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Review Article

IntroductIon

The latest research showed that changes in gut microbiota 
could affect the brain’s physiological, behavioral, and 
cognitive functions.[1‑5] In 2013, the United States launched 
a special research project on gut microbiota‑brain axis. 
Since then, this field, especially the interaction between gut 
microbiota and the brain, has gradually become the focus 
of neuroscience.[2‑4] Although the exact mechanism of gut 
microbiota‑brain axis has not yet been fully understood 
and clarified, the evidence from animals and human studies 
has showed that gut microbiota can play an important role 
in brain behavior and cognitive development by producing 
hormones, immune factors, and metabolites, which also 
indicated that altering the gut microbiota may improve or 
even cure brain diseases.[6‑14]

The gut microbiota and the brain interact with each other, 
and the gut microbiota can be regarded as an independent 
variable in gut microbiota‑brain axis, its effect on the brain 

regarded as a dependent variable. Therefore, this article 
focused on the influence of gut microbiota on the brain and 
described the latest progress in gut microbiota, cognitive 
process of influence of gut microbiota on the brain in 
neuroscience domain, and the possible measurement and 
detection of gut microbiota.

gut MIcroBIota

Gut microbiota is a complex community that helps to 
maintain dynamic metabolic ecological balance.[15] There 
are an estimated 100 trillion bacteria in an adult’s body, 
80% of which exist in the gut, about ten times as many 
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as cells in human body. The gut microbiome host more 
than 100 bacterial species that encode 150 times as many 
genes as the human genome.[16,17] It is well‑recognized 
that human microbiome is composed of more than 
5000 strains of microbes and greater than 1000 kinds 
of microflora.[16,17] The bacteria, mainly anaerobic 
bacteria, dominate this environment, and others including 
virus, protozoa, archaea, and fungi also involve in this 
environment.[18,19] The microbiome is mainly defined by 
two bacterial phylotypes, Bacteroidetes and Firmicutes, 
and the amounts of Proteobacteria, Actinomyces, 
Fusobacterium, and Verrucomicrobia are relatively 
small.[20]

Gut microbiota is changing with human development and 
influenced by various stress factors. Babies receive the initial 
microbiome from their mothers.[20,21] After 1‑year‑old, the 
infants form a complex gut microbiome like adults.[22,23] The 
compositions of gut microbiota are not fixed, and change 
with increasing age. The dynamic changes are markedly 
different among different individuals, but the common effect 
is a macrobalance.[24] The changes of beneficial bacteria can 
significantly affect the health of individuals, while some 
factors such as infection, drug, illness, and diet may change 
the microbiome.[25‑27]

Some evidence showed that stress in the first few years of 
life could lead to the change of microbiota, and this change 
is a risk factor for stress‑related disorders in adulthood.[28,29] 
Maternal separation could lead to the reducing number of 
Lactobacillus in the feces of baby rats three days later, which 
had a long‑term effect on the gut microbiome.[28] Prenatal 
stress changed the compositions of microbiota by reducing 
the total number of Bifidobacterium and Lactobacillus in the 
rhesus monkey.[30] Moreover, prenatal antibiotic treatment 
increased offspring’s susceptibility to experimental colitis.[31] 
These results indicated that stress could change the gut 
microbiome.

Gut microbiota has multiple functions. First, gut microbiota 
constitutes the intestinal barrier, promotes the continuous 
existence of gut microbiota, stimulates intestinal epithelial 
cell regeneration, and produces mucus and nourishes mucosa 
by producing short‑chain fatty acids (SCFAs).[32] Gut 
microbiota is involved in the maturation of immune system 
by stimulating innate immune system in the early stage of life, 
which leads to the maturity of intestinal‑related lymphoid 
tissue, inspires the acquired immunity by stimulating local 
and systemic immune responses,[33] intestinal synthesis and 
metabolism of certain nutrients, hormones and vitamins, 
and plays an important role in drug and poison removal. 
Under physiological conditions, gut microbiota continues 
to stimulate the immune system, leading to a state of “low 
degree of physiological inflammation”, which is a rapid and 
effective mechanism for defending against pathogens.[34] 
In addition, bacterial colony also plays a role of protective 
competition in gut, producing nutrition for the survival of 
pathogen and cytokines that can inhibit the growth of the 
microorganism.[35]

Influence of gut MIcroBIota on cognItIve 
Process of BraIn

The effect of gut microbiota on the brain was seldom 
recognized by people at first, except the pathogenic 
microorganism in the gut can pass through the blood‑brain 
barrier and affect the brain, for instance, rabies virus could 
elicit aggression, agitation, and a fear of water when it enters 
the brain.[3] However, a public health emergency aroused 
people’s attention to the possible relationship between the gut 
microbiota and the brain. In the year 2000, the flood occurred 
in the town of Walkerton, Canada, making the drinking 
water polluted by Escherichia coli and Campylobacter 
jejuni. Among the 4561 infected participants, 2451 of them 
completed a reassessment 8 years later, and 1166 of them 
were diagnosed with irritable bowel syndrome (IBS). Among 
these IBS patients, anxiety and depression were found to be 
independent risk factors for continuous IBS.[13] But at that 
time, the interaction between gut microbiota and the brain 
had not been taken seriously by neuroscientists.

In the year 2011, a study by Diaz Heijtz et al.[5] showed that 
compared with conventional mice who were growing in 
specific‑pathogen‑free (SPF) environment, germ‑free (GF) 
mice under the experimental conditions had less anxiety‑like 
behaviors and increased 5‑HT synthesis in the thalamus. 
When moving the adult GF mice to SPF environment, 
its reduced anxiety‑like behavior did not increase, but its 
offspring’s anxiety behavior returned to the normal state, 
which indicated that there was a critical time window for the 
influence of gut microbiota on behavior development. At that 
time, although there were an increasing number of related 
studies, most of them were conducted by gastrointestinal 
scientists alone, few were performed by gastrointestinal 
scientists together with psychologists. The focuses of the 
studies were peripheral and behavioral variations rather than 
variation in the brain. However, the study of Diaz Heijtz 
et al. sparked an interest of scientists in this field, and they 
hoped to directly study the underlying mechanism about the 
role of gut microbiota in the brain.

In the year 2013, the National Institute of Mental 
Health (NIMH) launched a special project on exploring the 
mechanism involved in gut microbiota‑brain communication, 
with a view to develop new medications or noninvasive 
treatments for mental diseases. Since then, studies on 
the influence of gut microbiota on the brain have been 
increasing, and gut microbiota‑brain axis has become one 
of the focuses of neuroscience. The core of the axis was the 
interaction between the gut microbiota and the brain.[2‑4] Gut 
microbiota has an important influence on the brain through 
the neural network, neuroendocrine system, and immune 
system.[2‑4,6,7]

During 2014 and 2015, NIMH offered a special fund of 1 
million US dollars to study the gut microbiota‑brain axis. 
In the year 2015, the United States Navy Institute planned 
to provide a special fund of 14.5 million US dollars in the 
next 6–7 years to research the role of the gut in cognitive and 
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stress disorders. The European Union has launched a 5‑year 
MyNewGut project (10.1 million US dollars) for research 
on brain development and related disorders.[3]

how does gut MIcroBIota affect the BraIn

Currently, the exact mechanism of communication 
between the gut microbiota and the brain has not yet been 
fully understood and clarified. Generally speaking, gut 
microbiota exerts effects on the brain not only through the 
nervous system (gut‑brain’s neuroanatomical pathway) 
but also through the endocrine system, immune system, 
and metabolic system. A bidirectional communication 
between the gut and the brain is referred to as the gut‑brain 
axis.[36,37] Interaction of gut microbiota and gut‑brain axis is 
referred to as the gut microbiota‑gut‑brain axis (hereinafter 
referred to as the gut microbiota‑brain axis).[38,39] In the 
gut microbiota‑brain axis, because gut microbiota can be 
used as an independent variable and changed intentionally, 
more emphases are placed on the role of microbes in gut 
microbiota‑brain axis.[40]

Neuroanatomical pathways
The gut can interact with the brain through two 
neuroanatomical pathways. The one is mutual information 
exchange directly between gut and brain by the autonomic 
nervous system (ANS) and vagus nerve (VN) in the 
spinal cord; another one is a bidirectional communication 
between gut and brain through the bi‑communication 
between enteric nervous system (ENS) in the gut and ANS 
and VN within the spinal cord. The neural anatomical 
pathways for controlling gut functions form a hierarchic 
four‑level integrative organization:[41,42] the first level is the 
ENS, including myenteric ganglia, submucous ganglion, 
and gut glial cells;[43,44] the second level is prevertebral 
ganglia regulating peripheral visceral reflex responses;[45] 
The third level is the ANS in the spinal cord (from T5‑L2 
sympathetic nerve and S2‑S4 parasympathetic nervous 
system) and brain stem nucleus tractus solitarius and 
dorsal motor nucleus of VN, which receive and give the 
origin of afferent and efferent fiber of VN, respectively. 
The most important effect of the dorsal motor nucleus of 
VN is prominent in the upper gastrointestinal tract, and the 
cholinergic neurons on myenteron of upper gastrointestinal 
tract regulate vagal excitability effect;[46] and the fourth 
level is the higher brain centers. Information from cortex 
and subcortical centers including basal ganglia and funnels 
down to peculiar brainstem nuclei. Brainstem nuclei control 
many gut functions. The afferent fiber of VN stops at the 
brain stem nucleus tractus solitarius, which then gives fiber 
upward and arrives at thalamus, lobus limbicus, and insular 
cortex through parabrachial nucleus. Spinal afferent fiber 
goes upward within spinothalamic tract and spinal tract 
to the thalamus (spinothalamic tract) and gracile nucleus 
and cuneate nucleus of medulla oblongata (spinal tract), 
respectively, then project fiber to thalamus through lemniscus 
medialis. Fiber is gave from thalamus and projected to the 
primary sensorimotor areas and insular cortex. Damages and 

abnormalities at the above‑mentioned levels can influence 
the regulation of intestinal function, including local intestinal 
reflexes, and external neural control.[42]

Direct neural communication between gut microbiota and the 
brain is mainly realized through VN, i.e., bacteria stimulates 
afferent neurons of ENS,[47] and the vagal signal from the 
gut can stimulate the anti‑inflammatory response, preventing 
against pyosepticemia caused by microorganisms. Further 
research showed that many effects of gut microbiota or 
potential probiotics on brain functions were independent 
on vagal activation,[39,48] and bacteria settled in the gut 
played a critically important role in individual’s postnatal 
development and the maturation of the immune system, the 
endocrine system, and the nervous system.[47]

Neuroendocrine‑hypothalamic‑pituitary‑adrenal axis
Gut microbiota is helpful to the maturation of neuroendocrine. 
Lacking gut microbiota and low/lack of expression of toll‑like 
receptors (TLRs) contribute to producing a neuroendocrine 
response to the pathogen in the gut.[49,50] For example, the 
response of TLR4‑knockout mouse to lipopolysaccharide (LPS) 
produced by Gram‑negative bacteria was reduced.[51] 
Griseofulvin (GF) mouse is one of the most appropriate 
models to study the hypothalamic‑pituitary‑adrenal (HPA) 
axis regulated by the microorganism. Compared with SPF 
mice, mild restraint stress led to significantly elevated 
corticosterone and adrenocorticotropic hormone in GF mice. 
GF mouse’s stress response could be partially reversed by 
fecal microbial transplant, and completely reversed over 
time by single Bifidobacterium infantis.[52] The study clearly 
showed the feces containing gut microbiota were vital for 
the postnatal development of appropriate stress reaction, and 
the timing that microbiota appeared in early life was a very 
narrow window, which was extremely important for normal 
development of HPA axis.

Gut microbiota can affect neural circuits and behavior 
related with the stress response. Compared with SPF mice, 
GF male mice had the reduced brain‑derived neurotrophic 
factor (BDNF) and 2A subtype of N‑methyl‑D‑aspartic 
acid receptor (NMDA receptor) expressions in cortex and 
hippocampus.[52] Neufeld et al.[53] have found that mRNA 
of BDNF in the hippocampal area was improved in female 
mice, which conflicted with the results reported by the 
earlier studies. Clarke et al.[54] have also found that mRNA 
of hippocampus BDNF in male mice was reduced and the 
5‑HT functional system was significantly changed, but these 
changes could not be found in female mice. These findings 
suggested that the regulation of gut microbiota‑brain axis 
may be dependent on gender. Many studies have shown the 
changes of hippocampal NMDA and 5‑HT1A receptor of GF 
animals.[52] These receptors affect the release and expression 
of the corticotropin‑releasing hormone of the hypothalamus 
and then change the function of HPA.

Stress and HPA axis can affect the composition of the gut 
microbiome. Early stress and maternal separation could lead 
to a long‑term change of HPA, and also had a long effect on 
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the microbiome.[55,56] When compared with rats nonseparated 
from the mother, the diversity of 16S ribosomal RNA in 
adult rats, who received mother separation for 3 h/day from 
day 2 to day 12 after birth, revealed that stress significantly 
changed microbiome in feces.[28] Microbiome composition 
in mouse exposed to a long‑term restraint stress was 
significantly different from that of a nonstressed mouse.[57] 
Recently, using the above method and the repeated social 
interaction, stress can reduce the quantity of Bacteroides at 
cecum and increase the number of Clostridium.[58] Stress also 
increased interleukin‑6 and monocyte chemotactic protein 
1 (MCP‑1) levels in blood, and MCP‑1 was significantly 
related with the changes of three kinds of stress‑induced 
bacteria of Enterococcus faecalis, Pseudobutyrivibrio, and 
aerogenic bacteria Dorea strain.

Gut immune system
Development of gut immune system depends on gut 
microbiota.[59,60] GF mice almost had no immune activity, but 
they could generate immune function when giving certain 
microbiota.[61] For example, the segmented filamentous 
bacterium in the gut can restore the full functions of gut 
B and T lymphocytes.[62‑64] Bacteria communicate with the 
host through a variety of ways, and the receptors‑TLRs of 
host cell play a key role in the communication between 
bacteria and host. There are ten kinds of TLRs in the 
human innate immune system, which have been identified 
as pattern recognition receptors.[65] These receptors are a 
part of the innate immune system, which is the first step to 
produce cytokine response and is also widely distributed 
on neurons.[66] Hence, neurons also respond to bacterial and 
viral components. Intestinal epithelial cells can transport 
microbial composition or metabolites into the inner 
environment, and the nervous system also interacts with 
these bacterial and viral components.[67] The balance of 
gut microbiota may change the regulation of inflammatory 
response, and this mechanism may also get involved in the 
regulation of emotion and behavior.[41,61,68‑70]

Neurotransmitters and neural regulators synthesized 
by intestinal bacteria
Gut bacteria can synthesize gamma amino acid, butyric acid, 
5‑HT, dopamine, and SCFAs,[48,71] and these substances can 
exchange between cells of microorganism,[48] especially 
intestinal cells in the gut can produce many 5‑HT that have 
an effect on the brain. Bacterial enzymes can also produce 
neurotoxin products such as D‑lactic acid and ammonia.[3,72] 
Hence, a lot of necessary neurotransmitters in the body 
are generated by the gut microbiota, exerting influence on 
the human body including the brain, among which many 
of neurotransmitters in the human gut microbiota are also 
critical molecules.[73]

Intestinal mucosal barrier and blood‑brain barrier 
(barrier system)
Evidence from rodent studies showed that stress changed 
intestinal mucosal barrier function, made LPS and other 
cytokines entering blood circulation, and stimulated TLR4 

and other TLRs producing inflammatory cytokine.[74] 
Peripheral produced inflammatory factors could increase 
the permeability of blood‑brain barrier, thus make it possible 
for peripheral produced inflammatory factors to directly 
influence the brain.[75]

Therefore, vast evidence of animals and human studies 
showed that gut microbiota plays a critical role in the brain 
development and function.[76,77]

use of MIcroBIoMe and MetagenoMIcs to 
analyze coMPosItIon and characterIstIcs In gut 
MIcroBIota resPectIvely

Evidence of the animal studies showed that gut microbiota 
composition and metabolic products could be obtained 
through feces analysis.[73]

Microbiome define the composition and functional 
characteristics of gut microbiota
To effectively understand the role of symbiotic 
microorganisms of mammals, in particular bacteria, on 
health and disease, terms and indicators must be used to 
describe complex ecological gut microbiota. Some bacteria 
phyla represent its characteristics in gut, and symbiotic 
bacteria represent the possible diversity, there are about 
1000 different bacteria in the gut.[78‑80] Two main bacteria 
phyla are Bacteroidetes and Firmicutes, which account 
for at least 70–75% of the microbiome.[79‑81] There are 
also Proteobacteria, Actinomyces, Fusobacterium, and 
Verrucomicrobia, which are relatively small in number.[81] 
How to describe a variety of gut microbiota? Scientists 
use microbiome to give an overview description, and 
microbiome refers to the living bacteria in the gut and its 
genetic materials, including the archaea, protozoa, fungi, 
and virus.[41,82]

Dynamic characteristics and diversity of microbiome are 
beyond people’s imagination. Currently, scientists have 
only begun to understand the distribution and diversity of 
bacteria phyla which are helpful for health and disease. 
Metagenomics approach has already revealed that certain 
bacterial colonies could be as phenotype which shared 
with a human.[81] Beyond hierarchical features of bacteria 
phyla, detailed analysis showed that there was a big bacteria 
variation between the individuals who were relating or 
nonrelating.[82,83] The microbiome is a dynamic entity, 
influenced by factors such as gene, diet, metabolites, age, 
geography, use of antibiotics, and stress.[26,84‑91] Hence, the 
characteristics of gut microbiota are a good representative of 
individual’s environment, which is helpful for understanding 
individual disease risk, disease progression, and treatment 
effect. These tools are now being used in the human and 
animals studies.

Metagenomics is used to be an appropriate technique 
to characterize gut microbiota
The recent developments in molecular biology and 
metagenomics allow researchers to better understand the 
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structure and function of gut microbiota. Metagenomics is 
an emerging subject that uses the method of nonmicrobial 
culture to study microbial colony in the environment,[92] 
the main research objects are bacteria, archaea, fungi, 
viruses, and other microbes in bacterial colony, and 
its main purpose is to reveal the deeper genetic and 
evolutionary laws through analysis of aspects of microbial 
diversity, population structure and its dynamic change, 
relationship between members, and the relationship with 
environment within microbial colony. Metagenomics 
allows us to discover new genes and proteins, or even 
new method that is more accurate than traditional 
microorganisms or molecular biology, and complete 
comprehensive nonculturable microbial genome in a 
shorter time.[92]

The differences between metagenomics sequencing and 
16S/18S rDNA sequencing are as follows:[93] 16S/18S 
rDNA gene sequencing is mainly bacterial 16S rRNA or 
fungal 18S rRNA gene sequencing, and the cores of study 
are species taxonomy, species abundance, and system 
evolution within samples. Metagenomics sequencing 
takes microbiota genome in the environmental samples as 
research object, directly extracts DNA of all microbiota 
from environmental samples, constructs metagenomic 
library, uses high‑throughput sequencing technology 
to analyze population genetic composition, function 
and participated metabolic pathway of all microbiota 
contained in environmental samples, interprets the 
diversity and abundance of the microbial population, 
seeks for the relationship between microbiota and the 
environment and relationship between microbiota and the 
host, and explores and studies new genes with specific 
functions.

The metagenomic study can be used for evolution analysis, 
gene discovery, environmental and ecological research, 

and disease and individual medicine,[78,94,95] especially 
in individual medical field. Vast evidence showed that 
population and diversity of human gut microbiota have 
obvious correlation with the occurrence of human diseases, 
such as obesity, cardiovascular disease, and tumor, but 
the impact on health and disease of the human brain is 
underway.

conclusIon

In summary, gut microbiota‑brain axis is a “bottom‑up” term 
as opposed to a “top‑down” term of “brain‑gut‑microbiota 
axis”, no matter what is called, its meaning refers to a 
bidirectional communication network between gut and 
brain. Its composition includes gut microbiota and their 
metabolic products, ENS, sympathetic and parasympathetic 
branches, neural‑immune system, neuroendocrine system, 
and central nervous system. Moreover, there might have 
possible five routes of communicating between gut 
microbiota and brain, including the gut‑brain’s neural 
network, neuroendocrine‑HPA axis, gut immune system, 
some neurotransmitters and neural regulators synthesized 
by gut bacteria, and barriers including intestinal mucosal 
barrier and blood‑brain barrier [Figure 1]. In this 
communicating network, the brain affects gut movement, 
sensory and secretion function, and viscera signal 
from the gut also affects brain function. For example, 
incoming and outgoing branches of VN play an important 
role in gut message transmission. Vagal activation has 
anti‑inflammatory effect. Positive effects of many gut 
microbiota and probiotics on brain function are dependent 
on the vagal activity.

It is believed that the gut microbiota‑brain axis will 
provide more information and possible route for people 
to know the brain, understand the brain, and protect the 
brain.

brain

� neuroanatomical
pathway of gut-brain

axis

� neuroendocrine-
HPA axis pathway

� gut
immune
system

� gut microbiota
metabolism

system

�  intestinal mucosal
barrier and blood

brain barrier

gut
microbiota

Figure 1: Gut microbiota‑brain axis. Five possible communication routes (–) between gut microbiota and brain: intestinal mucosal barrier 
and blood‑brain barrier () is the important base for neuroendocrine‑HPA axis pathway (), gut immune system (), and gut microbiota 
metabolism system (). Substances produced by neuroendocrine‑HPA axis pathway (), gut immune system (), and gut microbiota metabolism 
system (), only into the system circulation and brain through the intestinal mucosal barrier and blood‑brain barrier system can play effect of 
gut microbiota on the brain. HPA: Hypothalamic‑pituitary‑adrenal.
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