
����������
�������

Citation: Dobroch, J.; Bojczuk, K.;

Kołakowski, A.; Baczewska, M.;

Knapp, P. The Exploration of

Chemokines Importance in the

Pathogenesis and Development of

Endometrial Cancer. Molecules 2022,

27, 2041. https://doi.org/10.3390/

molecules27072041

Academic Editor: Alejandro Baeza

Received: 21 February 2022

Accepted: 18 March 2022

Published: 22 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Review

The Exploration of Chemokines Importance in the Pathogenesis
and Development of Endometrial Cancer
Jakub Dobroch 1,2,*, Klaudia Bojczuk 1 , Adrian Kołakowski 1 , Marta Baczewska 1,2 and Paweł Knapp 1,2

1 Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, 15-089 Bialystok,
Poland; klaudia.bojczuk98@wp.pl (K.B.); adriankolakowski17@gmail.com (A.K.);
marta.baczewska@umb.edu.pl (M.B.); knapp@umb.edu.pl (P.K.)

2 University Oncology Center, University Clinical Hospital in Bialystok, 15-276 Bialystok, Poland
* Correspondence: jakub.dobroch@sd.umb.edu.pl; Tel.: +48-662735369

Abstract: Endometrial cancer (EC) is one of the most frequent female malignancies. Because of a char-
acteristic symptom, vaginal bleeding, EC is often diagnosed in an early stage. Despite that, some EC
cases present an atypical course with rapid progression and poor prognosis. There have been multiple
studies conducted on molecular profiling of EC in order to improve diagnostics and introduce person-
alized treatment. Chemokines—a protein family that contributes to inflammatory processes that may
promote carcinogenesis—constitute an area of interest. Some chemokines and their receptors present
alterations in expression in tumor microenvironment. CXCL12, which binds the receptors CXCR4 and
CXCR7, is known for its impact on neoplastic cell proliferation, neovascularization and promotion of
epidermal–mesenchymal transition. The CCL2–CCR2 axis additionally plays a pivotal role in EC
with mutations in the LKB1 gene and activates tumor-associated macrophages. CCL20 and CCR6 are
influenced by the RANK/RANKL pathway and alter the function of lymphocytes and dendritic cells.
Another axis, CXCL10–CXCR3, affects the function of NK-cells and, interestingly, presents different
roles in various types of tumors. This review article consists of analysis of studies that included the
roles of the aforementioned chemokines in EC pathogenesis. Alterations in chemokine expression are
described, and possible applications of drugs targeting chemokines are reviewed.
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1. Introduction
1.1. Epidemiology and Classification of Endometrial Cancer

Endometrial cancer (EC) is the most common malignant cancer in women in Europe
and the USA and the sixth most common cancer in the women worldwide. The vast majority
of EC cases occur in women over 50 years, and the median age of women diagnosed with
EC is 63 [1]. The traditional clinical and pathological classification of EC proposed in
1983 by Bokhman distinguished two types of EC: estrogen-dependent type I and estrogen-
independent type II. In recent years, this classification has been additionally characterized
by molecular phenomena occurring in cancer cells of the uterine mucosa [2]. The current
state of knowledge indicates that excessive exposure to estrogens unopposed by the action
of gestagens, i.e., nulliparity, obesity, late onset of menopause, and infertility, can be risk
factors in EC development [3].

Clinical symptoms of EC course include abnormal uterine bleeding, which is easily
discernible at presentation. Because of that typical sign of the disease, approximately 67%
of women are diagnosed at the early stage of EC, which has favorable prognosis because
of the indolent nature of the cancer. Diagnosis at an advanced stage of EC (stages III and
IV, according to the International Federation of Gynecology and Obstetrics (FIGO)), with
proclivity for recurrence and worse overall prognosis, occurs less often [4]. Late diagnosis
of the advanced disease is the main cause of poor prognosis and worse survival, because
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advanced EC has a predilection for metastasis formation to the ovaries, lymph nodes, and
other areas in the human body [5]. Moreover, in the advanced stage of EC, the efficacy of the
anticancer therapy significantly decreases, which includes the problem of chemoresistance.
It is vital to investigate the mechanisms that contribute to the development of the advanced
EC stage and metastasis formation, which pose the threat of therapy failure. More adequate
methods of predicting and treating the advanced stages of this disease should also be
found [6].

1.2. Implications in EC Classifications and Prognosis

EC is a group of heterogeneous neoplasms. Different types of EC vary in histological
features, molecular morphology, and clinical implications. Hence, each classification
used to order types of EC entails some generalizations [2]. The EC classifications are
based mainly on clinical status, histological subtype, grade, and lymph node invasion,
but recently, more attention has been put on diagnosis based on molecular profile. A
great number of molecular, inflammatory factors have been extensively studied in order to
elucidate which markers are crucial for detection of EC, precursor lesions, or setting the
prognosis of early EC [7]. According to recent clinical guidelines, there are some novel and
constantly evolving molecular and inflammation markers in endometrial carcinoma that
can be used as predictors of dismal prognosis and to determine an adequate personalized
treatment approach [2,8]. Since there are no screening tests for EC, an alternative method
to detect and assess the type and stage of EC before and after surgery is inevitably needed.
The omission of molecular features in EC diagnostics may result in the erroneous risk
group assignment and the choice of an inadequate therapeutic strategy [9–11]. Moreover,
molecular phenomena and inflammation processes that occur in the cancer stroma can
influence cancer invasiveness and are crucial for setting adequate diagnosis of EC type.

1.3. Molecular Algorithm in EC Diagnosis

According to the latest European Society of Gynecologic Oncology (ESGO) recommen-
dations, the molecular profiling of EC includes four tests: POLE mutation, p53 protein,
MSH6, and PMS2. These are necessary to classify the tumor into specific groups: POLE-
mutated (POLEmut), p53 abnormal (p53abn), mismatch-repair deficient (MMRd), and
nonspecific molecular profile (NSMP). The molecular profile contributes to an assignment
to the risk group and setting a prognosis after a diagnosis. For instance, POLEmut ECs are
associated with favorable clinical outcome, whereas p53abn tumors have greater tendency
towards disease relapse [12]. Molecular analysis is recommended for integration with
conventional histopathology in all types of ECs, especially high-grade tumors, in order to
optimize a qualification to an adjuvant treatment. However, in low-risk endometrioid can-
cer, POLE mutation analysis is not essential for diagnostic strategy [13,14]. Moreover, not
only those molecules are involved in malignant transformation in endometrial cells. Based
on the EC pathogenesis, it is widely acknowledged that inflammation plays a pivotal role in
EC development. The prognosis of EC course is also suspected to depend on inflammation
factors released in the cancer microenvironment, such as cytokines and chemokines [15].
The numerous data indicate that some chemokine-related reactions can induce resistance
to chemotherapy in cancers or be involved in the tumor progression and the metastatic
cascade [16,17]. Hence, the detection of those molecules can enhance the accuracy of EC
risk assessment and staging and facilitate novel EC classification.

In this review, we provide the current state of knowledge on chemokines’ impact on
EC progression and comprehensive understanding of their usefulness in the current classi-
fication systems. Finally, we outline that targeting inflammation factors such chemokines
in the cancer treatment could have potential clinical application.

1.4. Role of Chemokines in Carcinogenesis

It is widely known that inflammation plays a crucial role in malignant transforma-
tion [18,19]. The genetic mutations and hormonal alterations observed in EC promote
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intensification of local inflammatory reactions in the cancer microenvironment. The signifi-
cant alterations occur in genes that encode proteins crucial for inflammatory processes. As
a result of this, the inflammatory cells extensively produce mediators such as cytokines
and prostaglandins, the levels of which are augmented in the cancer environment [20].
The majority of inflammation factors are regarded to contribute to carcinogenesis [21].
However, chemokines take precedence over other inflammation factors in the regulation of
tumor cells’ activity and adhesion. The numerous data indicate that the cytokine-mediated
reactions responsible for immune cells’ migration in tissues are presumed to be a basis of
carcinogenesis. For instance, chemokines are suspected to play an essential modulatory
role in tumor progression and the metastatic cascade [22,23]. Chemokines can be produced
by both cancer cells and leukocytes infiltrating the cancer milieu and can exert effects on
immune and nonimmune cells. The hallmark feature of chemokines in tumorigenesis is
their ability to regulate lymphocyte migration into the tumor microenvironment, modulate
cancer immune response and proliferation, and alter cancer cells’ properties [19]. Recent
studies have focused on investigation of chemokines’ influence as a basis of aggressiveness
of EC cells.

Chemokines are a family of small, secreted proteins with the ability to induce leuko-
cyte influx to the site of infection. Chemokines exert an influence on cells by interacting
with cell surface G protein-coupled heptahelical chemokine receptors [24]. Chemokines
play a pivotal role in directing leukocyte migration and immune regulation. In pathological
conditions, they also can be secreted and exert an impact on tumor stemlike cells and
stromal cells [4,8]. Chemokines are also regarded as a prerequisite for diverse stages of
cancer development. Recent studies have proven that there are alterations in chemokines
and their receptor expression in some cancers caused by changes in activation of tumor
suppressor genes or oncogenes. Precisely, these molecules play a prominent role in tumor
growth by inhibiting cell apoptosis [24]. First of all, chemokines are involved in cancer cell
aging and inducing cancer cell death. Second, it has been acknowledged that chemokines
promote epithelial–mesenchymal transformation (EMT), the most pivotal alteration that
initiates metastatic cascade [16]. Moreover, chemokines are presumed to play an important
role in cancer-associated angiogenesis and the production of growth factors that trigger neo-
vascularization [25]. Pathways of specific chemokines’ oncogenic influence are summarized
in Figure 1.

Studies pertinent to chemokines and their receptors in neoplastic tissues revealed
that there is a relevant linkage between the enhanced expression of some proteins in
cancer tissues and higher stages of cancer, the presence of metastases in the lymph nodes,
and dismal overall survival, e.g., in colorectal cancer [23]. In recent years, novel studies
have been conducted that presented the role of chemokines in ovarian, breast, and lung
cancer [18,26,27].
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Figure 1. Key pathways of chemokines’ oncogenic effect. MAPK/Erk—mitogen-activated
protein kinase/extracellular signal-regulated kinase; PI3K—phosphoinositide 3-kinase; NF-κB—
nuclear factor kappa-B; IL-8—interleukin 8; VEGF—vascular endothelial growth factor; MMP2/9—
metalloproteinases 2 and 9; EMT—epithelial–mesenchymal transition.

2. Role of Particular Chemokine-Receptor Axis
2.1. CXCL12–CXCR4, CXCR7 Axis

The CXCL12 ligand and its receptors CXCR4 and CXCR7 constitute an axis, which
is involved in tumor progression [28]. CXCL12, also known as stromal cell-derived factor
1 (SDF-1), is secreted mostly by the stromal fibroblasts, e.g., in the brain, breasts, liver,
lungs, bone marrow, and lymph nodes [29]. CXCL12 may influence cancer cell prolifera-
tion, apoptosis inhibition, neovascularization, EMT, and recruitment of tumor-associated
macrophages (TAMs) in the tumor microenvironment [22]. The expression of CXCL12 is
upregulated and has a remarkable correlation with dismal prognosis in diverse cancers,
e.g., breast cancer, pancreatic cancer, ovarian cancer, cervical carcer, and leukemias [30–33].
In glioblastoma, which has propensity for hazardous invasiveness in patients, the CXCL12–
CXCR4 axis contributes to increase cell proliferation and migration, while the suppression
of its function decreases cell survival [34]. Much research has indicated an inevitable
role of CXCL12 in cancer development by triggering divergent pathways. The CXCL12–
CXCR4/CXCR7 signaling pathway exerts an impact on cells by activation of the PI3K/Akt
pathway and the MAPK/Erk pathway [35]. CXCL12 induces profound consequences by
activation of AKT and ERK pathways, leading to increased NF-κB expression, which results
in diminishing apoptotic pathways in cancerous tissues [36]. This hypothesis has been
abundantly confirmed by research aimed at inflammation inhibition in cancers. In particu-
lar, the study conducted by Jiang et al. highlighted that depletion of CXCR4 suppressed
the PI3K/Akt/NF-κβ signaling pathway by triggering apoptosis of human osteosarcoma
cells [37]. The CXCL12–CXCR4 axis is also suspected to be involved in initiation of the
metastatic cascade [38].

The pronounced expression of CXC12 has a remarkable correlation with the level of
vascular endothelial growth factor (VEGF), which is regarded as a vital factor in angiogene-
sis and cancer invasiveness. Liang et al. reported that CXC12 induced neovascularization
by triggering the PI3K/Akt pathway, which resulted in enhanced secretion of VEGF [39].

The expression of CXCL12 and CXCR4 proteins has been proven to be augmented in
EC [15,16,40,41]. Liu et al. proved the expression of CXCR4 in 69.23% of EC specimens,
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which was increased compared with normal endometria [15]. Moreover, other research
proved that CXCL12 was expressed in 68% of cases [42]. These data were supported by
another recent study conducted on the human endometrial epithelium, which revealed
enhanced expression of CXCL12 in 90% of EC specimens [41]. However, Gelmini et al.
revealed some discrepancy in CXCL12 expression. Their research revealed a significant
decline in CXC12 expression in EC tissue, suggesting that an increase in CXCR4 expression
was coupled with the decrease in CXCL12 expression [43].

A vast majority of reports have highlighted the consequences of CXCL12–CXCR4
pathway activation. However, the precise mechanism of triggering CXC12 action in EC
is still being widely studied. Teng et al. revealed that cancer-associated fibroblasts re-
lease SDF-1α in the EC environment. Their study proved that the hallmark feature of
CXCL12 secreted by cancer-associated fibroblasts is its ability to increase cell proliferation,
migration, and invasiveness leading to enhanced matrix metalloproteinase (MMP-2 and
MMP-9) production in EC cells through the activation of the PI3K/Akt pathway and the
MAPK/Erk pathway [40]. The hypothesis that the CXCL12–CXCR4 axis is also involved
in tumor growth by enhancing cell proliferation and attenuating cell apoptosis has also
been strengthened by a vast number of studies on EC [44,45]. CXCL12 influenced cell
proliferation via Akt or ERK1/2 signaling pathway stimulation in endometrial cell lines
expressing estrogen receptors (ER) and in cells with expression of PTEN protein (HEC-1A
cells) [45]. Additionally, the administration of AMD300, which is a CXC12 antagonist,
resulted in a remarkable attenuation of EC cells proliferation and invasion [40]. Moreover,
the administration of CXCR4-siRNA and/or CXCR7-siRNA, silencing these receptors,
resulted in reductions in EC weight and size in xenografts in nude mice [46]. Therefore,
the CXCL12–CXCR4 axis has a crucial influence on the development of EC and may be a
potential novel therapeutic target.

The CXCL12–CXCR4 axis is also involved in initiation of the metastatic cascade and
cancer invasion. Recent research showed that the administration of anti-CXCR4 antibodies
in vivo in nude mice diminished the growth and the number of metastases in the liver,
lung, and peritoneum [43]. Moreover, Schmidt et al. highlighted that incubation of EC cell
lines with SDF-1 resulted in enhanced cell invasion.

The current research has not proven any correlations between the expression of CXCR4
and histological type [40]. However, there is no unambiguous opinion on the correlation
between enhanced expression of CXCL12 and type, stage, and prognosis of EC [41,42].
Concerning the stage of EC, Gelmini et al. reported a marked increase in CXCR4 expression
in low-grade compared with high-grade EC, while alterations in CXCL12 expression were
not observed when comparing the FIGO stages of EC [43]. On the other hand, Walentowicz-
Sadlecka et al. proved that CXCL12 was remarkably increased in advanced-stage EC, but
CXCR4 expression was not significantly altered depending on EC staging [41]. In contrast,
other research revealed that the expression of CXCR4 and CXCL12 was decreased in the
advanced stages of EC [47]. There is a strong need to conduct research to elucidate in which
type and stage of EC the expression of CXCL12 and CXCR4 is enhanced, because there
have been converse statements about that correlation.

A study conducted on EC tissues by Walentowicz-Sadlecka et al. proved that higher
presence of SDF-1 was an independent negative predictor of survival in EC. Moreover, their
research highlighted that increased CXCL12 expression was correlated with the profound
consequences of increased risk of metastasis and deep myometrial invasion [41]. There was
no linkage between CXCR4 expression and metastasis, myometrial invasion, or relapse
risk [40,41]. However, another study proved that the abundant presence of CXCL12 in ER-
positive EC had a significant correlation with extended progression-free survival compared
with EC without ER expression [42]. Hence, the thorough investigation of SDF-1α’s clinical
relevance as a prognostic factor in EC is also a compelling area of scientific research.

The role of the CXCR7 receptor, which also binds CXCL12, is still widely discussed [48].
CXCR7, unlike CXCR4, is not a typical G protein-coupled chemokine receptor and does not
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exert an influence on cells by triggering G protein activation. The impact of CXCR7 on cells
is based on heterodimerization with CXCR4 and the augmentation of CXCR4 activity [49].

The expression of CXCR7 is enhanced in several cancers and has a remarkable linkage
with poor overall survival in, e.g., breast cancer, cervical carcinoma, and non-small-cell lung
cancer cells [50]. The expression of CXCR7 has significant linkage with histological stages
and the presence of metastases in pancreatic adenocarcinoma, although the expression of
CXCR7 has no prognostic value in this case [51]. Once the chemokine CXCL12 is tethered
to the CXCR7 receptor, it activates divergent pathways leading to significant alterations in
cancer cell survival, proliferation, and migration. The most pivotal role of CXCR7 in tumor
development is associated with stimulation of the AKT signaling pathway and EGFR signal-
ing [52]. Furthermore, pronounced alterations in CXCR7 expression significantly enhance
the adhesion ability of prostatic cancer cells by influencing the expression of fibronectin
1, cadherin 11, CD44 antigen, and other molecules involved in extracellular matrix degra-
dation, such as MMP3, MMP10, and MMP14. Moreover, CXCR7 can induce profound
consequences on tumor microenvironment angiogenesis by enhancing interleukin-8 and
VEGF secretion [53].

The prominent role of CXCR7 in EC progression was suggested by research that
revealed that the suppression of CXCR7 action significantly diminished the cell proliferation
rate and invasion properties of EC cell lines [48]. Current research has yielded discrepant
data on CXCR7 expression in EC. Walentowicz-Sadlecka et al. reported that marked
expression of CXCR7 was detected in 100% of EC specimens [41]. However, Gelimini et al.
reported that there was no significant alteration in CXCR7 expression in EC compared with
normal endometrial tissues [43]. Moreover, the current state of knowledge has not indicated
any linkage between CXCR7 expression and the clinicopathological type of EC [48]. CXCR7
expression was not correlated with FIGO stage, the presence of metastases, the depth of
myometrial invasion, or the likelihood of EC relapse [41].

Summing up, there is a large body of evidence that the CXCL12–CXCR4/CXCR7 axis
contributes to tumor progression and metastatic cascade in EC. However, it has not been es-
tablished yet which stage of EC is characterized by the highest expression of these molecules.
Most research has proven that the expression of CXCL12 and CXCR4 is upregulated in EC
in approximately 70% of cases. Therefore, there is a need to assess the expression of these
proteins before the administration of the substances targeted at the chemokine network,
because their effectiveness depends on the expression levels of CXCL12 and CXCR4, which
significantly vary in EC. The clarification of the CXCL12–CXCR4/CXCR7 axis mechanism
is indispensable for elucidating its usefulness as an additional pathomorphological test and
as a new target of a complementary therapy in EC treatment.

2.2. CCL2–CCR2 Axis

CCL2, also known as monocyte chemotactic protein-1 (MCP-1), is a potent chemoat-
tractant for monocytes, macrophages, basophils, T lymphocytes, and natural killer (NK)
cells [54]. It is abundantly expressed on the surface of monocytes and facilitates differentia-
tion of monocytes into macrophages. CCL2 binds primarily to the CCR2 receptor, which is
present in monocytes and in various tissues in the human body, e.g., blood, brain, heart,
kidney, liver, lung, ovary, spleen, and thymus [55]. The hallmark feature of CCL2 is its
ability to regulate chemotaxis of monocytes/macrophages, memory T lymphocytes, and
NK cells [56]. The vast majority of studies have acknowledged the altered expression of
CCL2 in different cancers, e.g., prostatic cancer, colorectal cancer, and breast cancer [57–59].
Regarding carcinogenesis, CCL2 is presumed to mediate monocyte influx into tumors and
contribute to malignant transformation [59].

The predominant role of CCL2 released by cancer cells and other cells in the cancer
environment is based on contribution to metastasis formation. CCL2–CCR2 signaling is of
a paramount importance in the intricate process of invasion in the cancer environment and
to lymph nodes. The pivotal role of CCL2 is its ability to trigger invasive phenotypes of
cancer cells and recruit monocytes to tumor sites [60]. Moreover, CCL2–CCR2 signaling
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enhances metalloproteinase MMP2 and MMP9 production in human chondrosarcoma and
hepatoma cells, which elicits detrimental effects on cancer cell invasion and motility [61,62].
Monocytes can be differentiated into TAMs, which are involved in an increase in cancer
growth in diverse cancers. Abundant production of CCL2 caused the growth of prostate
cancer, augmented the aggregation of macrophages in vivo, and induced neovasculariza-
tion in colorectal cancer [23,63]. This recognition was confirmed in a study conducted
on mice, which proved that CCL2 acquires the ability to induce breast-tumor metastasis
formation in lungs via VEGF [64]. Moreover, augmented CCL2 expression has a remarkable
correlation with poor overall survival and is a predictor of cancer recurrence in breast can-
cer [65]. Interestingly, the inhibition of CCL2 action in metastatic breast tumor significantly
diminished the size of metastasis in the lungs and macrophage accumulation in cancer in
mice but did not alter the primary breast tumor’s size. On the other hand, this research
proved that depletion of CCL2 resulted in the augmented expression of IL-6 and VEGF-A.
This recognition suggests that the administration of anti-CCL2 treatment may pose the
threat of exerting counterproductive effects on tumor metastasis [66].

Considering the presence of CCL2 in EC, some studies reported that CCL2 expression
was significantly enhanced in EC cell lines compared with normal endometrial cells [67].
Considering the grade of the tumor, Pena et al. proved enhanced expression of CCL2 in
high-grade compared with low-grade EC [68], whereas Hong-qin et al. did not report any
significant alterations in CCL2 expression in EC [48].

The relevance of CCL2 in EC development has not been well assessed in foregoing
studies. Previous studies have indicated that CCL2 plays a role in EC progression induced
by mutations in suppressor serine/threonine kinase gene (LKB1) [68]. The depletion
of the LKB1 gene induces EC invasiveness and leads to the progression to metastatic
disease [69]. Pena et al. studied the underlying mechanism that contributes to developing
aggressive phenotypes of endometrial adenocarcinomas caused by loss of the LKB1 gene.
Their research proved that LKB1 regulates CCL2 production by triggering the AMPK
pathway, which leads to increased macrophage migration to the tumor microenvironment.
Suppression of CCL2 in EC associated with LKB1 mutations resulted in marked attenuation
in cancer development [68].

Moreover, the secretion of CCL2 in cancer milieu is regulated by activating transcrip-
tion factor 4 (ATF4), which is produced in response to stress conditions in the cancer
environment [70,71]. Previous studies have indicated that ATF4 exerts detrimental effects
on cancer progression by triggering aggressive phenotypes of cancer cells and inducing
treatment resistance. Liu et al. reported that inhibition of ATF4 significantly suppressed
EC growth in vivo and led to diminishment in macrophage infiltration. Furthermore, their
research proved that CCL2 triggers macrophage recruitment and that ATF4 exerts influ-
ence on CCL2 expression and macrophage infiltration in EC. Concluding, ATF4-mediated
CCL2 signaling contributes to EC macrophage influx to tumor sites [71]. Therefore, other
mechanisms that do not directly affect CCL2 expression, such as ATF4, may also contribute
to suppressed EC growth and be a target of therapy.

Interestingly, the significant impact of CCL2 was also detected in other gynecologic
malignancies. Penson et al. reported that paclitaxel contributed to a decrease in CCL-2
presence in ovarian cancer patients’ ascites, so it is vital to assess whether CCL2 could be
used as a marker of treatment efficacy [72]. Moreover, another in vitro study conducted on
human endometrial adenocarcinoma cell lines proved that the production of CCL2 was
decreased after incubation with unfractionated heparin [73].

In the summary, the CCL2 signaling pathway plays an inevitable role in EC develop-
ment, and the overexpression of CCL2 poses the threat of therapeutic failure in gynecologic
malignancies. Both the CCL2 chemokine and its regulating factors seem to be attractive
targets for EC therapy. On the other hand, numerous clinical studies in other tumors have
shown that loss of CCL2 induced increased expression of factors influencing neovascu-
larization. There is a need to start research into therapy targeting CCL2 in EC in order to
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elucidate the inhibitory effect of this chemokine and investigate whether there are actually
side effects of the therapy, such as neovascularization.

2.3. CCL20–CCR6 Axis

The CCL20 chemokine is also known as macrophage inflammatory protein (MIP)-3α,
Exodus-1, or liver and activation-regulated chemokine (LARC) [74]. At present, only one
receptor for this chemokine is known—CCR6 [75]. It is most commonly found in the
mucosal sites (lung, intestines), liver, thymus, skin, prostate, and testes [76,77], where it
is involved in immunological and structural homeostasis. CCL20 plays a crucial role in
inflammation and immunization, mainly through the Th17 lymphocyte pathway with
accompanying CCR6 expression [78]. High expression of CCL20 and its receptors was
observed in some tumors, demonstrating the role of CCL20 signaling in their development.
Some studies have found that CCL20–CCR6 has higher concentrations in cancer cells than
in normal tissues and is associated with malignant tumors [79].

The role of the CCL20 chemokine in hepatocellular carcinoma (HCC) is well described;
the CCL20–CCR6 axis is considered to be a key factor in tumor progression [80]. It has
also been shown that the concentration of CCL20 in this cancer is associated with tumor
size, vascular invasion, tumor differentiation, risk of recurrence, and even survival rates of
HCC patients [81]. Furthermore, breast cancer patients who showed increased expression
of CCL20 had worse survival prognosis [82]. This was caused by the self-renewal of breast
cancer stem cells through activation of p65 nuclear factor kappa B (NF-κB) via protein
kinase C or p38 mitogen-activated protein kinase [83]. CCL20 expression is also elevated in
other cancers, such as pancreatic cancer [84], colorectal cancer [85], and ovarian cancer [86].
Both CCL20 and CCR6 are present in tumor cells [87]. For this reason, self-stimulated cell
proliferation may be triggered by the CCL20–CCR6 axis. At the same time, angiogenesis
may be activated by the CCR6 receptors present on the endothelium [88], which may then
lead to the expression of VEGF in neoplastic cells [89].

One of the most important function of CCL20 in the tumor microenvironment is the
infiltration of various cell types. Cells such as dendritic cells (DCs), regulatory T lympho-
cytes (Treg), and Th17 helper cells are recruited. After recruitment, these cells undergo
differentiation under the stimulus of the CCL20–CCR6 axis and influence the tumor mi-
croenvironment, leading to an increase or decrease (depending on the type of recruited cell)
in the patient’s survival rate [90]. Regulatory T lymphocytes control the autoimmune re-
sponse and are very common in cancerous tissues. Their role in the neoplastic environment
is based on the inhibition of the antitumor autoimmune response [91]. High expression of
CCR6 receptors and directional migration to tumor-present CCL20 can also be observed
for Treg, as described by Chen et al. [92]. It has also been shown that injection of recombi-
nant murine CCL20 protein into the tumor site promotes tumor progression and increases
Treg recruitment, suggesting that the concentration of CCL20 should be considered as a
prognostic factor for tumor dissemination [93]. Th17 cells, which are also stimulated by the
CCL20–CCR6 axis, exert a similar effect on Treg cells. Increased concentrations of Th17 cells
lead to tumor progression through the activation of angiogenesis and immunosuppressive
mechanisms [94]. For example, in cervical cancer, a positive correlation between the active
phenotype of Th17 cells and CCR6 expression was observed, with a CCR concentration
much higher than in healthy cells [95]. The CCL20 chemokine is also responsible for the
recruitment of DCs, which enhance the antitumor response of the immune system. CCL20
works by binding to CCR6 receptors present on DCs, which are involved in the recruitment
of numerous inflammatory cells and suppression of tumor cells proliferation [96]. However,
Bonnotte et al. showed that despite the increase in DC concentration, these inflammatory
cells are immunologically immature, and tumor growth is not inhibited [96]. In addition,
it seems that the effect of CCL20 on other tumorigenic cells is significant and that CCL20
ultimately supports tumor progression.

The CCL20 chemokine is also crucial in oncological gynecology in neoplasms such as
ovarian and EC [97]. The expression of CCL20 has been demonstrated in the HHUA en-
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dometrial cell line and more recently on primary endometrial epithelial cells [98,99]. In EC,
upregulation of CCL20 has been observed [100,101]. Liu et al. showed that CCL20 expres-
sion and secretion was increased in receptor activator for NF-κB (RANK)-overexpressed
EC cells treated with RANK ligand (RANKL) in vitro and in vivo. Additionally, CCL20
was shown to accelerate invasion and induce EMT in EC cells [102]. The RANK/RANKL
axis induces the secretion and expression of CCL20 in EC cells, which promotes tumor
progression and metastasis by EMT. Confirmation of the above results was included in a
study describing the influence of high RANK expression on the survival of patients with
EC. The results showed that such patients were characterized by reduced survival and
more frequent occurrence of metastases [103]. Moreover, Wallace et al. demonstrated the
association of CCL20–CCR6 with the inflammatory mediator prostaglandin F-2α (PGF-2α)
and its F-prostanoid receptor (FP). Induction of CCL20 by PGF-2α/FP signaling in an en-
dometrial adenocarcinoma cell line was found to be dependent on intracellular signaling by
Gq protein, epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase
(ERK), calcineurin, and nuclear factor of activated T cell (NFAT). The described mechanism
was illustrated by treating FP-rich endometrial adenocarcinoma cells with recombinant
CCL20, which resulted in a significant increase in the proliferation of adenocarcinoma
cells [104]. In summary, the CCL20 chemokine can be regarded as a potential therapeutic
target for reducing the extent of metastasis.

2.4. CXCL10–CXCR3 Axis

CXCL10 (interferon (IFN) γ-induced protein; IP-10) is a 10 kDa protein functionally
classified as a Th1 chemokine. It binds to the CXCR3 receptor and regulates the immune
response by activating inflammatory cells such as T lymphocytes, eosinophils, and mono-
cytes. The activation and guidance of leukocytes to the inflamed area and the persistence
of the inflammation can lead to tissue damage [105]. The CXCL10 chemokine can also bind
to and activate toll-like receptor 4 (TLR4) [106]. CXCL10 is strongly induced by IFN-γ,
IFN-α/β [107], and, to a lesser extent, tumor necrosis factor α (TNFα) [108]. CXCL10
induction requires CXCR3, which is a Gαi protein-coupled receptor. Three isoforms of this
receptor are distinguished and bind CXCL9, CXCL10, CXCL11, and CXCL4 [109]. CXCR3
is expressed mainly on activated T lymphocytes (primarily Th1), NK cells, and epithelial
cells, which enable migration to the inflammatory site through CXCL10–CXCR3 signal-
ing [110]. In addition to induction of Th1 and NK cells, CXCL10 has been associated with
the recruitment of CXCR3(+) CD8(+) T cells to the tumor site. CXCL10 not only recruits
these cells but induces the production of granzyme B by them, leading to an enhanced
antitumor effect [111]. Barash et al. showed that reduced levels of CXCL10 induced the
development of myeloma, while treatment of the CXCL10-Ig fusion protein in mice signifi-
cantly attenuated the tumor growth. This demonstrates the strong antitumor activity of this
chemokine on myeloma cells [112]. Moreover, Barreira da Silva et al. reported that the use
of dipeptidyl peptidase 4 inhibitors led to an increase in endogenous CXCL10 concentration
and increased the translocation into the tumor of CXCR3-expressing lymphocytes. This
led to the suppression and rejection of the experimental melanoma [113]. The CXCL10
chemokine can be used as a prognostic marker of survival, because its increased levels
in ovarian cancer, colorectal cancer, and other various cancers were positively correlated
with an increased likelihood of survival [114]. However, its action in all neoplasms does
not have a clear inhibitory effect. Mulligan et al. showed that in the case of breast cancer,
elevated levels of CXCL10 may play a role in tumor invasiveness and progression. The
CXCL10–CXCR3 axis may be a point of therapy; however, it relies on its inhibition [115]. On
the other hand, Ling et al. showed that enhancement of CXCL10/CXCR3 signaling in liver
transplants induced endothelial progenitor cell mobilization and differentiation and new
vessel formation, which promote hepatocellular carcinoma relapse and progression [116].

The CXCL10 chemokine may also exert antitumor effects through T-cell, macrophage,
or NK-independent angiostatic effects. This effect of CXCL10 was observed in xenograft
models of lymphoma, squamous cell carcinoma, and lung adenocarcinoma, in which
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angiogenesis and tumor growth were significantly reduced [117]. CXCL10 also inhibits
angiogenesis associated with basic fibroblast growth factor (bFGF) in advanced uterine
EC [118]. Furthermore, activation of IP-10 may lead to inhibition of regrowth or recurrence
following intensive treatment of advanced ECs. On the other hand, Degos et al. observed
increased levels of CXCL10 in the tumor microenvironment. Increased concentrations
of this chemokine lead to the recruitment of NK cells as the main cytotoxic mechanism
inhibiting cancer progression. However, NK cell recruitment may not be sufficient because
of the alteration in the NK cell profile due to the tumor microenvironment. NK cells are
increasingly exhausted as the tumor progresses and lose their antitumor effect [119]. In
conclusion, the action of the CXCL10–CXCR3 axis has a different mechanism depending
on the type of tumor. In the literature, articles describing mainly antitumor activity are
predominant. However, in the case of EC, there is information about the multidirectional
action of the CXCL10–CXCR3 axis, which may very effectively interfere with the search for
potential targeted therapeutic methods on this axis.

3. Chemokines as a Potential Target of Endometrial Cancer Treatment

The chemokine signaling pathways have sparked an interest in the field of EC ther-
apy in recent years because of their impact on the progression of EC. The vital role of
chemokines and their receptors in cancer development mentioned above highlights the
promising prospect of antichemokine therapy in EC patients. The current state of knowl-
edge shows that the expression of some chemokines is altered in EC, which elicits a number
of effects regarding cancer cell properties. Chemokine signaling can be a potential candi-
date as immune checkpoint in targeted therapy aimed at inhibiting tumor progression and
increasing patient survival. Nevertheless, there are also chemokines that represent autoim-
mune activity and reduce tumor growth. For this reason, the effects of chemokines on EC
should be carefully investigated, as they may vary depending on the type of cancer [120].
Inflammatory cells in the cancer environment are less prone to genetic alterations, so anti-
inflammatory approaches have generated increasing interest in chemotherapy-resistant
cancer [121]. The administration of chemokine receptor antagonists to conventional therapy
seems to mitigate potential problems with resistance to chemotherapy. Recent studies have
reported that addition of chemokine inhibitors, for instance, CXCR4 inhibitors, to con-
ventional treatment enhanced the efficacy of therapy in cervical cancer and decreased the
likelihood of metastasis presence in animal models [122]. The cornerstone of chemokine-
oriented therapy is the wide range of chemokine inhibitors used as adjuvant therapy in
combination with conventional chemotherapy in solid tumors treatment. However, their
usefulness has been confirmed only in clinical and preclinical trials at present. Only a few
of them have been clinically approved in cancer treatment targeting chemokine signaling.
Mogamulizumab, which is a monoclonal anti-CCR4 antibody, and AMD3100 (plerixafor),
which is a small molecule CXCR4 antagonist, are reserved for hematological malignancies
in clinical use [123]. Moreover, recent studies have shown that these chemokine inhibitors
can also be effectively used in solid tumors, reducing tumor growth, influencing the phe-
notype of myeloid cells, and increasing the number of infiltrating NK cells. However,
there were serious concerns about the safety of Mogamulizumab because of its ability to
deplete Treg cells. In contrast, the development of small molecule CCR4 antagonists with
less deleterious side effects, such as AF399/420/1802, has greatly improved the efficacy
of cancer vaccines in various preclinical tumor models by preventing the induction of
Tregs [124]. The inhibition of the CXCL12–CXCR4/CXCR7 axis has also generated in-
creasing interest in solid tumor therapy, e.g., in glioblastoma [125], ovarian cancer [126],
and cervical cancer [122]. However, the relevance of CXCR4 inhibitors in EC treatment
was highlighted only in experimental models. Teng et al. demonstrated that AMD3100,
a CXCR4 antagonist, markedly decreased the influence of SDF-1α on motility of EC cells,
as well as their invasive phenotype and proliferation rate [40]. AMD3100 activity on EC
cells was also proved in another in vitro study, which revealed that AMD3100 alleviated
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CXCL12′s effects on EC cell motility [15]. Additive AMD3100 therapy in EC treatment
warrants proper investigation in clinical trials.

Current studies have demonstrated that not only CXCR4 antagonists, but other me-
diators influence the CXCL12–CXCR4 axis and elicit biological effects such as reduced
chemotaxis to cancer sites. Interestingly, kisspeptin-10 markedly suppressed biological
effects exerted by CXCL12, leading to attenuation in EC invasiveness [127]. Likewise,
preliminary results demonstrated that the use of prodrug of green tea polyphenol (−)-
epigallocatechin-3-gallate (Pro-EGCG) in vivo in mice models attenuated the production of
CXCL12 in EC, leading to diminished TAM accumulation in EC stroma [128].

The CXCL12–CXCR4 pathway has also been construed as a promising target for
treating other gynecologic malignancies. In an animal model, AMD3100 attenuated the
progression and the growth of ovarian cancer metastases in the peritoneum compared with
the control group [129]. The results of other studies also proved that administration of
AMD3100 in mouse model of ovarian cancer significantly diminished metastasis formation
in other organs and reduced regulatory T cells’ influx in primary tumors. Moreover,
AMD3100 markedly improved the poor clinical outcome in OC [130]. A novel compound
therapy that impacts the PD-1–PD-L1 and CXCL12–CXCR4 pathways, inducing immune
response, has also seemed to yield beneficial results in ovarian cancer treatment in animal
models. Combined therapy consisting of AMD3100 and the anti-PD-1 (aPD-1) antibody
resulted in a decline in the growth of ovarian cancer and significantly alleviated ascites
progression and increased effector CD8+ T cell aggregation in OC stroma [131]. The
antitumor efficacy of low-dose paclitaxel chemotherapy was markedly enhanced in the
presence of AMD3100 during incubation in ovarian cancer. This may enable the use of
lower doses of taxols in ovarian cancer treatment, leading to satisfactory results while
attenuating the adverse effects of taxol therapy. There was a significant reduction in
ovarian cancer growth in vitro in human and mouse models under a combined therapy
consisting of AMD3100 and taxol compared with models under taxol monotherapy [126].
A therapy regime including radiochemotherapy and plerixafor significantly attenuated
cervical cancer progression and limited its dissemination [122]. However, a problem was
recognized with the toxicity of using CXCL12–CXCR4 pathway antagonists as an adjunct
to conventional therapy. As a result, research began with the development of modified
versions of AMD3100, which resulted in the production of AMD-NP-PTX. The new version
of this drug is characterized by greater safety and reduced toxicity as well as greater
anticancer effect in the treatment of ovarian cancer [132]. It is also worth investigating the
action of chemokine antagonists in the context of EC, because reducing the toxicity of such
therapy could contribute to approval for the next phase of research.

The inhibition of other chemokine pathways also seems to exert beneficial antitumor
effects in EC treatment. Treating EC cells with progesterone and calcitriol reduced CXCL1
and CXCL2 expression, which resulted in limitation of EC dissemination and metastatic
process [133]. The unfractionated heparin (UFH) significantly limited the release of CCL2
in EC, which led to alterations in cancer cell properties and therefore to suppression of EC
progression [73]. Collectively, these studies have shown that agents that alter chemokine
signal transduction pathways have potential antitumor activity in EC treatment.

In conclusion, there have been experimental and preclinical studies in the literature
showing the beneficial relevance of EC and other gynecologic malignancies immunotherapy
by influencing the chemokine network (Table 1). However, there have been no clinical trials
confirming the results obtained in the earlier phases. This may be due to the side effects of
monoclonal antibodies observed in clinical trials of drug use in other cancers. Although
a synergistic antitumor effect with conventional therapy has been confirmed, insufficient
pharmacokinetics and pointless toxicity make it difficult to use this combination in patients.
It follows that further research is needed to produce impoverished monoclonal antibodies
with lower side effects, which will allow drugs to be investigated in the clinical phase
of research.
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Table 1. Summary of chemokine inhibition effects in gynecological malignancies in preclinical
studies. * aPD-1—anti-programmed death receptor 1 antibody, ** pro-EGCG—prodrug of green tea
polyphenol (−)-epigallocatechin-3-gallate.

Target Tumor Inhibitor Research Phase Result References

CXCR4

endometrial cancer plerixafor animal model
tumor growth delay,

reduction in metastasis
formation

[40]

cell lines inhibition of cell migration [15]

cervical cancer plerixafor animal model
tumor growth delay,

reduction in metastasis
formation

[122]

ovarian cancer
plerixafor animal model

overall survival improvement,
tumor growth delay,

reduction in metastasis
formation

[129–131]

cell lines tumor growth delay [126]

AMD-NP-PTX cell lines, animal
model

tumor growth delay,
reduction in metastasis

formation
[132]

aPD-1 * animal model overall survival improvement,
tumor growth delay [131]

CXCL12 endometrial cancer
kisspeptin-10 cell lines inhibition of cell migration [127]

pro-EGCG ** animal model angiogenesis inhibition [128]

CXCL1, CXCL2 ovarian cancer progesterone,
calcitriol cell lines reduction in metastasis

formation [133]

4. Conclusions

EC is frequently detected at the early stage and has a favorable clinical outcome.
However, development of advanced EC entails significant clinical implications leading to
chemotherapy resistance, dissemination of the disease, and cancer recurrence. Chemokines
and their receptors are thought to play a pivotal role in EC progression and metastatic
cascade. Current research has demonstrated that the expression of some chemokines is
altered in EC, which has a vast number of consequences on tumor biology. Recent studies
have proven that chemokines exert diverse effects on EC, which vary depending on the
type of chemokine. There is a strong need to assess a precise molecular mechanism and
function of each chemokine in the signaling pathways in tumor development and spread
in EC. Our review gathers extensive knowledge on the action and interdependence of
selected chemokines. The information provided will develop targeted therapies affecting
chemokines and related substances and pathways. At the same time, our review informs
about doubts related to the modification of chemokine action, which may prevent un-
expected side effects. The antitumor efficacy of chemokine antagonists was proved in
experimental studies that reported that the addition of chemokine antagonists resulted
in decreased tumor growth and attenuated metastasis formation. On the other hand, the
suppression of some chemokines induced counterproductive effects by enhancing the ex-
pression of factors affecting neovascularization and depletion of Treg cells in some cancers.
Moreover, pharmacokinetics and toxicity of chemokine antagonists also hinder the devel-
opment of combined therapy of chemokine antagonists and chemotherapy. Hence, there is
a need to investigate inhibitors affecting the chemokine network that effectively facilitate
cancer therapy and have fewer side effects. Therefore, their usefulness in combined therapy
with chemotherapeutic drugs in EC should be elucidated in preclinical and clinical trials.
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