Bioinformatics, 37(8), 2021, 1115-1124

doi: 10.1093/bioinformatics/btaa935

Advance Access Publication Date: 10 December 2020
Original Paper

Gene expression
ECMarker: interpretable machine learning model

identifies gene expression biomarkers predicting clinical
outcomes and reveals molecular mechanisms of human
disease in early stages

Ting Jin ® ™', Nam D. Nguyen?', Flaminia Talos®** and Daifeng Wang ® "°*

'Department of Biostatistics and Medical Informatics, University of Wisconsin — Madison, Madison, WI 53706, USA, 2Department of
Computer Science, Stony Brook University, Stony Brook, NY 11794, USA, *Departments of Pathology and Urology, *Stony Brook Cancer
Center, Stony Brook Medicine, Stony Brook, NY 11794, USA and ®Waisman Center, University of Wisconsin — Madison, Madison, WI
53705, USA

*To whom correspondence should be addressed.
"The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.
Associate Editor: Pier Luigi Martelli

Received on November 12, 2019; revised on September 27, 2020; editorial decision on October 21, 2020; accepted on October 22, 2020

Abstract

Motivation: Gene expression and regulation, a key molecular mechanism driving human disease development,
remains elusive, especially at early stages. Integrating the increasing amount of population-level genomic data and
understanding gene regulatory mechanisms in disease development are still challenging. Machine learning has
emerged to solve this, but many machine learning methods were typically limited to building an accurate prediction
model as a ‘black box’, barely providing biological and clinical interpretability from the box.

Results: To address these challenges, we developed an interpretable and scalable machine learning model,
ECMarker, to predict gene expression biomarkers for disease phenotypes and simultaneously reveal underlying
regulatory mechanisms. Particularly, ECMarker is built on the integration of semi- and discriminative-restricted
Boltzmann machines, a neural network model for classification allowing lateral connections at the input gene layer.
This interpretable model is scalable without needing any prior feature selection and enables directly modeling and
prioritizing genes and revealing potential gene networks (from lateral connections) for the phenotypes. With applica-
tion to the gene expression data of non-small-cell lung cancer patients, we found that ECMarker not only achieved a
relatively high accuracy for predicting cancer stages but also identified the biomarker genes and gene networks
implying the regulatory mechanisms in the lung cancer development. In addition, ECMarker demonstrates clinical
interpretability as its prioritized biomarker genes can predict survival rates of early lung cancer patients (P-value <
0.005). Finally, we identified a number of drugs currently in clinical use for late stages or other cancers with effects
on these early lung cancer biomarkers, suggesting potential novel candidates on early cancer medicine.
Availabilityand implementation: ECMarker is open source as a general-purpose tool at https:/github.com/daifeng
wanglab/ECMarker.

Contact: daifeng.wang@wisc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

(Herbst et al., 2018; Koeffler et al., 1991). To this end, the tumor/

1 Introduction _ ) .
node/metastasis (TNM) system has been widely used to characterize

Human disease development such as cancer is a complex, dynamic and classify the cancer development into various stages (Ludwig and
process that is fundamentally driven by abnormal molecular mecha- Weinstein, 2005). The TNM stages were further associated with a
nisms. However, understanding the cancer mechanisms is still a number of individual molecular biomarkers and clinical outcomes
challenging task, especially during the early cancer development such as survival rates (Ludwig and Weinstein, 2005). However, with
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the advancement of whole genome sequencing of numerous human
tumors, it became apparent that the molecular profiles of various
tumor stages might not necessarily be reflected by the TNM system.
Therefore, using systems biology approaches to identify the bio-
markers that drive cancers from early to late stages could allow for
better understanding of cancer mechanisms and offer new venues
for the development of new preventive and therapeutic strategies.

However, there is a gap in understanding of the molecular bio-
markers of early cancer and their underlying mechanisms at a system
level. For example, the lung cancer, causing 27% of cancer-related
deaths in the USA alone (Siegel et al., 2018), is localized to the lung;
neither lymph nodes nor other organs are believed to be affected at
the early stage. As the cancer progresses to a more advanced stage,
nearby lymph nodes and other organs may be affected (Frost et al.,
1984; Hu et al., 2008). This pathological difference suggests that the
underlying molecular mechanisms of the early and late stages are
different. Also, if cancer is diagnosed at an early stage, such as a
localized stage, the five-year survival rate is approximately 50%;
this is mostly due to surgical interventions involving lung removal.
After the localized stages, survival rates decrease rapidly as cases
involving the lymph nodes or other metastatic sites necessitate elab-
orate treatment strategies (Hu et al., 2008). Nearly 70% of patients
with lung cancer present with locally advanced or metastatic disease
at the time of diagnosis (Molina et al., 2008). Thus, although a num-
ber of studies have indicated that early localized stages are easier to
treat and have better survival rates, the underlying molecular mecha-
nisms remain elusive. Here, we hypothesized that early cancers have
different molecular wiring at a system level and that understanding
this wiring could reveal new biomarkers and mechanisms of early
cancer development. Thus, it is essential to identify the specific bio-
markers of early cancer to understand the molecular mechanisms
driving cancer development; this would enhance early cancer diag-
nosis and therefore improve survival rates.

Detecting early cancer biomarkers, however, involves the inher-
ent challenges of relating the complex, multi-dimensional molecular
processing that occurs in organs and tissues during early-stage can-
cer to observable clinical phenotypes in human patients. In particu-
lar, differential, temporal and spatial gene expression during early
cancer result from disruptions in the complex, dynamic and multi-
gene process that tightly regulates and controls the developmental
integrity of organs and tissues. These temporal and spatial gene ex-
pression dynamics are fundamentally controlled by a variety of mol-
ecules called gene regulatory factors, including transcription factors
(TFs) and non-coding RNAs. These factors cooperate in a gene regu-
latory network (GRN) to carry out correct developmental functions
on a genome scale (Iyer et al., 2017). The nodes of a GRN are genes,
and the edges of a GRN connect regulatory factors to their target
genes. Disruption of the cooperation between genes and regulatory
factors in a GRN can give rise to abnormal gene expression, such as
that which is present in diseases such as cancer. Therefore, a funda-
mental challenge for uncovering early cancer mechanisms is that of
understanding the gene regulatory mechanisms, especially GRNG,
controlling the changes in gene expression across cancer stages.

The collection of next-generation sequencing (NGS) data from
large cohorts such as TCGA (Liu et al., 2018a, b) provides measure-
ments across multi-omics, including transcriptomics and epigenom-
ics. This allows for studies of temporal dynamics in gene expression
and regulation during cancer development and also for the systemat-
ic identification of stage-specific cancer biomarkers. Progress has
been made in identification of some stage-specific molecular bio-
markers of lung cancer, but systematic genome-wide analyses for
identification of all potential early-stage biomarkers with predictive
value for disease outcome are limited. For example, dysregulations
in the epidermal growth factor receptor EGFR, associated with sen-
sitivity of lung cancers to the tyrosine kinase inhibitor gefitinib
(Iressa) (Pao et al., 2004), echinoderm microtubule-associated pro-
tein-like 4 (EML4) and anaplastic lymphoma kinase (ALK) are fre-
quently involved in oncogenic transformation (Lindeman et al.,
2013). In addition, v-raf murine sarcoma viral oncogene homologue
B1 (BRAF) is a driver mutation gene in lung adenocarcinoma (Paik
et al., 2011). Although a challenging task, finding novel ways to

integrate the large-scale data provided by human tumors would en-
able the discovery of genome-wide early cancer biomarkers and
underlying GRNs.

Traditionally, correlation-based models have been used to select
biomarker genes involved in cancer development; e.g. 62 genes were
uncovered in this way to distinguish between the early and late
stages of clear cell renal cell carcinoma (ccRCC) (Jagga and Gupta,
2014; Rahimi and Goénen, 2018). However, correlation-based mod-
els only reveal linear relationships, whereas cancer development is a
complex, non-linear process. Thus, machine learning has emerged as
a powerful tool to predict biomarkers for various cancer features
related to clinical presentation and staging; this tool has been found
to be of great help in the diagnosis and treatment of various diseases
(Libbrecht and Noble, 2015). For example, Statnikov et al., (2008)
applied random forests (RFs) and support vector machines (SVMs)
to microarray data in order to aid in cancer diagnosis. Xiao et al.,
(2018) constructed a multi-model ensemble approach to predict can-
cer in both normal conditions and tumor conditions. However, none
of these studies revealed novel cancer mechanistic insights; these
studies were limited to building an accurate classification model as a
‘black box’ but lacked any biological or clinical interpretability
from the box. In addition, the biological datasets especially for gen-
omics have the challenging of ‘curse of dimensionality’ (Clarke
et al., 2008); e.g. variables (e.g. genes) are much more than samples.
To solve this, many machine learning methods applied prior feature
selections to reduce the dimensionality, which however likely miss
potentially important information at the system level.

To address these challenges, we designed a novel, interpretable
machine learning approach, ECMarker, that can be used to discover
gene expression biomarkers for the early disease stages, and simul-
taneously unravel the underlying molecular mechanisms in the
‘black box’ such as gene regulatory networks (GRNs). In particular,
ECMarker is built on a neural network model, semi-restricted
Boltzmann machine (SRBM) allowing lateral connections at the in-
put gene layer for classifying disease phenotypes using population-
level gene expression data. The SRBM model (Osindero and
Hinton, 2007) has been used in non-biological contexts (e.g. com-
puter vision, image classification) enabling modeling intra-
connections among input variables (e.g. image patches). Based on
the neural network connectivity, ECMarker further enables priori-
tizing genes and revealing the underlying gene network (from lateral
connections) for predicting phenotypes. Compared to other meth-
ods, ECMarker is an interpretable model aiming to reveal underly-
ing molecular mechanisms (e.g. gene regulation) while predicting
phenotype. Many existing machine learning models still aim to learn
a ‘black box’ with high accuracy, which is not straightforward to
provide any biological insights as described above. ECMarker, in-
stead, was designed to achieve all ‘interpretability’, ‘accuracy’ and
‘scalability’ via (i) using the lateral connections at the visible layer
(i.e. genes) to reveal gene networks, (ii) simultaneously trying to
achieve relatively high accuracy of classifying disease stages and (iii)
inputting all genes and prioritizing genes by implicit feature selec-
tion. With applications to cancer genomic data, the prioritized genes
and networks for early/late cancer stages revealed potential cancer
stage-specific gene biomarkers and GRNs. Furthermore, we found
the drugs that have significant effects on the ECMarker biomarkers
for uncovering novel genomic medicine to early cancer
development.

2 Materials and methods

2.1 ECMarker, an interpretable machine learning model
to identify gene expression biomarkers and reveal
underlying molecular mechanisms for disease
phenotypes and clinical outcomes

ECMarker consists of three major components (Fig. 1) including (i)
a neural network model, integrating the semi-restricted Boltzmann
machine (SRBM) (Osindero and Hinton, 2007) with the
Discriminative restricted Boltzmann machine (DRBM) (Larochelle
and Bengio, 2008) for classifying disease phenotypes from the gene
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Fig. 1. ECMarker, an interpretable machine learning framework for the identification of gene expression biomarkers of cancer stages and the prediction of clinical outcomes.
ECMarker is a hierarchical neural network approach integrating semi- and discriminative-restricted Boltzmann machine models, to input the gene expression data of patients
for predicting their disease phenotypes; e.g. early and late cancer stages. In particular, the ECMarker classification model consists of three layers: (1) the input gene layer v, (2)
the hidden layer b and (3) the output phenotype layer y; e.g. early versus late cancer stages. The lateral connections at the input gene layer enable identifying a gene network
providing potential mechanistic insights for disease phenotypes. Thus, in addition to the phenotype prediction, ECMarker is also biologically and clinically interpretable for
(A) identifying the gene expression biomarkers and gene networks for phenotypes (e.g. early and late stages); (B) revealing the associated biological functions and pathways for
each phenotype; (C) predicting clinical outcomes such as survival rates, especially for early cancer patients; and (D) discovering novel drugs potentially affecting early cancer.

Red and blue represent early and late stages, respectively

expression data at the population level; (ii) the prioritization of gene
expression biomarkers for each phenotype using the integrated gra-
dient method based on the neural network connectivity, and identifi-
cation of a gene network using the lateral connections at the input
layer; (iii) the functional and survival analyses of biomarker genes
and networks for revealing underlying molecular mechanisms in the
disease phenotypes (biological interpretability) and predicting clinic-
al outcomes (clinical interpretability). We elaborated each compo-
nent as follows.

2.2 The ECMarker classification model

The standard restricted Boltzmann machine (RBM) is an energy-
based model that uses a layer of 7 hidden units to model a distribu-
tion over m visible units in the other layer (Hinton and
Salakhutdinov, 2006). The connections between the two layers (i.e.
visible layer to hidden layer) and all visible and hidden units form a
bipartite graph. Thus, the connections within a layer (e.g. a visible
unit to another visible unit) are prohibited. Also, the standard RBM
typically takes binary values; i.e. v € {0,1}” and h € {0,1}", and is
often trained by the input distributions only. In the ECMarker, we
have extended the RBM, based on the semi-restricted Boltzmann
machine (SRBM) (Osindero and Hinton, 2007) and the
Discriminative RBM (DRBM) (Larochelle and Bengio, 2008) for
enabling (i) classification, (ii) inputting continuous values of visible
units (e.g. gene expression) and (iii) modeling the gene relationships
(i.e. a network) as follows. First, ECMarker inputs the expression
profiles of m genes as m visible nodes v € R™. Second, the hidden
layer in the ECMarker consists of the binary variables € {0,1}",
where 7 is number of hidden nodes. Finally, the output layer y €
{0,1}* consists of all K phenotypes to predict. The improvements of
the ECMarker classification model include:

1. To deal with the real-valued gene expression data, we replaced
the binary visible units in the RBM by linear units with inde-
pendent Gaussian noises. To simplify calculation, we used the

Gaussian noise _A(0, 1) and transformed the input data before
training; i.e. standardizing features by removing the mean and
scaling to unit variance.

2. We added an output layer y € {0,1}X with discretized values
modeling K phenotypes (e.g. K=2, early versus late disease
stages) on the top of the hidden layer, and then used a joint dis-
tribution H(v_y)E Doy P(05Y) OVer the training dataset Dy, of the
input v € R” (e.g. m gene expression values) and associated
phenotype y for classification.

3. We allowed lateral connections among the visible units as
SRBM did for modeling a network linking genes while predict-
ing phenotypes.

In particular, the probability distribution represented by the
ECMarker classification model with parameters © s
p(v,y,h|®) oc e F@¥50) where E(v,y, b; ®) is the energy function
defined by

E(v,y,h;0) = —b"Wv —aTv —b"h — Ty — b Uy —oTLv (1)

with that ® = {W,a,b,c,U,L} represents the model parameters.
Note that the first three terms in the energy function are the same in
the standard RBMs in which W € R"*”* models the weight connec-
tions between m visible units and 7 hidden nodes, @ € R™ is the bias
of visible input units, and b € R” is the bias of hidden nodes. The
fourth and fifth terms model the contributions from the phenotype y
in which U € R”¥ models the weight connections between target
and hidden layers, and ¢ € RX is the bias of target. The last term, a
quadratic term of visible units ¥ models two aspects contributing the
energy: (i) the lateral connections among genes where L € R"™*”
encodes the gene-gene relationships (i.e. adjacency matrix of a gene
network) and (ii) the Gaussian units of gene expression inputs. We
combined these two aspects in one term because they did not affect
the calculation of log-likelihood gradient in training.
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The conditional probability distribution of ith visible unit, v;
with real continuous value given the hidden units and other visible
units (according to lateral connections among genes), is given by:

p(U,'VL v;; @) = N(U,‘; a; + hTW;i + UTL;,‘, 1)7 (2)

where L is a hollow matrix whose diagonal elements are all equal to
zero, and W, L; are the ith columns of matrices W and L
respectively.

The conditional probability distribution of the output units (of
binary values) given the hidden units is as follows:

p(y|h; ©) = alc+b"U), (3)

where a(x) = (1 4+ ¢) ™" is the logistic sigmoid function.

The hidden units capture predictive information from both the
visible inputs and the output classes. Thus, the conditional probabil-
ity distribution of the hidden units (of binary values) given the vis-
ible inputs and output classes has the following form:

p(hlv,y;©) = a(b+ Wov + Uy). (4)

In training, because only v and y are observed, we calculated the
marginal distribution represented by the model:

P(r,y;0) o D e EwhO) — o Twy:0)
h

where F(v,y,;0) is the free energy function defined by

F(v,y;0) = 7logzhe’E(”'3"h:®).
With the energy function aforementioned, the free energy can be
further derived as follows:

Fv,y;0) = —a"v — Ty —0v"Lv — Zlog(l 4 bt WivtUiy) (3)

i=1

where W;. and U,. are the ith rows of matrices W and L respectively.
Furthermore, to address the ‘curse of dimensionality’ problem (i.e.
features/genes are much more than samples) in genomic datasets, we
trained our classification model with an /1 regularization. The /1
term, Wy, which acts on the weight connections between the visible
input layer and hidden layer, and also serves as an implicit feature
selection method to automatically selecting prominent genes respon-
sible for hidden units which models the distribution over visible in-
put units (i.e. genes). This also enables us to add more hidden units
to increase the learning capacity without being overfitted. Thus, we
introduced the following loss function minimization during the
model training:

O € argming —log p(v,y; ®) + W. (6)

The data negative log-likelihood gradient is then:

0 0 17}

~ 56 08p(vy) = 55 Fw.y) - Zy Po(@ ¥ )5 Fw .y ),
where v,y ~ pe(v™,y~) are generated examples from the current
model’s distribution pe (v, y~) and j is the patient index. These gen-
erated examples can be obtained by running a Markov chain to con-
vergence using Gibbs sampling. However, in practice, the sampling
process does not wait for convergence. Instead, the samples are
obtained after 5-step Gibbs sampling in our case.

Finally, the learning procedure in the ECMarker is as follows
(Algorithm 1). First, initialize @, ¥, < v and vy <« v. At the learn-
ing iteration t, let ®, be the model parameters. We generate

v,y ~qe using the Gibbs sampling. Then we update
O;11 = O, +1n,A(©;), where 1, is the learning rate and:>
OF(v;, y;) OF(v,y7) oW,

A(@) ~ 76 -3 6 50 (7)

i i
The convergence of the algorithm toward the local optimum
(since the loss function is non-convex) depends on the optimizer. We

Algorithm 1: ECMarker learning algorithm

input : training pairs (v, y)

params: Gibbs sampling step k, training steps T, learning rate n

output : parameters O, where © = {W,a,b,c,U, L}

initialize By; Yo + Y, vo + v;

fort=0:kdo
hi ~ p(h|yk, v, Ok) from equation (4);
Yk+1 ~ p(y|h, k) from equation (3), vet1 ~ p(v|he, vi, O)) from
equation (2);

end

(-)‘, \ s (-)*:

fort=0:Tdo
Update 8., = 6, + g(A(8,),n,t) from equation (7) where g is an
optimizer, e.g., SGD

end

used the stochastic gradient descent (SGD) (Bottou, 2010) in
ECMarker, which converges to a local minimum with an explicit
convergence rate of O(1/T), where T is the number of iterations.
After training the model, the updated matrix L;;1 € ©;41 can be
used as an adjacency matrix to construct a gene network, revealing
the gene-gene relationships for predicting phenotypes (e.g. disease
stages) and providing potential novel mechanistic insights.

2.3 Prioritization of the biomarker genes in ECMarker

for phenotypes

Once the ECMarker classification model is trained, we further used
a derivative-based method called integrated gradient for prioritizing
input features (e.g. genes) (Sundararajan et al., 2017). In particular,
we computed the gradient of model’s prediction with respect to each
individual gene to show how the output response value (i.e. early
versus late stages) changes with respect to a small change of input
gene expression value. Hence, calculating these gradients for given
input genes provide potential clues about which genes attribute the
stage outcomes. This can be also interpreted to see which features
are not selected due to ¢1 regularization since the gradients for these
input genes are zeros. The output response value can be computed
as the posterior class probability distribution given input v and has
the following closed form:

e Fwye)
p(y=ylv) = W)
where F(v,y) is the free energy over all phenotypes in the output
layer as in Equation (5), and F(v,yy) is the free energy with regard

to phenotype y=1y, (k=1,..., K), calculated as F(v,y;) =

n
—aTv — ¢y, — v Ly — Y log (1 + et tWir+tUi). The exact gradi-
i=1
ent of this probability distribution can be calculated using the auto-
grad package in PyTorch (Paszke et al., 2017). Furthermore, we
define an importance score of each gene for the phenotype as the
gradient of the gene to the phenotype. The higher positive scores
that genes have, the more likely they contribute to predict the corre-
sponded phenotype. Finally, given a phenotype, ECMarker priori-
tizes the genes for the phenotype via ranking its gene importance
scores using the Captum package in PyTorch (Kokhlikyan, 2020).

2.4 Cancer gene expression and clinical datasets for

building and testing ECMarker

We built and tested the ECMarker with the following publicly ac-
cessible gene expression datasets in lung cancer. The Gentles2015
dataset (Gentles et al., 2015) includes the log2-transformed gene ex-
pression data of 1103 non-small cell lung cancer (NSCLC) patients
who had not received pre-biopsy treatment. We further imputed the
missing values of the Gentles2015 dataset using the R package im-
pute (Trevor Hastie, 2020), and then standardized the data per sam-
ple; e.g. a mean of zero and a standard deviation of 1. Also, we
grouped the patients based on their TMN stages, with (I + IA + IB)
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as the early stage (N=766) and II, IIl and IV as the late stages
(N=337) and divided the dataset into balanced training and testing
datasets via oversampling using the R package ROSE (Lunardon
et al., 2014). The lung adenocarcinoma (LUAD) and squamous cell
carcinoma (LUSC) are two of the most common subtypes of NSCLC
(Herbst et al., 2018). To demonstrate the utility of ECMarker in dis-
tinct subtypes of NSCLC, we downloaded the RNA-seq gene expres-
sion datasets (FPKM values) for the LUAD and LUSC patients in
TCGA (The Cancer Genome Atlas Research Network et al., 2013),
resulting in independent validation datasets TCGA-LUAD and
TCGA-LUSC. Overall, we included 741 TCGA-LUAD patients
(N=409 and N =332 in the early and late stages, respectively) and
758 TCGA-LUSC patients (N=380 and N=378 in the early and
late stages, respectively) with (I + IA + IB) as the early stage and the
rest as the late stage. A summary on the patient numbers of various
stages is in Supplementary Table S1.

2.5 Identification of pathways and functions associated
with early and late cancer stages via enrichment
analysis

We performed the enrichment analyses of the genes in the
ECMarker for revealing underlying molecular mechanisms from
genes to disease stages. In particular, given a phenotype (e.g. early
stage), we applied the Gene Set Enrichment Analysis (GSEA)
(Subramanian et al., 2005) by a R package, fgsea (Korotkevich
et al., 2019) to the ranking list of all input genes based on gene im-
portance scores for the phenotype, and found the enriched terms
including pathways, functions and oncogenic signatures from all
eight gene sets of the Molecular Signatures Database (MSigDB) in
the GSEA (Liberzon et al., 2011, 2015). Using this enrichment ana-
lysis, we identified the enriched terms for both early and late lung
cancer stages, providing mechanistic insights in lung cancer
progress.

2.6 Survival analysis using ECMarker biomarker genes
We used the R function, kmeans to partition the early cancer
patients into two groups using the gene expression data of top early
biomarker genes in ECMarker (N =14). The survival analyses and
Kaplan—Meier plots were implemented using the R package, survival
(Therneau, 2020).

2.7 Gene network analysis in ECMarker
The lateral connection weights (i.e. L matrix) from the ECMarker
model how the gene-gene pairs (rather than individual genes) con-
tribute to predict phenotypes, providing potentially additional
mechanistic insights in terms of gene-gene relationships. Thus, using
the L matrix as adjacency matrix, we further constructed a gene net-
work from the ECMarker model for revealing potential gene regula-
tory relationships, especially on the transcription factors (TFs) to
target genes (TGs). In addition, we compared the ECMarker gene
network with the existing widely used methods such as GENIE3
(Huynh-Thu et al., 2010) that only predict gene regulatory networks
(TFs to TGs) from gene expression data, without simultaneously
predicting phenotypes like ECMarker. In particular, we calculated
the pairwise cosine distances between same genes; i.e. a distance of
ith row vectors of L and G for Gene i,

Li, Gi.

dz(Li:-,Gi:> =1- L.G; ,i=1,..., m,

where G is the GENIE3’s adjacency matrix. The cosine distance
ranges from 0 meaning exactly the same to 2 meaning exactly op-
posite. Actually, the cosine distances have been widely used to meas-
ure the similarity of vectors and matrices, revealing the structural
equivalence of the same vertices (i.e. same gene) between two net-
works via calculating weighted common neighbors divided by the
geometric mean of their degrees (Salton, 1988). Furthermore, the co-
sine distance does not depend on the magnitude of the vector, which
likely varies across different methods (e.g. ECMarker versus
GENIE3) and thus is incomparable to each other. In contrast, the

other distance metrics such as the Euclidean distance or correlation
take in account for the vector/matrix magnitudes, so are not chosen
here for evaluating comparison. We used the Gentles2015 dataset
for comparing ECMarker and GENIE3.

In addition to looking at the ECMarker network nodes and
links, we also inferred the TF-TG relationships from the ECMarker
network structures. In particular, we clustered the ECMarker gene
network into a set of gene modules via hierarchical clustering (10
modules for the Gentles2015 dataset). The genes clustered together
into a same module have strong connections for phenotype predic-
tion, implying potential similar mechanisms such as co-regulation.
Thus, we further identified the TFs with enriched target genes in
each module (via TF binding sites on target gene regulatory regions)
by g:Profiler (Raudvere et al., 2019) and linked them to the modular
target genes. Finally, we also calculated the centralities of the
ECMarker gene network using igraph (Csardi and Nepusz, 2006)
and found the hub genes with high centrality (e.g. degree). Also, we
applied ECMarker to the DREAMS challenge data (Supporting
Information). We found that ECMarker outperformed all other
methods, including GENIE3, to infer the gene regulatory network in
Saccharomyces cerevisiae. Since the S.cerevisiae network is the most
complex in this DREAMS challenge, this result demonstrates the
ECMarker’s high performance for predicting gene regulatory net-
works in complex biological systems.

2.8 Identification of drugs targeting biomarker genes
predicted by ECMarker

For discovering potential novel genome medicine using ECMarker,
we identified the drugs targeting ECMarker biomarker genes of
early and late cancer stages. In particular, we looked at a drug-gene
database, GSCALite (Liu et al., 2018a, b) that has calculated and
summarized the z-scores of drug—gene pairs using the method in
Rees et al. (2016) for revealing the mechanisms of action (MoA) of
drugs to the target genes. The drugs with high z-scores imply poten-
tial causal mechanistic effects such as activation mechanisms and
direct protein targets to the genes (Rees et al., 2016). The z-scores
were the Fisher’s z-transformed correlation coefficients between
gene expression and drug sensitivity (IC50 value) across all possible
cancer cell lines in the GDSC database (Yang et al., 2012), and thus
removed potential biased effects from specific tissue types corre-
sponding to the cell lines. Given a phenotype (e.g. early cancer
stage), we found a number of drugs for its ECMarker biomarker
genes with high z-scores (FDR < 0.05), suggesting their potential
effects to the phenotype (e.g. early cancer drugs).

3 Results

3.1 Lung cancer stage biomarker genes by ECMarker

reveal functions on cancer development and progress
We applied ECMaker to the Gentles2015 dataset (Section 2) for pre-
dicting the biomarker genes for lung cancer development and out-
comes, especially for early-stage patients. In particular, we input the
expression data of 10 102 genes from 766 early and 766 late
patients (after balancing data) in the Gentles2015 dataset. After tun-
ing hyperparameters in this ECMarker classification model, we had:
(i) the input layer containing 10 102 genes; (ii) the hidden layer con-
taining 9 hidden units; (ii) the output layer predicting early or late
stage by a probability. Other hyperparameters were optimized as
follows: train batch size = 50; learning rate = 0.1 and weight decay
= 0.9 with the SGD method (Bottou, 2010); ¢1 penalty parameter:
0.1; number of training epoch: 1. We also performed k=10 cross-
validation and found that the model has the consistent relatively
high balanced accuracy values with Mean = _0.74 and Variance =_
0.001 compared to a baseline of 0.5 (for two phenotypes). Also, we
applied another RBM-based model, elastic restricted Boltzmann
machines (eRBMs) (Zhang et al., 2017) that does not model lateral
connections at the input layer, and found that its accuracy for pre-
dicting early and late stages is just around baseline of 0.5.
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Fig. 2. Cancer-stage biomarker genes of ECMarker reveal the biological functions and pathways associated with lung cancer and cancer development. The enrichment analyses
were accomplished by the GSEA for the ranked genes by gene importance scores for early or late lung cancer stages. (A) The upregulated functions and pathways significantly
enriched in the early stage biomarker genes with P <0.01. (B) and (C) Select functions and pathways associated with lung cancer and cancer development are up- or down-

regulated at different stages

After training and cross-validating models, we used the average
predictive model to further calculate the gene importance scores for
both early and late lung cancer stages (Section 2), and prioritized the
stage biomarker genes (i.e. high importance scores) in the lung can-
cer (Supplementary File S1). As shown on Figure 2A, a number of
known lung, immunity and cancer related pathways, especially on
cancer development are significantly enriched among top early bio-
marker genes after gene set enrichment analyses (Section 2); e.g. the
epithelial mesenchymal transition (EMT, P < 6.2¢-3) (Lu and Kang,
2019), the gamma delta T cell activation (P < 6.1e-3) (Pauza et al.,
2018) and Interleukin-1 regulation (P < 4.0e-3) (Lewis et al., 2006).
Furthermore, top early and late genes are enriched with different
upregulated pathways relating to lung cancer (P <0.001, Fig. 2B
and C); e.g. lung cell differentiation and epithelium development are
upregulated for the early stage, but lung cancer survival and differ-
ential markers are upregulated for the late stage. All enriched terms
for early lung cancer stage are available in Supplementary File S2.

Lung cancer is also heterogeneous; e.g. non-small cell lung can-
cer has two major subtypes: adenocarcinoma (LUAD) and squa-
mous cell carcinoma (LUSC) (Lucchetta et al., 2019). To test
ECMarker for predicting the cancer stages in the lung cancer sub-
types, we also applied ECMarker to the TCGA-LUAD and TCGA-
LUSC gene expression datasets (Section 2). To obtain an appropri-
ate sample size for training ECMarker as the Gentles2015 dataset,
we combined TCGA-LUAD and TCGA-LUSC together and trained
one ECMarker model for classifying four phenotypes: the LUAD
early and late stages and the LUSC early and late stages, aiming to
reveal the specific early cancer mechanisms to lung cancer subtypes.
After training and testing, the model achieved a high classification
accuracy of 0.48 compared to a baseline of 0.27 (for four pheno-
types). Furthermore, we found that top early-stage biomarker genes
for LUAD and LUSC have significantly anti-correlated importance
scores (Supplementary Fig. S1), suggesting potential distinct early
cancer mechanisms across the lung cancer subtypes.


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa935#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa935#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa935#supplementary-data

Machine learning interprets molecular mechanisms in early disease 1121
1.00 A 1.00 B 1.00 C
0.75 0.75 0.75
2 2 2
[ © ©
S K S
8.0.50 .0.50 §.0.50
s s s
2 2 2
2 2 <
=] > =3
(7] (7] (7]

0.25 0.25 0.25

p <0.004 p <0.0025
p < 0.0025
0.00 0.00 0.00
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000

Time in days

Time in days

Time in days

Fig. 3. ECMarker stage biomarker genes predict early cancer survival rates. Early lung cancer patients were clustered into two groups (represented by two curves on each panel)
based on the top 14 ECMarker biomarker genes for early stage lung cancer. These biomarker genes were found using the Gentles2015 dataset (Gentles et al., 2015). A
Kaplan-Meier analysis showed that the early patient groups had significantly different survival rates (P < 0.005) as shown in (A). In addition, application of these biomarker
genes to an independent lung cancer cohorts, TCGA-LUAD and TCGA-LUSC (The Cancer Genome Atlas Research Network et al., 2013), showed that the early-stage patients
also had significantly different survival rates, as shown in (B) (TCGA-LUAD) and (C) (TCGA-LUSC) with P < 0.0025

3.2 ECMarker biomarker genes predict clinical

outcomes for early lung cancer

In addition to the genomic functions associated with cancer stages
discovered by ECMarker, we also explored the relationships be-
tween stage biomarker genes and clinical outcomes of cancer
patients. For example, we found that three lung cancer prognostic
biomarker genes, CX3CR1, SLC15A2 and TFRC found by a recent
multi-omics study (Haghjoo et al., 2020) also have very high
ECMarker importance scores for early stage (>80% genes). In add-
ition, we found that the early lung cancer genes, SLC15A2 and
TFRC are also hub genes (degree centrality in 1 and 10%) in the
gene network revealed by ECMarker. To test the capability of
ECMarker for predicting clinical outcomes for early cancer, we used
top early-stage biomarkers learned by ECMarker (i.e. highest im-
portance scores for early stage, Section 2) to partition the early can-
cer patients of Gentles2015 into two groups. We then found that
two groups have significantly differential survival rates, suggesting
that our ECMarker early biomarkers are able to predict early cancer
survival rates (P <0.004, Fig. 3A). Furthermore, we validated the
top ECMarker early biomarker genes using early patients in two in-
dependent cohorts, TCGA-LUAD and TCGA-LUSC, and found that
the early patients groups clustered by these biomarkers also have sig-
nificantly differential survival rates (P <0.0025, Fig. 3B and C).
This demonstrates that our early biomarker genes have potential to
predict survivals at the early cancer stage, suggesting the clinical in-
terpretability of the ECMarker model.

3.3 Gene network in the ECMarker uncovers gene

regulatory mechanisms in lung cancer

In addition to individual biomarker genes, we pursued the elucida-
tion of the molecular mechanisms that drive the functional connect-
ivity, especially in terms of gene regulation. Gene expression,
though complex for phenotypes, is controlled by gene regulatory
mechanisms. In particular, various regulatory factors, such as tran-
scription factors (TFs), control the expression of biomarker genes to
coordinate cancer phenotypes so they do not behave randomly (i.e.
forming a GRN). ECMarker has the capability to model gene-gene
interactions so that we could extract the weight values of lateral
connections to describe the relationship of any pair of genes among

the input genes. A larger weight value indicated a stronger connec-
tion between genes. According to this standard, we are able to ex-
tract the learned GRN from any well-trained ECMarker
classification model (Section 2). Specifically using the ECMarker
gene network learnt from the Gentles2015 dataset for predicting
lung cancer stages, we found the subnetworks linking top early and
late biomarker genes are different (Fig. 4A and B), suggesting poten-
tial developmental regulatory mechanisms in the lung cancer
progress.

We found that a number of known TFs related to cancer devel-
opment and oncogenes involve in the ECMarker gene network
(from top 1% links), including 46 epithelial-to-mesenchymal transi-
tion (EMT) signature genes (Byers et al., 2013), lung cancer muta-
tion genes (e.g. KRAS, BRAF, ALK, PIK3CA, AKT1, NRAS, EGFR,
RET, ROS1) (Khoo et al., 2015) and the genes in the frequency of
alterations and signaling pathways of the lung cancer [53 out of 83
such genes (Li et al., 2017)]. Moreover, a number of gene pairs from
the top ECMarker links were also previously predicted to relate to
the lung cancer gene regulation. For example, there are 2676
ECMarker top pairs (117 TF, 2348 TGs) also presented in a lung
cancer regulatory network predicted by the one-class support vector
machine (OC-SVM) model (Zhang et al., 2018a, b). Also, a recent
study has identified 10 oncogenic TFs and 11 tumor suppressing
genes potentially required for NSCLC cell proliferation (Zhang
et al., 2018a, b). We found that all 10 such TFs and 10 out 11 sup-
pressing genes in our top ECMarker links (involved in 1017 pairs).
In addition, a previous correlation-based analysis focusing on
microRNA targets in lung cancer also predicted a set of TFs and tar-
get genes for the NSCLC (Mitra et al., 2014), and was found to
have 22 TFs, 101 target genes and 13 TF-TGs presenting in the top
ECMarker links. Finally, we systematically compared the lung can-
cer networks of ECMarker and other computational methods such
as GENIE3 that only use gene expression data to predict gene regu-
latory networks without integrating any phenotypic information
(Section 2), especially on human diseases. Although ECMarker pre-
dicted a gene network specifically for predicting lung cancer devel-
opment (i.e. stages), rather than generally for the lung cancer, there
are still a variety of genes with high similarity between two networks
(N=1369 genes, 13.6% with cosine distance < 0.35). This shows a
consistency between ECMarker and GENIE3 but also implies that
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Fig. 4. The ECMarker gene network reveals the stage-specific gene connections and regulatory networks in the lung cancer. (A) The ECMarker gene network for early-stage
biomarker genes (gene importance score > 0.001 and top 100 links). (B) The ECMarker gene network for late-stage biomarker genes (gene importance score > 0.001 and top
100 links). (C) A regulatory network among TFs inferred from the ECMarker gene network. The nodes are TF genes. The directed edges link TFs to the target genes (which
are also TFs in this case). The node color corresponds to the degree centrality of TF in the network; e.g. skyblue represents high degree, and white means low degree. Note that
all TFs shown here are predicted to associated with the lung cancer development from the ECMarker model
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Fig. 5. ECMarker biomarker genes discover potentially novel effective drugs for early lung cancer. The heatmap shows the effective scores of drugs to genes in terms of the
MoAs of drugs to genes (Section 2) (Rees et al. 2016). The columns are the drugs with high MoAs to at least one of top 10 ECMarker stage biomarker genes. The rows are the

genes from top 10 biomarker genes targeted by the drugs (blue: early stage, red: late stage)

rest of the genes without high network similarity potentially relate
to the specific developmental functions and pathways in lung cancer
such as immune response, cell proliferation and differentiation
(Supplementary Fig. S2).

In addition to the ECMarker network nodes and links, using the
network structures (e.g. gene modules), we also identified a list of
TFs and TF-TG pairs for the lung cancer and cancer development
(Section 2). In particular, we found a number of oncogenic TFs in
our list, such as E2F genes, the cell-cycle TFs relating to tumor pro-
gression (Johnson and Schneider-Broussard, 1998), and EGR genes,
the TFs regulating multiple tumor suppressors (Baron et al., 2006).
Furthermore, we identified a number of potential master regulators
in lung cancer development using our network. For example, E2F-1,
a well-known transcription factor promoting the tumor progression
for many cancer types including lung cancer (Engelmann and
Putzer, 2012; Zhang et al., 2018a, b), plays a hub role (i.e. high de-
gree) in the gene regulatory subnetwork in which target genes are
TFs as well (Fig. 4C). Also, SP1, another known TF regulating lung
cancer progression (Hsu et al., 2012) is in our network and also a
hub gene. These hub genes in the ECMarker network imply that
they regulate a number of lung cancer TFs as potential master regu-
lators in lung cancer development. In addition, we found potential
novel TFs for lung cancer development which were previously found
to associate with other cancer types, such as WT1 for leukemia,

kidney and prostate cancers (Hastie, 2017) and MAZ, a MYC-
associated zinc finger protein for pancreatic cancer (Maity et al.,
2018). In addition, the target genes of some TFs are found to have
significantly higher stage-specific importance scores than non-target
genes (t-test P <0.05), suggesting that the cancer stage associated
effects of the TFs; e.g. SP1 and AP-2 for late stage, TCF-1 and ER81
for early stage.

3.4 ECMarker biomarker genes link to potential novel

drugs for early lung cancer

We further identified a number of drugs directly affecting
ECMarker stage biomarker genes, aiming to provide potential novel
candidates for early cancer medicine. Using the mechanisms of
actions (MoAs) of drugs to genes (Section 2) (Rees et al., 2016), we
identified a list of drugs for top 10 ECMarker early and late stage
biomarker genes (Supplementary File S3). As shown on Figure 5, the
drugs and stage biomarker genes can be in general clustered into
early and late groups, suggesting the stage-specific drug effects on
lung cancer development. Our analyses revealed that several known
drugs for lung cancer also have high effects to our stage biomarker
genes; e.g. the Type I RAF inhibitor—Dabrafenib and the Type II
RAF inhibitor—AZ628 for the treatment of non-V600 BRAF mu-
tant lung cancer (Noeparast et al., 2018) in the late stage group, and
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YM155 for delaying the growth of NSCLC tumor xenografts is in
the early stage group (Iwasa ez al., 2008).

Furthermore, several known drugs that were not originally used
for lung cancer were predicted to have significant efforts on our
early-stage biomarkers; e.g. Bortezomib (Jones et al., 2010), a prote-
asome inhibitor ameliorating breast cancer osteolytic disease, and
AICAR inhibiting the cell growth in prostate cancer cells
(Digregorio et al., 2019). In addition, TAK1 inhibitor 5Z-7-oxo-
zeaenol for the treatment of cervical cancer is found to have poten-
tial effects on our late-stage lung cancer biomarkers (Guan et al.,
2017). In addition, we observed that a few drugs previously used for
multi-cancer or in clinical use for the late cancer stages are in the
early stage group, suggesting their potential effects to the early lung
cancer; e.g. CI-1040 and PD-0325901 for advanced non-small cell
lung, breast, colon or pancreatic cancers (Rinehart et al., 2004).
Another example is Ruxolitinib, a drug used during the Phase II
study in the breast cancer (Stover et al., 2018) and also possibly for
NSCLC patients in all-stage to enhance oncolytic virotherapy (Patel
et al., 2019). Therefore, these drugs could potentially have effects on
early cancer stages.

4 Discussion

ECMarker is an interpretable machine learning approach, built on
the SRBM and DRBM for identifying gene expression biomarkers
for disease phenotypes such as cancer stages. Beyond that a variety
of machine learning methods typically pursuing the high prediction
accuracy from genes to phenotypes (Supplementary Table S2), we
demonstrated that the ECMarker model also has biologically and
clinically interpretabilities, in addition to high accuracy; e.g. it
revealed the underlying regulatory mechanisms during lung cancer
development and the stage biomarker genes predicted the survival
rates of early cancer patients. Also, we showed that the drugs target-
ing the ECMarker biomarker genes are potential novel candidates
for early cancer medicine. These biomarker genes comprise novel
molecular candidates for early cancer diagnosis and detection, and
the gene networks could potentially guide future experimental vali-
dations for early cancer mechanisms and treatments. Furthermore,
ECMarker is scalable for inputting all possible genes and implicitly
selecting biomarker genes for phenotypes via neural network regu-
larization, and thus does not need any prior feature selections.
Although this study applied ECMarker to lung cancer data specific-
ally, ECMarker is a general-purpose method and can therefore be
applied for other cancer types (Bailey ez al., 2018) and disease types
such as neurodevelopmental and neurodegenerative diseases (De
Jager et al., 2018; Li et al., 2018).

This study demonstrated that we are able to build the machine
learning models that are biologically interpretable. This was our first
round of attempts to address the lack of interpretability and transla-
tion of machine learning applications in biology and biomedicine.
Given that cancer phenotypes are driven by a variety of multi-omic
mechanisms (Bailey ez al., 2018), including transcriptomics, epige-
nomics, metabolomics, etc., multi-omic data integration and analy-
ses for understanding cancer biology have been emerging
(Rappoport and Shamir, 2019). Thus, we expect to develop
advanced machine learning approaches that can reveal interactions
across multi-omics relating to disease phenotypes in the near future;
e.g. via multiview learning approaches (Nguyen and Wang, 2020).
In particular, by integrating genotyping data, ECMarker can be
extended to a deep hierarchical model, similar to deep neural net-
work models (Wang et al., 2018), to predict genotype-phenotype
relationships and use intermediate biological connectivity and struc-
tures inside the model to reveal possible molecular mechanisms
from genotype to phenotype.

The present study focused on gene expression data at the individ-
ual tissue level. However, the cancer tissues consist of different cell
types with various fitness and mutational profiles (Saadatpour et al.,
2015). The continuous development of single-cell genomic and tran-
scriptomic analyses for cancer research will enable us to explore
how single cells contribute to cancer tissue expression and eventual-
ly affect phenotypes; e.g. single-cell deconvolution to estimate cell-

type fractions (Baron et al., 2016; Wang et al., 2019). Integrating
single-cell data into the interpretable machine learning modeling
and drug association analysis might uncover novel biological mecha-
nisms and targetable key regulators at the cellular resolution for the
advancement of precision cancer medicine.
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