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Big genomics and clinical data 
analytics strategies for precision 
cancer prognosis
Ghim Siong Ow1 & Vladimir A. Kuznetsov1,2

The field of personalized and precise medicine in the era of big data analytics is growing rapidly. 
Previously, we proposed our model of patient classification termed Prognostic Signature Vector 
Matching (PSVM) and identified a 37 variable signature comprising 36 let-7b associated prognostic 
significant mRNAs and the age risk factor that stratified large high-grade serous ovarian cancer patient 
cohorts into three survival-significant risk groups. Here, we investigated the predictive performance 
of PSVM via optimization of the prognostic variable weights, which represent the relative importance 
of one prognostic variable over the others. In addition, we compared several multivariate prognostic 
models based on PSVM with classical machine learning techniques such as K-nearest-neighbor, 
support vector machine, random forest, neural networks and logistic regression. Our results revealed 
that negative log-rank p-values provides more robust weight values as opposed to the use of other 
quantities such as hazard ratios, fold change, or a combination of those factors. PSVM, together with 
the classical machine learning classifiers were combined in an ensemble (multi-test) voting system, 
which collectively provides a more precise and reproducible patient stratification. The use of the multi-
test system approach, rather than the search for the ideal classification/prediction method, might help 
to address limitations of the individual classification algorithm in specific situation.

In the era of big data and with the development of national or international electronic healthcare records, large 
and comprehensive databases of genomic, transcriptomics, proteomics or metabolomics variables, as well as tra-
ditional clinical patients’ characteristics and treatment records have emerged at an increasingly rapid pace1,2. 
However, such data are often very heterogeneous, high dimensional, noisy and poorly interpretable in the context 
of their direct usage in a clinical environment such as precise diagnostic and disease outcome prediction2. In 
addition, the data quality is often limited by small sample size, imperfect technology, difference in clinical trials, 
diversity of patient cohorts and health care system model. Big data analytics is the process of examining large 
data sets containing heterogeneous patient sub-populations and a wide variety of data types (ordinary, nominal, 
ordered, time series, continuous covariates). Big data analytics aims to uncover hidden patterns, unknown cor-
relations, complex trends, imbalanced datasets, customer/clinical center preferences, geo-economic and social 
status, as well as other useful features3.

However, translation of such “averaging” characteristics (covariates) into precise disease patterns, concrete 
disease pathways and personalized disease prediction models is a great challenge, especially for complex genetic 
diseases with diverse survival risks such as cancers4,5. In our opinion, big analytics strategy for the precise per-
sonalized diagnosis and prognosis of complex genetic disease and cancer patients currently lacks in the literature. 
Clinically rational and feasible strategies are currently under-developed or without clear perspectives to imme-
diate practical applications.

To develop the field of personalized medicine, it is essential to have an accurate estimation, robust and reliable 
prediction of an individual’s risk to disease development via a computerized data-driven approach (e.g. clinical, 
genomics, transcriptomes etc.). Such risk predictions can help to guide decisions to select the most effective steps 
for optimal disease diagnostics, monitoring and treatment.

In our previous study, we proposed the following three-step strategy of personalized cancer patient’s prognosis6.  
In the first step, the method performs sensitive, specific and robust feature selection procedure to select the most 
discriminative and reproducible variables (genes, clinical characteristics, etc.) that could best stratify the training 
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set patients into two survival significant sub-groups. In this step, the variables (predictors) are converted to binary 
variables via maximizing the prognostic information and robustness of the selected variables7. In the second step, 
the method combines the binary variables into a multi-variable classifier of differential diagnosis, prognosis or 
prediction of treatment outcome8. In the third step, the method applies the multivariate weighted voting progno-
sis model to an independent patient/sample or independent dataset which were not used in the original training 
and attempt to classify a new patient into pre-defined classes of diagnosis, prognosis or outcome therapy risks6. 
Our method is termed Prognostic Signature Vector Matching (PSVM)6.

Several other classification methods exist in the literature and it is often noted that a method that demon-
strates the best performance for a given patient cohort might not perform as well as another method in another 
cohort. The low diversity of progostic methods likely contributes some level of bias in computational prediction, 
especially in highly complex and heterogenous biological systems such as cancers. We propose that diversity 
among members of a collective predictor with a recurring classification pattern from several perspectives allows 
a better representation of the disease diversity than each method alone. Specifically, the implementation of a 
combination of different data mining and prognostic methods could be an effecient strategy for personalized and 
precise cancer medicine9–12.

In this study we addressed the question: how can computer prognostic models be constructed, validated and 
connected so that collectively they act more intelligently than any of the models? In this context, “collective intel-
ligence” of the combined predictive system could increase the accuracy and robustness of the model due to the 
pooling of more predictors, and also by the increasing the quality of their interactions in the collective predictive 
system.

To obtain more precise and reproducible prognostic prediction for a given patient, we proposed the following 
updated strategy: (1) compare the PSVM with classical machine learning methods, (2) search for several classifi-
ers, (3) and develop a multi-test voting system, which combines the best classifiers for getting more reliable and 
accurate personalized disease outcome prediction. Our strategy can robustly stratify HGSC patients into three 
survival-significant risk subgroups with distinct survival time-to-event patterns. We provided Python codes, 
which performed the classification analyses presented in this study.

Results
Signature and datasets.  In our previous studies, we studied patients diagnosed with high-grade serous 
ovarian carcinoma (HGSC) from TCGA and identified a 36-gene combined mRNA prognostic signature which 
collectively stratified patients into three survival-significant risk subgroups with distinct survival time-to-event 
patterns8. These genes were biologically associated with several hallmarks of cancer, mainly cell proliferation and 
epithelial-to-mesenchymal transition (EMT) and correlated with chemotherapy response.

In a subsequent follow up study, we studied the effect of patients’ age on overall prognosis and due to its 
survival significance, we added this clinical risk factor into the original 36-gene combined mRNA prognostic 
signature to form a 37-variable hybrid mRNA/clinical data prognostic signature6.

Briefly, each of the 37 variables included in the prognostic signature was observed to be statistically signifi-
cant when classifying patients into two risk subgroups via the one-dimensional data-driven grouping (1D-DDg) 
method (see Methods). The key parameters of the 1D-DDg prognostic models are shown in Table 1.

Subsequently, the 37 prognostic variables were combined into an integrated multivariate classifier by taking 
into account the contributions of all the 37 variables. This method was titled as the statistically weighted voting 
grouping (SWVg) method8. Within its implementation, the relative importance and contribution of each of the 
37 variables were quantified by weights, which in our earlier studies, have been defined as the negative logarithm 
of the Wald’s P-values8. After that, each patient is assigned a prognostic score termed the weighted average risk 
(AWR). The patients could be classified into different risk subgroups based on the values of the AWR. The proce-
dures were implemented in a training cohort comprising 349 TCGA HGSC patients6,8.

After that, we proposed a computational strategy to perform pairwise patients matching to identify the quan-
titatively most similar reference patient for each patient in the testing set. Our results proposed that Euclidean 
distance measure of the prognostic signature vector (PSV) is an appropriate method of assessing the similarity 
between any patient pair6. A brief schema is outlined in Fig. 1.

Prognostic variable weights in the training dataset.  In several parts of our computational procedures 
of personalized prognosis methods, weights were used to quantify the relative importance of variables within the 
multivariate classifier.

In the training dataset, weight values were initially used when combining the information from the 37 inde-
pendent univariate 1D-DDg classifiers into an integrated multivariate classifier of patients’ prognostic risk. In our 
previous works, we have chosen to use the negative logarithm of the Wald’s test p-values to quantify the relative 
contribution of each variable over the other in the eventual calculation of the AWR prognostic score6,8.

However, the choice of weights can be often debatable. Here, we repeated the analyses using other weights. In 
the univariate classification via 1D-DDg, the two parameters that could be useful include the Wald’s test p-value 
(P) and hazard ratio (HR) which measures the statistical significance of the stratification and the effect size respec-
tively. In this work, additionally, we studied the use of weights when either P or HR, or when combination of P and 
HR were used (Table 2). For weight A, all the variables were assigned equal weights and mathematically equally 
important. For weight B, the variables were assigned weights based on the inverse of its P. For weight C, variables 
were assigned weights based on negative logarithm of P. For weight D, the HRs was used. For weights E and F, the 
negative logarithm of P and HR were combined via multiplicative or summation. For each weight type (i.e. A, B, 
C, D, E, or F), the weights were normalized to a sum of 1 across all variables to ensure a comparable multiplicative 
or additive effect when different quantity measures were used in combination (Supplementary Table S1).
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The correlation plots for the different pairs of weight types across all the variables are shown in Fig. 2. 
The weight that uses inverse P has the largest ratio of the biggest weight to the smallest weight (ratio =​ 34.7, 
Supplementary Table S1). This suggests that in the combinatory signature, most of the contribution would be 
due to the top few variables. To alleviate the issues of the potentially large dynamic range of the significance of 
the Wald’s test p-values, the negative log representation of this quantity will reduce the dynamic range, making it 
more feasible as variable weights.

The overall classification plots of the training cohort via the SWVg method from the use of the different weight 
parameters are shown in Fig. 3A.

These results revealed that in the training cohort, summarization of the risk scores from the various and 
independent 1D-DDg classifier via a weighted voting approach can yield strong classification of the distinct prog-
nostic risk subgroups. Apart from minor statistical and visual differences, strong prognostic stratifications were 
observed when any of the choices of weights were used (p ≤​ 5.0E-19). Of note, if additional criteria are required, 
such as minimization of the size of the intermediate-risk subgroup and maximization of size the high-risk sub-
group, then Weight A (equal weights) and Weight C (-log P) might be preferred for our dataset (Fig. 3A).

# Variable Desc
P-value 
(Wald) Cutoff Design

Variable 
behaviour

Hazard 
ratio

#Low 
risk

#High 
risk

1 205382_s_at CFD 0.0003721 8.026 2 onco-like 2.024 302 47

2 202246_s_at CDK4 0.0007521 9.05 1 supp-like 1.964 310 39

3 204451_at FZD1 0.0008483 6.66 2 onco-like 2.177 55 294

4 201947_s_at CCT2 0.0009464 10.805 2 onco-like 2.003 312 37

5 205959_at MMP13 0.0011793 6.618 2 onco-like 1.606 146 203

6 201954_at ARPC1B 0.0015679 9.175 2 onco-like 1.617 245 104

7 age age 0.0015858 67 2 onco-like 1.641 258 91

8 201615_x_at CALD1 0.0016123 7.976 2 onco-like 1.917 63 286

9 204464_s_at EDNRA 0.0019353 8.037 2 onco-like 1.845 311 38

10 208944_at TGFBR2 0.0021252 8.281 2 onco-like 1.565 161 188

11 203968_s_at CDC6 0.0021869 6.108 1 supp-like 2.153 325 24

12 209026_x_at TUBB 0.0022915 10.051 1 supp-like 2.031 322 27

13 201774_s_at NCAPD2 0.0027595 8.598 2 onco-like 2.401 324 25

14 212239_at PIK3R1 0.0028506 7.992 2 onco-like 1.535 195 154

15 203131_at PDGFRA 0.0034062 8.876 2 onco-like 1.678 283 66

16 212063_at CD44 0.0034184 8.845 1 supp-like 1.574 125 224

17 212782_x_at POLR2J 0.0034369 10.432 2 onco-like 1.615 278 71

18 214144_at POLR2D 0.0034777 7.255 1 supp-like 1.657 90 259

19 219588_s_at NCAPG2 0.0042218 8.342 1 supp-like 1.507 185 164

20 209960_at HGF 0.0043267 6.522 2 onco-like 1.764 310 39

21 212294_at GNG12 0.0043607 9.312 2 onco-like 1.614 283 66

22 207822_at FGFR1 0.0050334 6.083 2 onco-like 1.865 62 287

23 204441_s_at POLA2 0.0052135 7.167 1 supp-like 1.511 150 199

24 216598_s_at CCL2 0.0062289 6.453 2 onco-like 2.101 29 320

25 202107_s_at MCM2 0.0069779 8.671 1 supp-like 1.484 232 117

26 202202_s_at LAMA4 0.0076547 8.863 2 onco-like 1.893 318 31

27 215076_s_at COL3A1 0.0080398 11.322 2 onco-like 1.504 250 99

28 210845_s_at PLAUR 0.0082985 7.446 2 onco-like 1.555 93 256

29 201697_s_at DNMT1 0.0088655 9.143 1 supp-like 1.47 148 201

30 202877_s_at CD93 0.0090467 6.844 2 onco-like 1.675 60 289

31 203323_at CAV2 0.0103597 7.806 2 onco-like 1.442 204 145

32 221559_s_at MIS12 0.0109485 7.822 1 supp-like 1.471 227 122

33 208778_s_at TCP1 0.0110947 9.455 2 onco-like 1.452 142 207

34 201091_s_at CBX3 0.0120077 9.928 1 supp-like 1.701 65 284

35 205393_s_at CHEK1 0.0120697 6.128 1 supp-like 1.975 328 21

36 200931_s_at VCL 0.0125254 9.888 2 onco-like 2.471 22 327

37 212949_at NCAPH 0.0129085 7.163 2 onco-like 1.434 214 135

Table 1.   Parameters of one-dimensional data-driven grouping (1D-DDg) method for selected mRNA and 
clinical variables when applied to the training set comprising 349 TCGA patients diagnosed with high-
grade serous ovarian cancer (HGSC). The statistical significance of patients’ classification into two risk groups 
based on an optimized expression cutoff value was measured via the Wald’s test, whereas the hazard ratio was 
calculated from the beta coefficient from the Cox Proportional Hazards model. Design: 1 - low expression, 
high-risk; 2 - low expression, low-risk. Abbreviations: onco – oncogenic; supp – suppressive.
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Prognostic variable weights in the test dataset.  To apply the prognostic classifier information from 
the training to the testing set, we have proposed the following procedures that are outlined as a schema in Fig. 1. 
The cutoff values and designs from each of the univariate classifier were applied to the testing set to assign patients 
to low or high risk. Thereafter, each patient in both the training and testing cohort could be represented by a 
prognostic binary variable vector (PBVV), which is then converted to a prognostic signature vector (PSV)6. The 
generation of PSV from PBVV is proposed to consider the ranks of the individual variables based on their respec-
tive and relative importance. For each query patient in the testing cohort, the PSV of that query patient could be 
compared to the PSVs of all reference patients in the training cohort. Upon finding a quantitatively most similar 
reference patient, the query patient is predicted to exhibit the overall prognostic risk of that most similar reference 
patient6.

In our PSVM model of personalized prognosis, prior to converting the prognostic binary variable vector to 
prognostic signature vector, we have also proposed that the variables are ranked based on their respective variable 
weights that were defined as the negative logarithmized Wald’s p-value. In this study, we investigated the overall 
effect of survival prediction in the testing cohort when other weight measures were used (Table 2). The K-M plot 
and Wald’s p-value results are shown in Fig. 3B. These results indicated that in the test cohort, the use of negative 

Figure 1.  Flow chart of analyses performed in this study. HGSC patients from TCGA were used as the training 
data (comprising expression and clinical information). Univariate variable selection method (1D-DDg) was used 
to identify 37 variables which could independently stratify patients into low or high-risk. For each patient in 
the training cohort, the overall risk group (low, intermediate or high-risk) was summarized and assigned based 
on the SWVg method. Each patient can be represented by either its expression vector, PBVV or PSV. Each of 
the vector types was used as the variable vectors in machine learning algorithms such as k-nearest neighbour, 
support vector machine, random forest, neural network or logistic regression. Each of the models was assessed 
via 10-fold cross validation. The model was applied to an independent testing dataset comprising of 359 HGSC 
patients.
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log P (Weights C) as weights provide the best stratification (p =​ 0.00044), when compared to the other weight 
choices (Fig. 3B). Importantly, the proportions of the numbers of patients of the high-, intermediate- and low- 
risk subgroups in the test data (0.117, 0.556, 0.327) are very similar the ones in training data (0.128, 0.563, 0.309).

Application of alternative classification approaches involving classical machine learning 
techniques.  From the training dataset, we have defined an overall prognostic risk for each patient (low-, 
intermediate- or high- risk), as well as representing each patient as a prognostic binary variable vector (PBVV) via 
the 1D-DDg algorithm. The PBVV could be converted to PSVs as described in our previous work6,8.

Next, we studied the accuracies of classical machine learning algorithms to train and perform class prediction 
based on either PBVVs, PSVs or the original expression/clinical data vector (Fig. 1).

In this comparative analysis, our PSVM method uses un-scaled PSV variables (as it was designed) whereas the 
machine learning techniques uses scaled PSV variables (standard scaling to zero mean and unit variance). This 
is to ensure that each of the feature variables was accorded equal contribution to the classifier during training.

We performed a ten-fold cross validation analysis where the training cohort was split into ten subsets. For 
each of the ten subsets, it was used as the validation set whereas the remaining nine subsets were used as the 
training set. Our results revealed that all the methods exhibited relatively high accuracy in the training as well as 
ten-fold cross validation in the training dataset (Fig. 4A, Supplementary Table S2). The RF and PSVM methods 
showed the most significant accuracy. We repeated the 10-fold cross validation analyses several times, via shuf-
fling the data before splitting the data into training and validation set. Our results across different ten-fold cross 
validation analyses revealed very similar accuracy values (Supplementary Table S2).

The classifiers were then applied to the independent testing dataset and the Kaplan-Meier survival curves of 
each of the algorithms are shown in Fig. 4B–H (Supplementary Table S3). The significance of the stratification in 
the test set, defined by log-rank test p-value, was consistent with that of the accuracy in the training cohort. The 
risk class predictions in the independent test cohort were relatively consistent and showed reproducible overall 
survival prognostic patterns.

Voting of the diverse survival classification models and their output correlations.  Finally, we 
performed a voting procedure based on the ensemble of 7 independent classification methods, to generate an 
overall prognostic risk classification of the patients in the testing set (Fig. 5). The overall risk prediction for each 
patient was defined by the most predicted class via the 7 independent classification methods. Our results revealed 
strong significant stratification of the test patients into low, intermediate and high risks (p =​ 0.0005256). Using 
Supplementary Table S3 data, we demonstrated that the results of the classifier’s outputs are strongly correlated 
to each other (Table 3). Correlation analysis demonstrated that linear support vector machine (SVM_linear) and 
PSVM may be considered as the most representative classifiers, contributing mostly onto the output of the ensem-
ble (multi-test) voting procedure (Table 3).

In view of the inherent biasness of each of the classification algorithms and the high complexity of the under-
lying datasets, the accuracy and performance of the risk class prediction might widely vary. In these circum-
stances, our analysis demonstrated that a voting of the output categorical values for a given patient across distinct 
prognostic/classification methods could lead to more robust, accurate, reproducible and cost efficient prognostic/
classification strategy for precise medicine.

Discussion
In this work, we extend on our previously developed methods of personalized prognosis. Our primary single 
variable classifier is the one-dimensional data-driven grouping (1D-DDg) method, which stratifies a cohort of 
patients into two survival significant subgroups: low or high-risk. The 1D-DDg method itself is optimized, i.e. 
for a single variable permissible domain, it identifies a cut-off value that splits the domain into low and high 
sub-domains and, subsequently, the patient cohort into two distinct subgroups with the most statistically signif-
icant Wald’s test p-value.
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∑ =
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1 log10
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log10
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Table 2.  Choices of variable weight to signify the relative importance and contribution of each variable in 
entire multi-variable classifier. Abbreviations: Pi and HRi denotes the Wald’s test p-value and the hazard ratio 
respectively for the i =​ 1, 2, 3, …​, nth variable.
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During the process of identifying prognostic significant variables, the 1D-DDg method should be considered 
a complementary approach to methods which utilizes the whole permission domain (range) of the continuous 
expression values5. In many analyses such as regression or correlation, it would be beneficial to analyze the con-
tinuous variable values with respect to the dependent variable. However for prognosis analysis where dependent 
variable, i.e. prognostic outcomes (low or high risk) is normally not known a priori, the 1D-DDg method could 
be a reasonable first step. The 1D-DDg 1) identifies an optimal cutoff value of the predictor and 2) to assign 
patients to low or high risk depending on whether the patients’ predictor expression value lie on the leftwards 
or rightwards of the optimal cutoff value and the pattern of association. In particular, dichotomization based on 
a pre-specified cut-point is common in many areas of clinical research or clinical diagnosis, where patients are 
routinely diagnosed based on the category of his/her measurement13. It is also expected that the model derived 
from 1D-DDg would yield easily understandable and useful cut-points, potentially with clinical applications.

In the first part of our study, we investigated the effects of different weights on SWVg prognostic classification 
algorithm performance (as quantitatively assessed by the multivariate log-rank test). Our results revealed that 
the choice of weights when combining several independent univariate variables into a multivariate classifier is 
relatively important. In our study, the use of negative logarithmized p-values appears to outperform other weights 

Figure 2.  Correlation (non-diagonal plots) and distribution plots (diagonal plots) for the different weights 
across 37 variables. Weight (B) inverse P; Weight (C) negative log P; Weight (D) hazard ratio; Weight (E) 
negative log P X HR; Weight (F) negative log P +​ HR. The p-values were assessed via the Wald test and the 
hazard ratios of the individual variables were assessed via the Cox Proportional Hazards model.
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involving hazard ratios (Fig. 3). The choice of weights should be considered an essential task in any combination/
voting procedures.

In the second part of our study, we extended our analysis to the use of classical machine learning techniques to 
train a classifier that delineates between risk classes stratified via our 1D-DDg and SWVg prognostic classification 
algorithm. We studied the use of classical machine learning techniques such as support vector machine, k-nearest 
neighbor, logistic regression, random forest and neural networks. For each classification method, we made a 
preliminary attempt to optimize the parameters via grid searching of each of the parameters, and optimization 
of the cross validation accuracy. It is commonly appreciated that variables should be scaled before application of 
machine learning algorithms. In such cases, we observed that when the PSVs are scaled, the training and cross 
validation accuracies across the classical machine learning techniques such as KNN, SVM, RF, NN and LR were 
relatively high. PSVM method was designed and proven to work with the PSVs directly without variable scaling6. 

Figure 3.  (A) Training classification of the TCGA via SWVg method with different weight parameters.  
(B) Testing classification of the GSE26712 and GSE9899 patient cohorts via matching to the nearest reference 
patient from the training cohort. Weight (A) constant weight; Weight (B) inverse P; Weight (C) negative log 
P; Weight (D) hazard ratio; Weight (E) negative log P X HR; Weight (F) negative log P +​ HR. The p-values 
were assessed via the Wald test and the hazard ratios of the individual variables were assessed via the Cox 
Proportional Hazards model.
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For most cases, the cross validation accuracies are generally high enough without the need for extensive and finer 
tuning (Fig. 4A).

Also, our results showed that the PSVM algorithm that we have developed in our previous work could mar-
ginally outperform most other classical machine learning algorithms including k-nearest neighbor, support vec-
tor machine, logistic regression and neural network (Fig. 4B–H). Nevertheless, we propose that an ensemble 
approach that considers the classification results from all the independent classifiers (ours and that from the 
classical machine learning algorithms) could be a way to unify and address concerns that results from a single 
classifier is likely to be biased, non-robust, and produce irreproducible results in the test set. Our results revealed 
that if such schema were used, the overall classification would provide relatively significant stratification of the 
patients from the independent test cohort (Fig. 5). We suggest that such an ensemble (multi-test) approach is 
likely to lead to more robust and reproducible results. Such approach could be more feasible, rather than efforts to 
micro optimize a classifier of choice which might not work well in another dataset or patient cohort.

In this current work, we have focused our analyses on a prognostic signature that we have previously iden-
tified in HGSC tumors and subsequently determined to be associated with regulation of cell-cycle control and 
epithelial-to-mesenchymal transition which are two of the cancer hallmarks previously elucidated by Hanahan 
and Weinberg14. Our progress in the field of personalized prognosis in HGSC is aligned with current trends in 

Figure 4.  Training, validation and testing of the classifier. (A) Mean accuracies of the ten-fold cross 
validation of our method (PSVM) as well as for each machine learning algorithm when applied to TCGA 
training cohort comprising 349 HGSC patients. The vertical bars represent the standard deviation of the 
accuracy values. The PSVM method is based on un-scaled PSV variables whereas the classical machine learning 
techniques were based on scaled PSV variables. Classification curves of the testing dataset from (B) our PSVM 
method, in comparison with other classical machine learning algorithms including (C) k-nearest neighbor, (D) 
support vector machine (RBF kernel), (E) support vector machine (linear kernel), (F) random forest, (G) neural 
network and (H) logistic regression. The p-values were assessed via log-rank test. Abbreviations: OURS – our 
method; KNN – k-nearest neighbor; SVM-RBF – support vector machine with radial basis function kernel; 
SVM-linear – support vector machine with linear kernel; RF – random forest; NN – neural network; LR – 
logistic regression.
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biomarker discovery using cancer hallmarks or a combinatory set of cancer hallmark signatures to improve pre-
diction accuracy5,15. Our future efforts will be focused on incorporating various conventional cancer hallmark 
signatures with the use of different classification algorithms to predict patients’ overall survival risk in a more 
robust and less biased manner.

Importantly, our HGSC prognostic variables of interest include both mRNAs and clinical data. In view of 
emerging evidence that long non-coding RNAs, miRNAs, epigenetic signals or mutations could play critical roles 

Figure 5.  Kaplan-Meier plots of patients’ classification from the independent test cohort. The grouping 
information was obtained from the combination of grouping information from our PSVM method (derived 
from un-scaled PSVs) and the five machine learning techniques (KNN, SVM-RBF, SVM-linear, RF, NN, LR, 
trained from scaled PSVs).

Gamma Corr Time Event PSVM KNN SVM_rbf SVM_linear RF NN LR Overall

Time 1.00 −​0.24 0.07 0.01 0.01 0.03 0.05 −​0.02 −​0.01 0.029

Event 1.00 0.03 0.08 0.11 0.09 0.10 0.11 0.10 0.098

PSVM 1.00 0.95 0.95 0.98 0.93 0.92 0.90 0.984

KNN 1.00 0.97 0.96 0.91 0.91 0.88 0.971

SVM_rbf 1.00 0.96 0.93 0.91 0.90 0.972

SVM_linear 1.00 0.96 0.94 0.91 0.992

RF 1.00 0.92 0.91 0.951

NN 1.00 0.93 0.945

LR 1.00 0.920

Overall 1.000

Table 3.   Gamma correlation coefficient value matrix demonstrates high consistency between PSVM and 
the other methods, which accurately stratify the patient of testing cohort onto low-, medium- and high- 
risk subgroups of the disease outcomes. Suppl. Table S3 data was analyzed. Gamma correlation coefficients 
were calculated using STATISTICA-6 software. (n =​ 359; P <​ 0.05).
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in prognosis and potentially personalized prognosis8,16–18, future research efforts should also be focused on incor-
porating these into a multi-type, multi-variable and multi-classifier signatures.

To surmise, while we have previously reported a formal description of PSVM method of personalized progno-
sis, in this work, we additionally studied the effect of using various prognostic variable weights when defining the 
PSVM. We further compared our method, with other variations of the method, as well as with other prediction 
methods (classifiers) using classical machine learning techniques. The search for “an ideal” patient classification 
algorithm based on genomic or clinical features that works across different datasets and diseases is often com-
plicated by the fact different classification algorithm works well in specific situations and are sensitive to sample 
size and the data input. Voting strategy of the outputs from the different and independent classifiers could result 
in more robust and reproducible patients’ risk classification for the individual patients. The use of such multi-test 
diagnostic or prognostic collective intelligence system approach, rather than the search for the ideal classification/
prediction method, might help to address the current clinical needs for robust and reproducible classification. The 
fields of personalized prognosis and precise prediction in medicine are rapidly growing ones. We suggest that our 
collective intelligence computational method could improve the analytics strategy for translation of automatic 
prognostic systems into practical clinical oncology needs. We have provided Python codes, which performed the 
classification analyses presented in this study.

Methods
Dataset.  We studied publicly available gene expression and clinical datasets of HGSC patients from three 
patient cohorts: TCGA19, GSE989920 and GSE2671221. For each patient, gene expression was profiled via 
Affymetrix U133A microarray and clinical characteristics of each patient including but not limited to overall 
survival time, vital status, age at initial diagnosis and therapy outcome success were collected.

Assigning class labels to training set - Univariate classifier.  We used a published 1D-DDg algo-
rithm as the single variable classifier of patients’ overall survival times and events7. The 1D-DDg algorithm is 
applied for a single variable across the patients. Briefly, the patients are ranked based on the value of the variable  
(predictor). For each variable, a 1D-DDg permissible domain is defined. Such domain is the set of possible varia-
ble values of an attribute (e.g. mRNA expression or clinical variable such as age). Subsequently, a cut-off value of 
the variable stratifies the patient cohort into two subgroups with the most statistically significant distinct survival 
patterns. The overall survival times and events from the two stratified patient subgroups can be visualized via 
Kaplan-Meier survival plots, and the statistical significance between the low-risk and high-risk subgroups can be 
quantified by 1D-DDg method via p-value from the Wald’s test7.

The implementation of 1D-DDg algorithm for the ith variable across M patients can be described mathemat-
ically as follows:

=

< < = … .
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− +
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Further details could be found in our previous work7.

Assigning class labels to training set - Multivariate classifier.  While 1D-DDg is a univariate classifier 
of overall survival based on a gene or clinical variable, several of it could be combined into a multivariate classifier. 
We proposed the use of SWVg method to combine several independent 1D-DDg classifiers8.

The selection of the variables that make up the overall multivariate classifier is beyond the scope of our cur-
rent discussion, and the interested reader is encouraged to refer to our previous reports6,8. However briefly, a 
subset of variables could be selected from the unbiased screening of all available variables (e.g. gene variables 
from microarray expression profiling or clinical characteristics of patients) based on either their prognostic sig-
nificance or biological significance. The top statistically discriminative variables, together with prior biological 
knowledge about the variables, could assist in the selection of variables that in combination could stratify patients 
into multiple subgroups of distinct risk patterns.

In multivariate classification, each patient is assigned a prognostic risk score called average weighted risk 
(AWR) that is the average of all the risk score assigned by each of the selected and independent 1D-DDg classi-
fiers. Essentially, the prognostic risk score for any given is voted by several independent raters, i.e. several inde-
pendent 1D-DDg classifier. Therefore the method is termed voting grouping method. When weights are assigned 
to each of the 1D-DDg univariate classifier during the averaging procedure, the method then becomes statistically 
weighted voting grouping (SWVg) method8.

For survival classification problems with the eventual goal of stratifying a patient cohort into statistically 
significant and distinct subgroups, an intuitive choice for the selection of weights would be the negative logarith-
mized log-rank p-values of the stratification performance for that univariate classifier. However depending on the 
application, other possible choices may include hazard ratios or magnitude of fold-change6.

After each patient has been assigned a prognostic risk score via the independent 1D-DDg classifiers, the 
patients are ranked via the prognostic risk score. Subsequently, thresholds of the prognostic risk scores are iden-
tified to identify subgroups of patient stratification with survival significance8.

Training of a classifier.  The methods of 1D-DDg and SWVg were initially used to assign class labels to 
each of the reference patient samples of the training cohort, depending on whether they are categorized as low, 
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intermediate or high-risk. If 1D-DDg and SWVg were used as the risk assignment methods, the patient cohort 
would be reliably stratified into subgroups with distinct Kaplan-Meier survival curves.

After the assignment of the class labels to each sample, we then used classical machine learning techniques to 
train a classifier that delineates these subgroups in the training and validation dataset with high accuracies. Such 
methods typically involve classical machine learning approaches such as support vector machine (SVM), neural 
networks (NN), k-nearest neighbor (KNN), random forest (RF), and logistic regression (LR), etc. We evaluated 
each of these methods and compared the statistics from the use of each of these machine learning techniques.

Cross-validation analysis.  We performed 10-fold cross validation analysis on the training set. The training 
set was splitted into ten folds with the maintenance of the class ratios in each fold, i.e. the proportion of class 1 
(low-risk), class 2 (intermediate-risk) and class 3 (high-risk) in all the folds were maintained at 55.6%, 32.7% and 
11.7% respectively in each of the ten folds. For each of the 10 subsets, it was used as the validation set whereas the 
classifier was trained on the remaining 9 subsets.

We repeated the 10-fold cross validation analyses several times, via shuffling the data before splitting the data 
into training and validation set.

The multi-class classifications for the various machine learning techniques were performed via the basis of 
one-versus-rest for all the classes independently. In this strategy, one classifier was fitted for each class (e.g. class 1)  
against all the other classes (e.g. class 2 and class 3).

The metric classification accuracy was used as the evaluation statistic.

Testing of a classifier.  The classifier is applied to an independent testing dataset which comprise 359 HGSC 
patients from GSE9899 and GSE26712.

During class prediction of each of the samples of the independent testing dataset, the predicted class is deter-
mined by the consensus from the ten classifiers of ten folds cross validation obtained during the classifier training.

We evaluated the test classification’s overall survival pattern via Kaplan-Meier curves and assessed the survival 
significance of the differential risk groups via log-rank test22,23.

Implementation.  The computational analyses were carried out using Python programming language and 
the following open source libraries: pandas (data manipulation), scikit-learn (machine learning), lifelines (sur-
vival analysis) and matplotlib/seaborn (visualization).

Weights are important.  Wald test p-values (P) are commonly used as a normalization factor to weigh the 
significance and relative importance of different variables. Here, we studied the effect of using hazard ratio (HR) 
as weight. We also studied the combinatory use of both hazard ratio and the Wald’s test p-value as weights. In 
summary, the following weights were assessed:
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where Pi and HRi denotes the Wald’s test p-value and the hazard ratio respectively for the i =​ 1, 2, 3, ···, nth variable.

Variable Scaling.  Machine learning techniques typically necessitates the scaling of features. The values of 
PSV’s variable ith are scaled to zero mean and unit variance by the following:
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This procedure was implemented in scikit-learn preprocessing module.
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Software.  We have provided Python codes, which performed the classification analyses presented in this 
study. The codes, readme file and examples are presented in Supplementary Codes and Examples. This folder con-
tains the codes to perform classifier training of specified variables (in this case, prognostic signature variables) to 
samples that have been labelled as “low”, “intermediate”, or “high”. The training and 10-fold cross validation of the 
classifiers was performed on the reference/training dataset. The trained classifier was applied to an independent 
test set for risk class prediction.
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