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exhibit anti�diabetic and insulin�mimetic properties, but recent

epidemiological studies indicated supranutritional selenium intake

and high plasma selenium levels as possible risk factors for

development of type 2 diabetes, pointing to adverse effects of

selenium on carbohydrate metabolism in humans. However,

increased plasma selenium levels might be both a consequence

and a cause of diabetes. We summarize current evidence for an

interference of selenium compounds with insulin�regulated

molecular pathways, most notably the phosphoinositide�3�kinase/

protein kinase B signaling cascade, which may underlie some of

the pro� and anti�diabetic actions of selenium. Furthermore, we

discuss reports of hyperinsulinemia, hyperglycemia and insulin

resistance in mice overexpressing the selenoenzyme glutathione

peroxidase 1. The peroxisomal proliferator�activated receptor

gamma coactivator 1α represents a key regulator for biosynthesis

of the physiological selenium transporter, selenoprotein P, as well

as for hepatic gluconeogenesis. As proliferator�activated receptor

gamma coactivator 1α has been shown to be up�regulated in

livers of diabetic animals and to promote insulin resistance, we

hypothesize that dysregulated pathways in carbohydrate metabo�

lism and a disturbance of selenium homeostasis are linked via

proliferator�activated receptor gamma coactivator 1α.
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IntroductionThe essential trace element selenium is believed to exert
beneficial influence on human health, mainly based on the

antioxidant capacity of selenoproteins such as glutathione per-
oxidases (GPx) and thioredoxin reductases (TrxR) containing the
21st proteinogenic amino acid, selenocysteine, in their active
center.(1) Potential selenium-mediated health benefits include
prevention of cardiovascular and neurodegenerative diseases,
delay of aging, functioning of the immune system, and prevention
of certain forms of cancer.(1–6) A wide range of dietary selenium
sources comprise cereals, garlic, brazil nuts, meat and fish. Even
though overt selenium deficiency is observed rarely, consumers
in industrialised countries habitually ingest high amounts of
selenium-enriched dietary supplements. However, it has long been
known that the therapeutic window of selenium is narrow, and
adverse health effects may occur due to supranutritional selenium
intake even below the levels required for intoxication.(7–9)

In this regard, an ongoing discussion on the safety of dietary
selenium supplementation has arisen from a coincidental and
unexpected finding of the Nutritional Prevention of Cancer (NPC)
trial: participants of the trial, who received a daily dose of 200 μg

selenium over 12 years, were more likely to develop type 2
diabetes mellitus than those assigned to placebo.(10) Moreover,
the diabetes risk of the participants increased with higher baseline
plasma selenium levels.(10) Since then several epidemiological
studies have reported that high plasma selenium levels were
associated with increased prevalence of type 2 diabetes as well as
hyperglycemia and enhanced plasma levels of total and low-
density lipoprotein (LDL) cholesterol and triacylglycerols in the
selenium-replete US-American population.(11–15) On the other
hand, the outcome of similar recent studies in Europe was rather
ambiguous, ranging from adverse to slightly beneficial effects of
selenium on carbohydrate and/or lipid metabolism.(16–18) These
divergent results might be explained by a generally lower
selenium intake in most European countries in comparison to
the USA, but differences in lifestyle and genotype between US-
American and European populations as well as varied dietary
selenium sources may also contribute.(9,19) Given the rising numbers
of patients suffering from morbid obesity and diabetes as well as
increasing world-wide trends in dietary selenium supplementa-
tion, the molecular mechanisms underlying a potential adverse
effect of selenium compounds on carbohydrate and/or lipid
metabolism need to be addressed. An important unresolved issue,
which cannot be answered by epidemiological studies, is the
cause-and-effect-relationship of those associations: does selenium
oversupply contribute to development of type 2 diabetes by dis-
turbing insulin signalling and/or secretion, or conversely, may
a dysregulated carbohydrate metabolism influence selenium
homeostasis? Experimental evidence on these issues is available,
and to make the picture more complex and somewhat paradoxical,
selenium may act as an insulin-mimetic under certain circum-
stances.

Anti�Diabetic and Insulin�Mimetic Actions of Selenium

Diabetes mellitus is affecting over 170 million people world-
wide with more than 90% of the patients suffering from type 2
diabetes.(20) The onset of type 2 diabetes is hallmarked by resis-
tance of liver, skeletal muscle and fat tissue to insulin, thereby
causing dyslipidemia, hyperglycemia and a reactive increase in
insulin secretion by pancreatic beta cells for compensation of
the poor insulin response of major target tissues.(21) Binding of
insulin to its receptor initiates the intracellular insulin signalling
cascade, whose components have been reviewed comprehensively
elsewhere.(21–23) Among them, the insulin receptor substrate (IRS)-
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2, the protein tyrosine phosphatase (PTP)-1B and the protein
kinase B (serine/threonine kinase Akt) as well as the forkhead
box class (Fox) O1a transcription factor and its coactivator per-
oxisomal proliferator-activated receptor gamma coactivator
(PGC)-1α have received particular attention in diabetes research.
At present, it is evident from in vitro and in vivo studies that
dysregulated expression, localisation and/or activity of one or
more of those proteins may result in insulin resistance.(24–28)

Besides selenium, a number of metal ions (e.g., vanadium,
copper, zinc and cadmium) are capable of eliciting insulin-
mimetic effects by activation of Akt and other kinases of the
insulin signaling cascade such as p70 S6 kinase. The insulin-like
phosphorylation of Akt upon exposure of cells to micromolar
(10 μM, 100 μM) doses of heavy metal ions at oxidation number
+II (Cu2+, Zn2+, Cd2+) is interpreted primarily as a stress response,
because signaling through phosphoinositide-3-kinase (PI3K) and
Akt also promotes anti-apoptotic and cytoprotective pathways.(29)

With regard to regulation of carbohydrate metabolism, insulin-
mimetic properties of selenium compounds at oxidation numbers
+IV (sodium selenite) and +VI (sodium selenate) have been
reported in close resemblance to such effects of vanadium at
oxidation number +IV (vanadyl sulphate).(30–32) Early studies
have been performed in isolated rat adipocytes, and found that
sodium selenate stimulated glucose uptake through translocation
of glucose transporters to the plasma membrane and activated
serine/threonine kinases including the p70 S6 kinase.(31,33) As these
insulin-like actions were observed only at the very high dose of
1 mM sodium selenate, an anti-diabetic application in humans
appears to be difficult or impossible. The results of animal studies
are somewhat conflicting: A cautious view is corroborated by a
study in genetically obese Zucker rats, whose glucose tolerance
was transiently improved during acute selenate exposure, rapidly
followed by progressive development of hyperglycemia indicating
toxicity of high selenate doses.(34) On the other hand, whole-body
insulin sensitivity was improved in type 2 diabetic db/db mice by
dietary supplementation with supranutritional sodium selenate
doses.(35) Moreover, sodium selenate effectually improved glucose
homeostasis in streptozotocin-treated rodents.(36,37) Streptozotocin
causes necrosis of pancreatic beta cells through DNA alkylation
and, to a minor extent, generation of nitric oxide and reactive
oxygen species (ROS), resulting in insulin deficiency and
hyperglycemia.(38) The anti-diabetic effects of selenate in strepto-
zotocin-treated rats were attributed to partial reversal of abnormal
expression and activity of glycolytic and gluconeogenic liver
enzymes, whereas plasma insulin levels did not increase upon
selenate administration.(37)

Similar to heavy metal ions, sodium selenite at low micromolar
doses induced a cytoprotective response in vitro, thereby counter-
acting apoptotic cell death following serum withdrawal or expo-
sure to hydrogen peroxide (H2O2); survival of both Huh7 hepa-
toma cells and HT1080 fibrosarcoma cells was mediated through
selenite-induced Akt activation.(39,40) An insulin-like action of
selenite on carbohydrate metabolism was observed in the isolated
perfused rat liver, where glucagon-stimulated glycogen break-
down was inhibited by infusion of 10 μM sodium selenite.(32)

Consistent with the narrow therapeutic range of selenium, higher
doses of selenite (500 μM) severely impaired the metabolic func-
tion of the liver, causing degeneration and necrosis of periportal
hepatocytes.(32) In vivo, oral selenite administration failed to
improve insulin sensitivity in type 2 diabetic db/db mice, presum-
ably due to formation of different intermediary selenium metabo-
lites in peripheral organs compared to sodium selenate.(35)

Adverse Effects of Selenium on Insulin Secretion and
Signalling

An anti-diabetic impact of dietary selenium supplementation
would be expected, given both the long track record of selenium

as insulin-mimetic micronutrient and its antioxidant capacity as
constituent of ROS-detoxifying selenoenzymes, suggesting a
protective role against oxidative stress-related chronic complica-
tions in the progression of diabetes.(1,19,41) Contrarily to those
expectations, recent epidemiological and intervention studies
revealed a surprising association between high plasma selenium
levels and type 2 diabetes, hyperglycemia and dyslipidemia.(10–16)

The clue to answer the pivotal question of whether and how
selenium exerts adverse effects on insulin-regulated metabolic
pathways in humans may lie in the apparent “redox paradox” of
insulin signalling, a concept that refers to facilitated insulin action
by insulin-stimulated reactive oxygen species.(42) Upon binding to
its receptor at the plasma membrane of adipocytes, insulin elicits a
transient burst of ROS (superoxide and H2O2).(43) Insulin activates
the NAD(P)H oxidase (Nox) 4 to generate superoxide, which is
subsequently converted to H2O2.(44) These insulin-stimulated small
amounts of H2O2 serve as second messengers, which attenuate
the activity of phosphatases with redox-sensitive cysteine residues
and thereby enhance the phosphorylation of components down-
stream in the insulin signalling cascade.(42,45) Thus, high supra-
nutritional doses of antioxidants may have the capability to impair
insulin sensitivity, as it has recently been shown in humans
administered a combination of vitamin C (1,000 mg/day) and
vitamin E (400 IU/day).(46)

Inorganic and organic selenium compounds have been reported
to induce expression and activity of several antioxidant seleno-
proteins; the most pronounced stimulation was obtained for the
selenoenzyme cytosolic GPx1,(47–49) which degrades H2O2 and
other hydroperoxides.(50) A high GPx1 activity has been hypo-
thesized to interfere with insulin signaling. Indeed, pregnancy-
associated mild insulin resistance was shown to be accompanied
by increased erythrocyte GPx activity in humans,(51) and trans-
genic mice overexpressing GPx1 developed at older age a type 2
diabetes-like phenotype characterised by insulin resistance, hyper-
glycemia, hyperinsulinemia and obesity.(52) GPx1 overexpression
affected both pancreatic insulin production and insulin sensitivity
of target cells; insulin resistance of liver and/or skeletal muscle
was obvious from impaired insulin receptor and Akt phosphoryla-
tion.(52) Intriguingly, obesity together with insulin resistance and
hyperglycemia could be prevented in the GPx1-overexpressing
mice by dietary restriction, whereas the chronic hyperinsulinemia
persisted, even at dietary selenium deficiency.(53,54) The authors
conclude that dysregulation of pancreatic insulin biosynthesis
and secretion is the primary outcome of transgenic GPx1 over-
production in their experimental model.(54) Insulin-producing
pancreatic beta cells are among the worst-endowed cells in terms
of intrinsic enzymatic antioxidants: expression and activity of the
H2O2-degrading enzymes catalase and GPx1 in beta cells reach
only 1% of the values in hepatocytes.(55) For this reason, beta
cells are very susceptible to damage caused by hyperglycemia or
proinflammatory cytokines, and overexpression of antioxidant
enzymes including GPx1 has been applied to protect insulinoma
cell lines and pancreatic islets from oxidative injury.(56,57) On the
other hand, development of hyperinsulinemia in GPx1 over-
expressing mice points to detrimental effects of high GPx1 activity
on beta cell function in vivo, impairing the tight control of insulin
release.(52–54) An adverse effect of high GPx1 activity on compo-
nents of the insulin signalling cascade has been further substantiated
by an in vitro study in MCF-7 human breast cancer cells, where
GPx1 overexpression was associated with decreased phosphoryla-
tion of p70 S6 kinase and Akt.(58) An alternative approach to
increase GPx1 in a more physiological manner was done by
dietary supplementation of rats with sodium selenate: the higher
GPx1 activity in livers of selenium-supplemented rats was
associated with increased activity of protein tyrosine phosphatase
1B (PTP-1B),(59) which antagonizes insulin-induced signaling by
dephosphorylation of the insulin receptor (IR) and the IRS-1.(60)

Conversely and in good agreement with the experimental
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models of GPx1 overexpression, knock-out of GPx1 in mice
resulted in improved insulin sensitivity due to increased ROS
generation, causing oxidation (inactivation) of the dual specificity
protein phosphatase PTEN.(61) PTEN dephosphorylates the product
of PI3K, phosphatidylinositol-3,4,5-triphosphate (PIP3), thus
counteracting insulin-induced PI3K/Akt signalling.(62) In line
with elevated PI3K/Akt signaling, insulin-induced glucose uptake
was increased in skeletal muscles of GPx−/− mice, and most
compelling, knock-out of GPx1 protected the rodents from insulin
resistance provoked by high-fat diet.(61) These results are sup-
ported by observations of increased site-specific phosphorylation
of both Akt and p70 S6 kinase in transgenic mice with an overall
decreased biosynthesis of selenoproteins, caused by a mutant
form of selenocysteine transfer RNA (tRNA [Ser] Sec).(63)

Despite the compelling evidence from transgenic animal models
of GPx1 overexpression and knock-down, results from inter-
vention studies with selenium supplements in several human
populations argue against the idea that glutathione peroxidases
are the only mediators of adverse effects of high dietary selenium
intake under physiological conditions: plasma GPx activity in
humans has been found to be saturated at selenium dietary supple-
ment doses and total plasma selenium levels well below the values
associated with increased risk for type 2 diabetes.(64–67) Human
plasma contains selenium in form of the selenoenzyme GPx3,
a low-molecular-weight selenium pool and most notably the
selenium transporter selenoprotein P (SeP), which accounts for
50–60% of circulating selenium.(68) Compared to GPx activity,
both SeP and the remaining non-selenoprotein plasma selenium

pool require a higher dietary selenium intake for their optimization
and saturation.(64–67) It is tempting to speculate that SeP and/or
low-molecular-weight selenium compounds may affect insulin-
induced signalling pathways related to carbohydrate and lipid
metabolism. Fig. 1 schematically summarizes current experimental
evidence and hypotheses concerning an influence of selenium on
the insulin signalling cascade.

PGC�1α: a Molecular Switch Linking Selenium and Carbo�
hydrate Metabolism

The epidemiological association between high plasma selenium
levels and hyperglycemia might also be explained by a disturbance
of selenium homeostasis as side-effect of a dysregulated carbo-
hydrate metabolism. The major fraction of total selenium in
human plasma is present as SeP, which is mainly secreted by
the liver and supplies peripheral tissues with selenium.(68,69) SeP
represents a suitable biomarker for selenium status, because its
plasma concentration increases in response to different dietary
forms and to a wide range of doses in selenium supplementation
studies.(64–67) This obvious importance of SeP for selenium home-
ostasis prompted us to investigate the regulation of hepatic SeP
production by factors related to carbohydrate metabolism.

In the human SeP promoter, we identified a motif consisting of
a binding site for the FoxO1a transcription factor, located in close
proximity to a binding site for hepatocyte nuclear factor 4α (HNF-
4α).(70,71) This motif is conserved in the SeP promoters of humans,
rats and mice, and it mediates high-level expression of SeP in the

Fig. 1. Scheme depicting a potential influence of selenium on components of the insulin signaling cascade. Selenoproteins and low molecular
weight selenium compounds may interfere at different stages with insulin�induced signal transduction, eventually leading to dysregulation of
carbohydrate metabolism. Please see text for details and explanation of the abbreviations.
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liver as well as the hormonal regulation of hepatic SeP transcrip-
tion. Both transcription factors are co-activated by the PGC-1α,
which acts as “molecular switch” in response to hormones such
as insulin, glucagon and glucocorticoids,(27,72,73) well-known for
their control of hepatic glucose production and blood glucose
levels. Insulin inhibited SeP transcription via the PI3K/Akt/
FoxO1a axis,(70) whereas the PGC-1α-inducing glucocorticoid
dexamethasone strongly enhanced SeP mRNA levels and protein
secretion in cultured rat hepatocytes.(71) Oral administration of
dexamethasone has been reported to give rise to a redistribution
of selenium in mice, causing a decrease of liver GPx in favor of
elevated plasma selenium levels;(74) these earlier results can be
explained by enhanced hepatic secretion of SeP induced by
dexamethasone treatment.

The complex between FoxO1a and its coactivator PGC-1α is of
crucial importance for transcriptional regulation of the gluconeo-
genic enzymes glucose-6-phosphatase (G6Pase) and phospho-
enolpyruvate carboxykinase (PEP-CK).(27,72) Our observation that
the selenium transporter SeP is regulated virtually like a gluconeo-
genic enzyme provides a rationale for the hypothesized link
between selenium and carbohydrate metabolism.(71) Moreover,
PGC-1α is elevated in livers of animal diabetes models,(72) and
has been demonstrated to promote insulin resistance.(28) A vicious
circle is observed when diabetes is not treated accurately: high
glucose up-regulates expression of PGC-1α and gluconeogenic
enzymes in the liver, resulting in overproduction of hepatic
glucose and increased hyperglycemia.(72,75) We cultivated rat
hepatocytes in the presence of high glucose (25 mM), and found
an increase in SeP production paralleled by elevated PGC-1α
mRNA levels.(76)

Thus, elevated hepatic PGC-1α may trigger not only hyper-
glycemia, but also a disturbance in selenium homeostasis. The
anti-hyperglycemic drug metformin is widely described for treat-
ment of type 2 diabetes, because it suppresses hepatic glucose
production and improves peripheral insulin sensitivity.(77,78) In
parallel with gluconeogenesis, metformin attenuated hepatic

biosynthesis and secretion of SeP in vitro,(76) which might decrease
selenium bioavailability in extrahepatic tissues and thereby impair
expression and activity of selenoenzymes in vivo. This idea is
supported by a study of Pavlovic et al.: A two-week metformin
treatment resulted in decreased GPx activity in erythrocytes of
obese patients with type 2 diabetes.(79)
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