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ABSTRACT In a previous report it was shown that the replacement of native erythrocyte 
phosphatidylcholine (PC) with different PC species which have defined acyl chain composi- 
tions can lead to morphological changes (Kuypers, F. A., W. Berendsen, B. Roelofsen, J. A. F. 
Op den Kamp, and L. L. M. van Deenen, 1984, J. Cell Biol., 99:2260-2267). It was proposed 
that differences in molecular shape between the introduced PC species and normal erythrocyte 
PC caused the membrane to bend outwards or inwards, depending on the shape of the PC 
exchanged. To support this proposal, two requirements would have to be fulfilled: the 
exchange reaction would take place only with the outer lipid monolayer of the erythrocyte, 
and the extent of lipid transbilayer movement would be restricted. If this theory is correct, 
any treatment causing unilateral changes in lipid molecular shape should lead to predictable 
morphological changes. Since this hypothesis is a refinement of the coupled bilayer hypothesis, 
but so far lacks experimental support, we have sought other means to change lipid molecular 
shape unilaterally. 

Shape changes of human erythrocytes were induced by the replacement of native PC by 
various PC species using a phosphatidylcholine-specific transfer protein: by hydrolysis of 
phospholipids in intact cells using sphingomyelinase C or phospholipase A2, and by the 
combination of both procedures. The morphological changes were predictable; additive when 
both treatments were applied, and explicable on the basis of the geometry of the lipid 
molecules involved. The results strongly support the notion that lipid molecular shape affects 
erythrocyte morphology. 

The human erythrocyte is surrounded by a lipid bilayer under 
which a membrane skeleton, composed of proteins, is present. 
The discoid shape of normal cells is thought to be maintained 
by this membrane skeleton (1, 2), although recent evidence 
suggests that the lipid bilayer may also have a role in this 
respect (3, 4, 5). 

The shape of erythr'ocytes can be modified by treatment of 

the intact cell with phospholipase A2, C, D, and sphingomye- 
linase C (6, 7). Under nonlytic conditions, only lipids in the 
outer monolayer of the membrane are hydrolyzed (8). Hy- 
drolysis with phospholipase A2 leads to formation of crenated 
cells (echinocytes), whereas the other enzyme treatments re- 
sult in cup-formed (stomatocytic) cells. The observed changes 
after phospholipase C treatment have been explained by a 
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bilayer couple-type of mechanism (3, 6). The diglyceride 
formed upon hydrolysis was postulated to cross the bilayer to 
the inner side of the membrane, where it was phosphorylated 
and expanded this leaflet. This expansion was assumed to 
cause the membrane to bend inwards (6). Fuji and Tamura 
(7) suggested that the products of hydrolysis remain in the 
outer layer of the membrane and directly induce changes in 
morphology because they differ in structure from the original 
phospholipids in the polar or apolar region of the molecule. 
Morphologic changes are also, observed when the acyl chain 
composition of the phosphatidylcholine (PC) ~ of the erythro- 
cyte is modified by use of a PC-specific exchange protein, 
replacing the normal PC for other PC's with defined acyl 
chain composition (9, 10). This exchange occurs only with 
the PC from the outer monolayer (11). Replacement with 1,2- 
dipalmitoyl PC results in echinocytic cells, whereas 1,2-di- 
oleoyl PC causes a moderate stomatocyte formation (10). It 
was argued that the morphological changes are related to the 
molecular structure of the PC introduced since, in contrast to 
other manipulations of the phospholipids in the erythrocyte, 
this exchange occurs without any net change in the amount 
of PC or other lipids. The rate of transbilayer movement of 
PC in the human erythrocyte is very slow (12). Introduction 
of a new PC species can therefore be expected to exert its 
shape-changing effect by disturbance of the outer monolayer 
only. 

The effect that phospholipase treatment and phospholipid 
exchange might have on the morphological appearance of the 
cell may be explicable in a unified manner by assuming that 
the molecular shape of the lipid components in the outer 
monolayer contribute to the shape of the erythrocyte. Both 
phospholipase treatment and phospholipid exchange involve 
changes in the molecular geometry of the membrane lipids. 
These may lead to the increase of the number of either "cone- 
shaped" or "inverted cone-shaped" lipids. Packing constraints 
are important factors in determining lipid aggregation (for 
review see reference 13). Therefore, a change in the molecular 
shape of the lipids in the outer monolayer would lead to shape 
changes in the erythrocyte, and the actual effects that the 
exchange and phospholipase treatment might have on the 
morphology of the cells should be predictable. We have tested 
this hypothesis by a combination of the two approaches. 
Erythrocytes have been enriched with either cone-shaped or 
inverted cone-shaped PC species by using the exchange pro- 
tein. The morphologic changes thus induced, as well as those 
observed after subsequent treatment of the modified cells with 
phospholipases, have been studied. 

MATERIALS AND METHODS 

Erythrocytes: Human blood was collected in standard acid/citrate/ 
dextrose buffer (14) and centrifuged for 5 min at 2,500 g. The supernatant and 
the buffy coat were removed by aspiration and the erythrocytes were washed 
three times with 5 vol of a buffer containing l0 mM Tris, 150 mM NaC1, 25 
mM glucose, l mM EDTA, and 3 mM NaNa, pH 7.4. The buffy coat was 
removed carefully after each centrifugation. Fresh cells were used for all 
experiments. 

PC-specific Exchange Protein: The protein was purified from beef 
liver as described by Kamp and Wirtz (15), following the modification of Wirtz 
et al. (16), and had a specific activity of 5 #mol PC excbanged/mg per min. 
The exchange protein was stored at a concentration of 2.7 #M in 50% glycerol 
(vol/vol) at -20"C. Before use, the enzyme was dialyzed overnight against a 
1,000-fold volume of the buffer mentioned above. Pretreatment of the dialysate 
against flake polyethylene glycol was done as described previously (12). 

~ Abbreviation used in this paper: PC, phosphatidylcholine. 

PhosphoJipases: Phospholipase A~ (EC 3.1. 1.4) from bee venom was 
obtained from Sigma Chemical Co. (St. Louis) at a specific activity of 1,500 
U/mg and was used without further purification. Sphingomyelinase C (EC 
3.1.4.12) from Staphylococcus aureus was purified according to Zwaal et al. 
(17), and stored at a concentration of I I IU/10 #l. The stock solution was 
diluted 10-fold with a buffer containing 50 mM Tris, 50% glycerol, pH 7.5, 
before use in the experiments. 

Lipids: 1,2-Dipalmitoyl PC, l-palmitoyl-2-oleoyl PC, and 1,2-dioleoyl 
PC were synthesized following standard procedures (18), and were a gift from 
Dr. R. A. Demel (Department of Biochemistry, State University of Utrecht). 
Cholesterol was purchased from Merck Sharp & Dohme International Div. 
(Darmstadt) and egg phosphatidic acid from Sigma Chemical Co. Mcthyl-[~4C] 
1,2-dipalmitoyl PC and [3H]-trioleate were obtained from The Radiochemical 
Center (Amersham International PLC, Amersham, UK). Methyl[J4C]-egg PC 
was synthesized according to Stoffel (l 9). 

Preparation of Donor Vesicles: Vesicles were prepared containing 
a particular species of PC, cholesterol, phosphatidic acid (molar ratio 47:47:6) 
and trace amounts of [~4C] PC and [3H]glyceroltrioleate (as a nonexchangeable 
marker). The specific activities of [ J4C]PC and [3H]-trioleate were approximately 
150 and 700 dpm/nmol PC, respectively. [t4C]-l,2-dipalmitoyl PC was used to 
label the 1,2-dipalmitoyl PC containing vesicles, whereas [~4C]-egg PC was used 
in l-palmitoyl-2-oleoyl PC vesicles. The lipids were mixed from stock solutions 
in chloroform-methanol 2:1 (vol/vol) and the solvent was evaporated at 35"C 
under N2. Residual solvent was removed using a vacuum pump. 2 ml of buffer 
(see above) was added per 10 pmol of lipid and the mixture was vortexed above 
the phase transition of the PC. The lipid suspensions were sonieated for 15 min 
with a Branson B12 sonifier at a power setting of 60 W and the temperature 
was kept just above the phase transition. After centrifugation at 130,000 g for 
30 min to remove larger lipid aggregates and metal particles released from the 
probe, the supernatant containing unilamellar vesicles was used as the donor 
system in the exchange experiments. Samples were taken from the supernatant 
before and after centrifugation in order to determine vesicle recovery by liquid 
scintillation counting. Recovery varied between 40 and 90%, depending upon 
the type of PC species involved. Samples were taken for lipid extraction and 
subsequent determination of the specific activities of the donor vesicle PC and 
glyceroltrioleate by radioactivity measurements and phosphorus analyses (see 
Lipid Analysis below). 

Incubation of  Erythrocytes: Washed erythrocytes were incubated 
at 33% hematocrit together with donor vesicles and exchange protein. The 
incubations were performed at 37"C in 10-ml screw-capped glass tubes, and 
rotated at 4 rpm on a clinical blood rotator. A sample of the total incubation 
mixture was taken immediately upon preparation and was used for determi- 
nation of the ratio of vesicle PC to erythrocyte PC by phosphorus analysis and 
liquid scintillation counting. After incubation, the cells were diluted with warm 
buffer (37"C) and were sedimented by centrifugation for 5 min at 2,500 g. The 
cells were washed three times with warm buffer without EDTA and NAN3. No 
hemolysis occurred during the exchange incubations, as judged from the 
hemoglobin absorbance at 418 nm of the supernatants after the first centrif- 
ugation. One aliquot of each incubation mixture was washed separately, lysed 
with distilled water, and stored frozen at -20"C. These samples were used for 
lipid extraction and for the determination of the extent of PC replacement in 
the erythrocytes. 0.25 mM MgCl2 or 0.25 mM MgC12 plus 0.25 mM CaCl2 was 
included in the washing buffers for cells intended for further treatment with 
sphingomyelinase C or phospholipase A2, respectively. After washing, the cells 
were resuspended in buffer at a 5% hematocrit and a 1-ml sample was taken, 
centrifuged, lysed with 1.25 ml of water, and diluted 100 times. The absorbance 
at 418 nm was read and used to adjust the enzyme addition to equal enzyme/ 
cell ratios for all samples. 

For sphingomyelinase C treatment, cells were incubated at 37"C in buffer 
containing 0.25 mM MgCl2. The enzyme concentration was 0.28 IU of sphin- 
gomyelinase C per ml of packed cells. Samples were taken at intervals of l0 
min and the reaction was stopped by addition of one vol of 100 mM EDTA in 
0.9% NaCl to l0 vol of incubation mixture. A small portion of the sample was 
fixed for microscopy (see below) and the remainder was centrifuged at 2,500 g 
for 5 min. The cells were lysed by adding an equal volume of distilled water to 
the packed cells and the samples were stored at -20"C until lipid extraction. 

incubation with phospholipase A2 was performed as described above, except 
that the buffer contained 0.25 mM MgCI2 plus 0.25 mM CaC12. The enzyme 
concentration was 32 IU/ml of packed cells. The hydrolysis was stopped by 
addition of 0.2 vol of 100 mM EDTA in 0.9% NaC1 to l0 vol of incubation 
mixture. The samples were treated exactly as described for sphingomyelinase 
C-incubated samples. The degree of hemolysis, as judged by the absorbance at 
418 nm of the supernatant after centrifugation, was always <3% for all samples. 

Microscopy: Samples of enzyme-treated incubated mixtures, supple- 
merited with EDTA, were diluted eightfold with formaldehyde buffer (6 g NaCl, 
l0 g Na-citrate-2H20, l0 ml 40% formaldehyde per liter, pH 7.4). The samples 
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were allowed to stand for at least an hour for fixation. The cells were examined 
at a 500x magnification with a Leitz phase-contrast microscope equipped with 
Normarsky phase-contrast optics and a camera. Micrographs were taken of 
representative fields. Cells with different shapes were counted and a semi- 
quantitative expression for the shape changes was calculated. The different 
shapes of individual cells were assigned arbitrary morphological scores as shown 
in Fig. 1 of reference 7. A morphological index was calct/lated which corre- 
sponds with reference 7, giving positive scores in the case of echinocyte 
formation and negative scores in the case of stomatocyte formation. A mini- 
mum of 200 cells was counted from each sample. The estimated deviation, 
when different fields of view of the sample were used to calculate the morpho- 
logical index, was 10-15% for ecbinocyte samples and <5% for stomatocytic 
samples. 

Scanning Electron Microscopy: 10 td of packed erythrocytes were 
washed three times in 150 mM NaC1, 10 mM Tris, pH 7.4, and fixed for I h 
at 20"C in 1 ml buffer containing 100 mM NaCI, 40 mM Na-citrate, and 0.5% 
formaldehyde. A second fixation in I% OsO4 for 30 min was followed by 
dehydration in a graded series of ethanol, transfer in isopropanol, and drying 
at the air. Cells were covered with a thin layer of gold by the sputter process, 
and morphology was checked in a Cambridge Stereoscan 600 M. 

Lipid Analysis: The samples were extracted according to the protocol 
by Rose and Oldander (20). The solvent was evaporated and the lipids redis- 
solved in chloroform-methanol 2:1 (vol/vol). From samples intended for deter- 
mination of the extent of phospholipid exchange, aliquots were taken for 
phosphorus analysis and radioactivity measurements. The latter were trans- 
ferred to scintillation vials and, after evaporation of the organic solvent, the 
radioactivity was determined in a Packard Tricarb 3320 iiquid scintillation 
counter using Emulsifier Scintillator 299 (Hewlett-Packard Co., Polo Alto, CA). 
To determine the lipid composition and the extent of lipid hydrolysis in 
sphingomyelinase C-treated samples, the lipids were separated on prefabricated 
thin layer chromatography plates (Merck Kieselgel 60 DC Fertigplatten) using 
the one-dimensional solvent system of Skipski et at. (21). Phospholipase A2- 
treated samples were separated by two-dimensionai thin layer chromatography 
according to the protocol of Broekhuyse (22), on thin layer chromatography 
plates covered with silica gel HR, containing 7.4% (wt/wt) Mg-silicate (Florisil, 
Merck Sharp & Dohme International Div., Darmstadt). The lipid spots were 
visualized by iodine vapor and scraped off the plates. The phosphorous content 
of the spots was determined as described by Rouser et al. (23). The phosphorous 
values were corrected for background silica readings. The percentage of sphin- 
gomyelin hydrolysis was calculated using the sum of phosphorous in the PC + 
phosphatidylethanolamine spots as an internal standard. The extent of phos- 
pholipase A2 hydrolysis was expressed as the ratio of lysophosphatidylcholine/ 
(lysophosphatidylcholine + phosphatidylcholine). 

Calculation of the Exchange in the Erythrocytes: The extent 
of replacement of native PC by donor PC was calculated from the specific 
activity of the donor vesicles, the ratio of donor PC to erythrocyte PC and the 
amount of radioactivity (corrected for vesicle contamination) in the erythro- 
cytes after exchange, by using the formula 

specific activity of PC in erythrocyte at time = t 
% replacement = x 100. 

specific activity of donor PC at time = 0 

A detailed description of the calculation procedure is given in reference 12. 

RESULTS 

Incubat ion ofery throcytes  with dono r  vesicles o f  the specified 
composi t ion  in the presence o f  PC-specific exchange protein 
does not  alter the lipid composi t ion  o f  the erythrocyte, except  
that  o f  the PC species (9, 10). This  is an impor tan t  point,  
since a net  increase or  decrease o f  lipid molecules  would  lead 
to a change in the surface area o f  the membrane .  Changes as 
small  as 1-2% o f  the area are sufficient to cause shape changes 
(24). The  extraction o f  cholesterol f rom the erythrocytes was 
prevented by incorporat ion o f  cholesterol into the dono r  
vesicles (9, 10). Vesicles and erythrocytes incubated in the 
absence o f  exchange protein showed a very slow rate o f  PC 
exchange and no  morphological  changes occurred. Thus, the 
morphologica l  changes following PC exchange were not  due  
to changes in the s toichiometr ic  balance o f  the erythrocyte 
lipids. The  absence o f  morphologica l  changes in control  cells, 
incubated in the absence o f  donor  vesicles, indicates that  the 
ATP-levels  o f  the cells were adequate  during the experiments.  

Metabol ic  deplet ion is thus not  the cause o f  the shape changes. 
The  replacement  o f  the erythrocyte PC with different donor  

PCs was al lowed to proceed until  ~35% of  the PC had been 
replaced in the cells that  subsequently were to be treated with 
sphingomyelinase C and to - 2 5 %  replacement  in those that 
were to be subjected to the act ion o f  the phospholipase A2. 
The  exact figures are shown in Table  I, and were similar for 
all PC 's  within one  experiment .  The  extent  by which the 
shape is changed clearly depends upon  the degree o f  replace- 
men t  (10). In the present series o f  experiments,  the replace- 
men t  was not  extensive and therefore the shapes o f  the cells 
were only moderately  changed. This is reflected in the values 
o f  the morphological  indexes (see below), which were not  very 
far f rom zero. The  1,2-dipalmitoyl PC cells became echino- 
cytic, 1,2-dioleoyl PC cells slightly "cupped ,"  and 1 -palmitoyl-  
2-oleoyl PC cells did not  differ f rom control  cells. More  
extensive shape changes induced by this technique are pub- 
lished elsewhere (10). 

The  sequence o f  shape changes that occur  in native eryth- 
rocytes which are treated with, respectively, sphingomyelinase 
C and phospholipase A2 are as published by Fuji  and T a m u r a  
(7). To  quant i fy  the shape changes, a morphological  index 
was calculated as described by those authors. The  shape 
changes were t ime  dependent  and occurred in parallel, with 
the hydrolysis o f  the substrates (Fig. 1). However ,  the rela- 
t ionship between morphologica l  index and the degree o f  
hydrolysis was not  linear. To  obtain slow rates o f  hydrolysis 
and concomi tan t  shape changes, the sphingomyelinase con- 
centrat ion was kept very low, and a batch o f  bee venom 
phospholipase A2 with low activity toward the membranes  o f  
intact erythrocytes was used. 

The  t ime  course for the sphingomyelinase C - i n d u c e d  hy- 
drolysis o f  sphingomyel in  in natural  and PC species-modif ied 
erythrocytes is shown in Fig. 1A. The hydrolysis proceeded 
more  or  less at a similar rate in all samples, and 10-20% of  
the sphingomyel in  was degraded within 40 min.  This equals 
the hydrolysis o f  - 4 %  of  the total phospholipids in the 
erythrocyte. Since the removal  o f  the polar  headgroup consti- 
tutes a p ronounced  change in the opt imal  surface area o f  
sphingomyelin,  it is not  surprising that this low degree o f  
hydrolysis gives rise to morphological  changes. U p o n  this 
hydrolysis, the sequence o f  shape changes in modif ied and 

TABLE I. Exchange Conditions and the Extent of 
Phosphatidylcholine Replacement 

Molar ra- 
t iovesi- Incuba- % Re- 

PC in donor cle/eryth- tion place- 
vesicles rocyte PC time ment* Further treatment 

h 

di 16:0 PC* 1.9 6 34 Sphingomyelinase C 
di 18:1~PC 1.5 5 39 Sphingomyelinase C 
16:0/18:1cPC t.5 3 33 Sphingomyelinase C 
di 16:0 PC 2.5 6 20 Phospholipase Az 
di 18:1~PC 1.8 5 25 Phospholipase Az 

Erythrocytes were incubated in buffer at 37°C together with 
exchange protein and vesicles containing different donor phos- 
phatidylcholines. Vesicles and cells were prepared as described 
in Materials and Methods. The cells were incubated at a hema- 
tocrit of 33%. The exchange protein concentration was 2-3 ~M. 

* Calculated as described in Materials and Methods. 
* The numbers denote the number of carbon atoms, and double 

bonds of the fatty acids. 
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FIGURE 1 Phospholipid hydrolysis and changes in morphology of 
erythrocytes modified in PC composition and treated with sphin- 
gomyelinase C or phospholipase A2. Control cells (0) and erythro- 
cytes in which part of the native PC had been replaced with 1,2- 
dipalmitoyl PC (C1), 1,2-dioleoyl PC (x), or 1-palmitoyl,2-oleoyl PC 
(O) were incubated with sphingomyelinase C (A and B), or phos- 
pholipase A2 (C and D) as described in Materials and Methods. The 
extent of sphingomyelin (A) and PC hydrolysis (C) can be correlated 
with the concomitant changes in morphology, expressed as the 
morphological scores (B and D, respectively). 

nonmodified cells was the same. Despite the similar extent of 
hydrolysis, however, the shape changes occurred at quite 
different rates in cells containing different PC species (Fig. 
1 B). Erythrocytes enriched with 1,2-dipalmitoyl PC exhibited 
a slow rate of shape changes compared to the control cells, 
whereas the 1,2-dioleoyl PC cells changed shape more rapidly. 
1-Palmitoyl-2-oleoyl PC cells, like 1,2-dipalmitoyl PC cells, 
opposed shape changes induced by the degradation of sphin- 
gomyelin in the outer monolayer. Figs. 2, A, C, and E show 
scanning electron micrographs of the different samples after 
20 min of hydrolysis, when ~ 12% of the total sphingomyelin 
in the erythrocyte was hydrolyzed. 

The time course of hydrolysis after bee venom phospholi- 
pase A2 treatment of PC-modified cells is shown in Fig. 1 C. 
The PC in the cells in which part of this phospholipid had 
been replaced by the dipalmitoyl PC species was hydrolyzed 
at a slower rate when compared to that of the PC in control 
cells or in those modified with dioleoyl PC. After 40 min, 
~20% of the PC was hydrolyzed in the 1,2-dipalmitoyl PC 
cells, compared to >30% in the other cells. These amounts 
equal, respectively, 6 and 9% of the total phospholipid con- 
tent. The amount of lipid hydrolyzed, as well as the amount 
of PC needed to be exchanged in order to give rise to shape 
changes, are larger than those needed upon sphingomyelinase 

C treatment. This is not surprising, since upon phospholipase 
A2 treatment the polar headgroup of PC remains in the 
lysophosphatidylcholine molecule. The change of optimal 
surface area due to the liberation of the fatty acyl moiety is 
probably not as drastic as in the case of sphingomyelinase C 
treatment. In the case of PC exchange, the shape alterations 
involve only small changes in the areas occupied by the apolar 
acyl chains. Therefore, a larger percentage of lipids must be 
exchanged, or PC molecules be hydrolyzed, in order to obtain 
shape changes. In addition to PC, a minor fraction of the 
phosphatidylethanolamine was also hydrolyzed, which is in 
agreement with the preferential distribution of phosphatidyl- 
ethanolamine in the inner monolayer of the human erythro- 
cyte (8). No hydrolysis of phosphatidylserine occurred. The 
rates of shape changes were similar to the three samples (Fig. 
1D). On the basis of the morphological scores, it appeared to 
be impossible to obtain morphological indexes that were 
accurate enough to discriminate between the rates of shape 
change in control and 1,2-dioleoyl PC cells, in both of which 
the PC hydrolysis proceeded at a similar rate. However, the 
1,2-dipalmitoyl PC-modified cells turned echinocytic already 
at a lower degree of PC hydrolysis when compared to the 
control and 1,2-dioleoyl PC-modified cells. After 30 rain, 
when the PC hydrolysis in 1,2-dipalmitoyl PC cells was similar 
to that in the control cells after 10 min (~ 16% PC hydrolysis), 
the morphological indexes were + 1.0 and +0.3, respectively. 
Figs. 2, B, D, and F show the scanning electron micrographs 
of those samples after phospholipase A2-induced hydrolysis 
o f -16% of the PC. 

It should be noted that the 1,2-dipalmitoyl PC cells, prior 
to phospholipase A2 treatment, were hardly echinocytic. This 
agrees with the moderate degree of 1,2-dipalmitoyl PC re- 
placement (Table I). Nevertheless, the 1,2-dipalmitoyl PC- 
modified cells were markedly more echinocytic than the other 
cells after hydrolysis (Fig. 2D). It could be argued that the 
echinocytosis was due to the uptake of lysophosphatidylcho- 
line liberated by degradation of residual donor vesicles adher- 
ing to the erythrocytes after washing. However, the degree of 
contamination, as measured by the presence of unexchange- 
able marker in the samples, was usually <4% of the erythro- 
cyte PC. This small amount (less than 1.10 6 molecules/cell) 
could hardly have been a major cause of shape changes. 
Secondly, di-oleoyl PC-enriched erythrocytes turned echino- 
cytic at the same rate as control cells (with no contaminating 
vesicles) (Fig. 1 C). This would not have been the case if 
lysophosphatidylcholine was liberated from the contaminat- 
ing vesicles. It can be concluded that the modification of the 
phospholipids in the outer monolayer of the erythrocyte mem- 
brane, subsequently achieved by the exchange of part of the 
native PC with well-defined species and the nonlytic treatment 
of the cells with phospholipases, gives rise to morphological 
changes which appear to be governed by the changes in the 
geometry of the phospholipid molecules thus induced. A 
tentative model explaining these shape changes is shown in 
Fig. 3. 

FIGURE 2 Scanning electron micrographs of modified erythrocytes treated with sphingomyelinase C and phospholipase A2. This 
figure shows control cells after sphingomyelinase (A) and phospholipase A2 (B) treatment. In addition, cells are shown in which 
part of the native PC was replaced by 1,2-dipalmitoyl PC, followed by limited hydrolysis of sphingomyelin (C) and PC (D). Finally, 
(:ells which were enriched in 1,2-dioleoyl PC and subsequently treated with sphingomyelinase (E) and phospholipase A2 (F). After 
sphingomyelinase treatment, ~12% of the sphingomyelin was hydrolyzed in all cases, whereas 16% of the PC was hydrolyzed 
during the phospholipase A2 incubations. 
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FIGURE 3

	

Model to explain shape changes of erythrocytes induced by changes in lipid molecular shape . PC exchange is depicted
in the first step of the scheme : on the left side the replacement with dipalmitoyl PC; on the right the replacement with dioleoyl
PC . Subsequent treatments with phospholipase A2 (PL'ase A2) and sphingomyelinase C (Sph'ase C) are depicted below . The small
figures between the phospholipid molecules represent cholesterol . For sake of clarity they are depicted this way, although they
actually occupy a cone shape (32) .

DISCUSSION

The physical basis for assembly oflipids into bilayers or other
configurations, e .g ., micelles, has been described by a theory
that links thermodynamics, interaction-free energy, and mo-
lecular geometry (13, 25, 26) . Each lipid molecule can be
assigned a molecular shape on the basis of attractive and
repulsive interactions that occur between polar and apolar
parts of the molecules . A simple example showing that mo-
lecular shape is important to the shape of the aggregate
formed, is the fact that the shape properties of PC's with
different acyl chain composition cause them to pack upon
sonication into unilamellar vesicles of different radii (25) . The
above theory can be applied in a qualitative way to our results .
PC exchange as well as hydrolysis of phospholipids in the
outer monolayer of the erythrocyte will alter the geometry of
the lipids and thus disturb the packing in the outer monolayer.
This results in an energetically unfavorable situation, and a
new packing with minimal interaction free energy for all lipid
molecules and other membrane components will appear . A
redistribution of the lipid components over the two bilayer
halves could be one possible way to minimize the energy, as
shown to occur in model systems (27-29) . However, for
reasons discussed below, we postulate that a redistribution
does not occur in the erythrocyte, at least not extensively and
rapidly . An alternative way to minimize the energy would be
to allow the lipids, while remaining in the outer layer, to pack
together in a way which is determined by their molecular
shape . As a consequence, PC replacement should result in the
formation of either stomatocytes in case of dioleoyl PC, or
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echinocytes in case of dipalmitoyl PC, or no change in mor-
phology at all in case of palmitoyl-oleoyl PC because this
species closely resembles the most abundant native PC mol-
ecules. It was shown previously that these predicted modifi-
cations indeed occur (10) .
Enzymatic treatment of phospholipids in the membrane of

intact erythrocytes also results in morphology changes (6, 7),
which can be explained with the same model. Sphingomyeli-
nase C from S. aureus attacks sphingomyelin by removal of
the polar headgroup, thereby producing the cone-shaped cer-
amide . In case the ceramide would remain in the outer
monolayer, this shape change already would explain the ob-
served change in cell morphology. However, an alternative
explanation is that the ceramide, by analogy with the diacyl-
glycerol formed upon treatment of intact cells with phospho-
lipase C, flipped over to the other half of the bilayer, and
caused cupping by accumulation in the inner monolayer (6) .
Since the membrane phospholipids are obviously restricted
in their ability to redistribute between the two halves of the
bilayer (8, 12, 30), a net transfer of a substantial amount of
ceramide to the inner monolayer would be energetically un-
favorable . Phospholipase A2-treatment of intact erythrocytes
produces lysophosphatidylcholine and free fatty acids and
although the exact molecular shape of these products will
depend on their acyl composition (31), it can be assumed that
products of hydrolysis, taken together, have a more inverted
cone shape than the original PC molecules. In our experi-
ments both PC exchange and phospholipase treatment are
combined and it is obvious that the morphology changes
which are induced by the individual treatments are additive.



The predicted changes in morphology are shown in Fig. 3 and 
are indeed observed. Treatment of dipalmitoyl PC--enriched 
cells with sphingomyelinase C results in a relatively slow and 
limited morphology change when compared with control 
cells, because the shapes of ceramides and dipalmitoyl PC are 
complementary. On the other hand, a rapid and extensive 
invagination of erythrocytes is observed in case of sphingo- 
myelin-treatment of dioleoyl PC-enriched cells, because two 
types of cone-shaped molecules are present. As expected, a 
behavior in between these extremes is observed for cells 
enriched with palmitoyl-oleoyl PC. Phospholipase A2-treat- 
ment ofdipalmitoyl PC-enriched cells gives a more rapid and 
extensive echinocyte formation than palmitoyl-oleoyl PC- 
treated and control cells. Small changes in morphology were 
observed when dioleoyl PC-modified cells were treated with 
phospholipase A2, due to the fact that the cone shape of this 
species counteracts the crenation of the cells as a consequence 
of the production of the inverted cone-shaped lysophospha- 
tidylcholines and free fatty acids. 

Our model can thus explain in a qualitative way the shape 
changes that occur upon exchange and phospholipase treat- 
ment. Additional support is given by the results of Fuji and 
Tamura (7). They observed that the crenation caused by 
phospholipase A2-treatment could be counteracted by phos- 
pholipase C-treatment, and vice versa. A similar qualitative 
use of the concept of lipid molecular shape was found useful 
for explaining the regulation of lipid composition in the wall- 
less procaryotic Acholeplasma laidlawii (32). That localized 
changes in phospholipid structure within the membrane may 
lead to overall shape changes of intact erythrocytes was pos- 
tulated recently also by Ferrell and Huestis (33). They corre- 
lated the conversion of phosphatidyl 4,5-bisphosphate to 
phosphatidylinositol as induced by ATP depletion with crena- 
tion. 

As mentioned above, the model does apply only in the case 
that rapid redistribution of newly introduced PC and hydrol- 
ysis products over both membrane layers does not occur. 

The fact that the observed changes in morphology of the 
erythrocyte were predictive and additive may in itself be an 
argument in favor of our assumption that the molecules which 
are responsible for the alterations remained in the outer 
monolayer of the membrane. Other data support this postu- 
lation. The rate of transbilayer movement of PC is slow in 
the human erythrocyte compared to the timescale of our 
experiments. The halftimes for 1,2-dipalmitoylphosphatidyl- 
choline- and egg PC translocation are 27 and 13 h, respectively 
(12). The shape changes obtained after PC exchange are most 
probably caused by the effect of PC in the outer monolayer 
only. Upon hydrolysis of intact erythrocytes with phospholi- 
pase A2 and sphingomyelinase C, the resulting hydrolysis 
products remain in the membrane (7). The rate of transloca- 
tion of lysophosphatidylcholine in intact cells is similar to 
that of PC (34). In phospholipase A2-treated cells the re- 
allocation of lysophosphatidylcholine might proceed even 
slower since prolonged incubations in the presence of the 
enzyme (up to 24 h) does not result in exchange of the 
lysophosphatidylcholine with intact PC from the inner leaflet. 
Lysophosphatidylcholine would thus affect the outer mono- 
layer only. After hydrolysis of almost all the phospholipid in 
the outer monolayer, phosphatidylserine and phoshatidyleth- 
anolamine from the inner monolayer do not appear on the 
outside (8). This indicates that the translocation of these lipids 
is severely restricted. 

The rates of translocation of free fatty acids and ceramides 
are not known and might be faster. Cholesterol is able to 
redistribute rapidly over the membrane of the intact cell in 
certain circumstances (35). We cannot exclude that a certain 
redistribution of cholesterol occurred during our experiments. 
This might explain why the shape changes after PC exchange 
did not occur until after a certain percentage of PC had been 
replaced (10). Likewise, a limited initial redistribution of 
cholesterol may be the reason why the morphological index 
scale is nonlinear (Fig. l B), i.e., the largest changes in lipid 
composition are required to produce the first detectable shape 
changes, whereas later changes come more easily. However, 
although the rate of redistribution of cholesterol, free fatty 
acids, and ceramides might be faster than that of PC, the 
amount translocated is probably restricted. 

Although no definite proof is available yet, evidence is 
accumulating that interactions between the cytoskeleton and 
the cytoplasmic side of the lipid bilayer are important for the 
maintenance of the lipid asymmetry in the erythrocyte mem- 
brane (1, 36, 37). The asymmetry as well as the rate of 
transbilayer movement oflipids are affected by manipulations 
that disturb the organization of the cytoskeleton (36, 38, 39). 
An energetically favorable way to translocate a lipid molecule 
from one side of the membrane to the other is probably to 
couple the transport with a translocation of a second molecule 
in the other way (28). If the cytoskeleton restricts the possi- 
bility to translocate lipids to the outer monolayer, then the 
transport of one molecule to the inner monolayer will require 
additional energy. Possibly this is the reason why the rates of 
PC and lysophosphatidylcholine translocation are slow. If the 
energy requirement for translocation is high compared to the 
energy needed to bend the membrane, then bending is the 
most probable event that occurs. The energy dissipation nec- 
essary to obtain a stable lipid packing is then obtained by the 
bending of the membrane. This line of reasoning implies that 
the membrane skeleton does not itself determine the cell 
shape in these circumstances. Similar conclusions have been 
reached concerning the role of the cytoskeleton in the echin- 
ocytic shape of isolated ghosts (40). Yet, the presence of an 
interaction between the membrane skeleton and the inner 
monolayer lipids seems to be a necessary requirement to 
explain our findings. This interaction might still be possible 
if the membrane skeleton conforms to the shape changes (40). 
The observed changes would be difficult to explain in a unified 
manner if the lipids were able to translocate freely across the 
membrane. 

In conclusion, the results of this investigation give further 
strength to our proposal that lipid molecular shape affects 
erythrocyte morphology. We have shown, using two different 
approaches to alter lipid molecular geometry, that, in human 
erythrocytes, morphological changes due to different lipid 
manipulations (other lipid molecules, increase in number of 
molecules, complete modifications by loss of polar headgroup, 
etc.) are additive and predictable, and can be explained on 
the basis of molecular shape. These morphological changes 
seem to be due to the restricted transbilayer mobility of the 
lipids. 
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