
performance, which could be proven by the SEM results in the previous paper. The higher
the load, the more obvious the agglomeration phenomenon, and the more serious the
membrane defects.

In addition, the diffusion coefficient of H+ in UiO-66-(COOH)2/QPPO with the same
carboxyl group content decreased gradually with the increase in UiO-66-(COOH)2 addi-
tions. This is because when UiO-66-(COOH)2 increased, the content of carboxyl groups in
the membrane also increased. Under the action of electrostatic repulsion, the diffusion rate
of Cl− to the permeable side slowed down. According to the principle of electric neutrality,
the transmission rate of H+ decreased under the influence of Cl−. However, because of the
presence of carboxyl groups, the proton transport path was constructed. When the carboxyl
group content in MOF continued to increase, the H+ diffusion coefficient increased, as well
as the H+ diffusion coefficient of U-C(60)/QPPO.
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Specifically, U-C(60)/QPPO membranes exhibited selectivity for H+/Fe2+ of ≈565,
while maintaining a high monovalent cation permeation rate of 0.0089 m·h−1, much higher
than most those of the previously reported membranes (Figure 5). Such an excellent
performance resulted from the interaction of carboxyl groups on the frame structure with
different ions.
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3.3. Structure and Characterization of U-C(6)/QPPO Membrane

Because of the high separability of U-C(60)/QPPO, the membrane structure of
U-C(60)/QPPO was further characterized. As can be seen from Figure 6a for the XRD
patterns of U-C(60)/QPPO with different filler loadings, when the filler content was greater
than 7 wt%, the XRD diffraction peaks of UiO-66 showed characteristic peaks at 2θ = 7.4◦,
8.5◦, and 25.8◦, indicating that the crystal structure of UiO-66-(COOH)2 mixed with QPPO
did not change significantly, and the structure was relatively intact. This is beneficial for
the separation of H+/Fe2+. However, when the filler amount was 5 wt%, no characteristic
diffraction peak appeared at 25.8◦ in the XRD pattern, because the filler amount was too
low, and the filler was covered by the film matrix QPPO, and thus no characteristic peak
was displayed.
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Figure 6. (a) XRD patterns of U-C(60)/QPPO with different MOF fillers. (b–e) SEM images of
U-C(60)/QPPO with different filler loading. ((b). 5 wt%; (c). 7 wt%; (d). 10 wt%; (e). 20 wt%). U-C(60)
in U-C(60)/QPPO was marked by red circle.

Figure 6b–e shows the SEM of the sections of U-C(60)/QPPO with different filler
loadings. The presence of U-C(60) can be observed in the cross-section of the membrane
(red circle area), and the number of U-C(60) significantly increased with the increase in
the filler amount. When the filler content was 5 wt% and 7 wt%, U-C(60) was evenly
dispersed in the membrane, and the cross-section structure of the membrane was uniform
and continuous, without obvious membrane gaps. However, after the addition of 10 wt%
UiO-66-(COOH)2, the cross-section roughness of U-C(60)/QPPO increased slightly and
U-C(60) appeared to have slight agglomeration. With the addition of U-C(60) up to 20 wt%,
the agglomeration of MOF in the membrane was more obvious. The SEM shows that the
cross-section of the membrane was honeycomb, and its roughness increased significantly,
which led to an increase in the gap inside the membrane, resulting in structural defects
and in the destruction of the proton transport path. In the process of acid recovery, Fe2+

could enter the permeable side through the membrane defect, which eventually reduced
the separation performance of H+/Fe2+.

We chose three representative pH values to study the UHCl and SHCl/FeCl2 with
U-C(60)/D-QPPO, that is, 3.0, 3.7, and 5.0, corresponding to the positively, neutrally,
and negatively charged channel walls, respectively (Figure 7a). The UHCl and SHCl/FeCl2
increased gradually with the increase in pH value from 3.0 to 5.0. This is because the posi-
tively charged channels imposed an electrostatic repulsion toward cations at a lower pH,
hindering the transport of H+, and the negatively charged channels showed an electrostatic
attraction toward cations at a higher pH, facilitating the transport of H+. However, the
permeation rate of Fe2+ was extremely low and hardly changeable to the varied pH, which
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indicated that there was a strong electrostatic adsorption between the carboxyl group on
U-C(60) and Fe2+.
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In order to analyze the influence of the separation system on the separation effect, the
ionic strength and the temperature were investigated. As shown in Figure 7b, with the
increase in ionic strength, UHCl presented an upward trend, while SHCl/FeCl2 first increased
and then decreased. The reason for this result is that the increase in ionic strength led to
the rapid movement of a large number of protons under the promotion of U-C(60), thus
obtaining a high UHCl value. However, the increase in Fe2+ enhanced the enhancement
of the electrostatic interaction with the -COO- in U-C(60), which reduced the effect of H+

promotion to a certain extent, thus affecting SHCl/FeCl2. The temperature of the system is
another important factor affecting UHCl and SHCl/FeCl2. As can be seen from Figure 7c, with
the rise in temperature, both U and S tended to increase. The reason for obtaining this
result was that the ion migration ability was improved with the rise in temperature, and
the higher UHCl and SHCl/FeCl2 were reflected under the promotion of U-C(60).

4. Conclusions

A series membrane with different UiO-66-(COOH)2 fillers was constructed using the
blending method. UiO-66-(COOH)2 with a free carboxylic acid structure plays an important
role in the membrane performance. The acid recovery performance was investigated with
DD using HCl/FeCl2 as the simulated waste acid. With the increase in the carboxyl group
content in UiO-66-(COOH)2, the diffusion coefficient UHCl decreased gradually, and the
SHCl/FeCl2 increased first and then decreased. When the U-C(60) content was 10 wt%, the
SHCl/FeCl2 and UHCl of U-C(60)/QPPO reached 565 and 0.0089 m·h−1, respectively. This is
as a result of the electrostatic interaction between the free carboxyl group in U-C(60) and
Fe2+, which promotes the efficient transmission of H+. This MOF-based membrane has
broad application prospects in the acid recovery field.
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29. Pakamorė, I.; Rousseau, J.; Rousseau, C.; Monflier, E.; Szilágyi, P. An ambient-temperature aqueous synthesis of zirconium-based
metal–organic frameworks. Green Chem. 2018, 20, 5292–5298. [CrossRef]

30. Choi, K.M.; Na, K.; Somorjai, G.A.; Yaghi, O.M. Chemical Environment Control and Enhanced Catalytic Performance of Platinum
Nanoparticles Embedded in Nanocrystalline Metal-Organic Frameworks. J. Am. Chem. Soc. 2015, 137, 7810–7816. [CrossRef]

31. Kuwahara, Y.; Kango, H.; Yamashita, H. Catalytic Transfer Hydrogenation of Biomass-Derived Levulinic Acid and Its Esters to
γ-Valerolactone over Sulfonic Acid-Functionalized UiO-66. ACS Sustain. Chem. Eng. 2016, 5, 1141–1152. [CrossRef]

32. Foo, M.L.; Horike, S.; Fukushima, T.; Hijikata, Y.; Kubota, Y.; Takata, M.; Kitagawa, S. Ligand-based solid solution approach
to stabilisation of sulphonic acid groups in porous coordination polymer Zr6O4(OH)4(BDC)6(UiO-66). Dalton Trans. 2012, 41,
13791–13794.

33. Morris, W.; Doonan, C.J.; Yaghi, O.M. Postsynthetic modification of a metal-organic framework for stabilization of a hemiaminal
and ammonia uptake. Inorg. Chem. 2011, 50, 6853–6855. [CrossRef] [PubMed]

34. Lu, W.; Nicoul, M.; Shymanovich, U.; Brinks, F.; Afshari, M.; Tarasevitch, A.; Von Der Linde, D.; Sokolowski-Tinten, K. Acoustic
response of a laser-excited polycrystalline Au-film studied by ultrafast Debye-Scherrer diffraction at a table-top short-pulse X-ray
source. AIP Adv. 2019, 10, 35015. [CrossRef]

35. Yang, C.; Hou, L.X.; Yao, Z.K.; Zhao, J.J.; Hou, L.A.; Zhang, L. High proton selectivity membrane based on the keto-linked cationic
covalent organic framework for acid recovery. J. Membr. Sci. 2021, 640, 119800. [CrossRef]

36. Pawar, C.M.; Sreenath, S.; Dave, V.; Bavdane, P.P.; Singh, V.; Verma, V.; Nagarale, R.K. Chemically stable and high acid recovery
anion exchange membrane. Polymer 2022, 251, 124915. [CrossRef]

37. Deng, T.; Zeng, X.J.; Zhang, C.Y.; Wang, Y.X.; Zhang, W. Constructing proton selective pathways using MOFs to enhance acid
recovery efficiency of anion exchange membranes. Chem. Eng. J. 2022, 445, 136752. [CrossRef]

38. Zhang, P.P.; Wu, Y.Y.; Liu, W.Y.; Cui, P.; Huang, Q.; Ran, J. Construction of two-dimensional anion exchange membranes to boost
acid recovery performances. J. Membr. Sci. 2021, 618, 118692. [CrossRef]

39. Chen, C.D.; Xie, H.X.; Jiang, Y.Y.; Chen, Y.W.; Liang, Y.R.; Ruzetuoheti, G.; Liao, S.J.; Li, X.H.; Wei, B.W. Influence of hydrophobic
components tuning of poly (aryl ether sulfone)s ionomers based anion exchange membranes on diffusion dialysis for acid
recovery. J. Membr. Sci. 2021, 636, 119562. [CrossRef]

40. Sharma, J.; Misra, S.K.; Kulshrestha, V. Internally cross-linked poly(2,6-dimethyl-1,4-phenylene ether) based anion exchange
membrane for recovery of different acids by diffusion dialysis. Chem. Eng. J. 2021, 414, 128776. [CrossRef]

41. Khan, M.I.; Shanableh, A.; Khraisheh, M.; AlMomani, F. Synthesis of Porous BPPO-Based Anion Exchange Membranes for Acid
Recovery via Diffusion Dialysis. Membranes 2022, 12, 95. [CrossRef] [PubMed]

42. Ji, W.G.; Wu, B.; Zhu, Y.; Irfan, M.; Afsar, N.U.; Ge, L.; Xu, T.W. Self-organized nanostructured anion exchange membranes for
acid recovery. Chem. Eng. J. 2020, 382, 1228382. [CrossRef]

http://doi.org/10.1016/j.jece.2022.107535
http://doi.org/10.1039/C7TA07294E
http://doi.org/10.1016/j.seppur.2021.118370
http://doi.org/10.1039/C7CS00575J
http://doi.org/10.1039/C8GC02312C
http://doi.org/10.1021/jacs.5b03540
http://doi.org/10.1021/acssuschemeng.6b02464
http://doi.org/10.1021/ic200744y
http://www.ncbi.nlm.nih.gov/pubmed/21711030
http://doi.org/10.1063/1.5142220
http://doi.org/10.1016/j.memsci.2021.119800
http://doi.org/10.1016/j.polymer.2022.124915
http://doi.org/10.1016/j.cej.2022.136752
http://doi.org/10.1016/j.memsci.2020.118692
http://doi.org/10.1016/j.memsci.2021.119562
http://doi.org/10.1016/j.cej.2021.128776
http://doi.org/10.3390/membranes12010095
http://www.ncbi.nlm.nih.gov/pubmed/35054621
http://doi.org/10.1016/j.cej.2019.122838

	Introduction 
	Materials and Methods 
	Materials 
	Synthesis of UiO-66-(COOH)2 
	Structure of UiO-66-(COOH)2/QPPO Membrane 
	Preparation of QPPO Matrix 
	Preparation of UiO-66-(COOH)2/QPPO Mixed Matrix Membrane 

	Characterization 
	Water Uptake (WU) and Linear Elongation (LER) 
	Ion Exchange Capacity (IEC) 
	Ion Separation Performance Test 

	Results and Discussion 
	Preparation and Characterization of UiO-66-(COOH)2 Crystal 
	H+/Fe2+ Separation Performance of UiO-66-(COOH)2/QPPO Membrane 
	Structure and Characterization of U-C(6)/QPPO Membrane 

	Conclusions 
	References

