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Abstract

High-density electroencephalography (hdEEG) has been successfully used for large-scale investigations of neural activity in the
healthy and diseased human brain. Because of their high computational demand, analyses of source-projected hdEEG data are
typically performed offline. Here, we present a real-time noninvasive electrophysiology toolbox, RT-NET, which has been
specifically developed for online reconstruction of neural activity using hdEEG. RT-NET relies on the Lab Streaming Layer
for acquiring raw data from a large number of EEG amplifiers and for streaming the processed data to external applications. RT-
NET estimates a spatial filter for artifact removal and source activity reconstruction using a calibration dataset. This spatial filter is
then applied to the hdEEG data as they are acquired, thereby ensuring low latencies and computation times. Overall, our analyses
show that RT-NET can estimate real-time neural activity with performance comparable to offline analysis methods. It may
therefore enable the development of novel brain—computer interface applications such as source-based neurofeedback.

Keywords Electroencephalography - Neural activity - Online processing - Head model - Source localization

Introduction

Functional magnetic resonance imaging (fMRI) is currently the
primary research tool for investigating human brain function
(Fox and Raichle 2007; Ganzetti and Mantini 2013).
However, fMRI only provides an indirect measure of neural
activity mediated by a slow hemodynamic response.
Electroencephalography (EEG) is a brain imaging technique
alternative to fMRI. EEG measures changes in electric poten-
tials over the scalp, which are generated by neuronal currents
flowing through the head (Speckmann et al. 2012). Notably,
source activity reconstruction using EEG requires realistic bio-
physical models that incorporate the exact positions of EEG
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electrodes as well as the anatomical properties of an individ-
ual’s head (Brett et al. 2002). Estimation of brain sources from
EEG recordings (Ganzetti and Mantini 2013; Pfurtscheller and
Lopes Da Silva 1999) is typically referred to as the inverse
problem. On the other hand, the assessment of EEG recordings
from brain sources is referred to as the forward problem (Hallez
et al. 2007).

To date, several software solutions have been made avail-
able to the neuroscientific community for offline analysis of
EEG recordings, including EEGLab (Delorme and Makeig
2004), Fieldtrip (Oostenveld et al. 2011), Brainstorm (Tadel
et al. 2011), SPM (Litvak et al. 2011) and MNE (Gramfort
et al. 2014). Recently, our research group proposed an offline
analysis workflow specifically suited for high-density
(hdEEG) data, which integrates several tools from existing
software with original solutions for data preprocessing, realis-
tic head model generation and source localization. So far, our
analysis workflow for hdEEG has been used to reconstruct
large-scale brain networks (Liu et al. 2017, 2018) and to ex-
amine functional connectivity between network nodes
(Samogin et al. 2019). Such an application does not require
online data processing, which is instead needed for brain—
computer interface (BCI) studies. Real-time reconstructions
of source-space EEG activity could enhance the effectiveness
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of BCI applications, such as neurofeedback (Boe et al. 2014;
van Lutterveld et al. 2017). MNE Scan (https:/www.mne-
cpp.org/index.php/category/development/mne-scan) and
NeuroPype (https://www.neuropype.io) have been recently
introduced as new software packages for online analysis of
EEG data. They offer several tools for real-time EEG data
processing and feature extraction, and also incorporate source
localization tools. They are not optimized for hdEEG systems
as they rely on a template head model that does not consider
electrode positions collected during the same experimental
session (Van Hoey et al. 2000).

To address the limitation described above, we introduce a
novel software package for Real-Time Noninvasive
Electrophysiology (RT-NET), which is distributed under a
GNU General Public License (GPL). RT-NET permits online
neural activity reconstruction from hdEEG recordings. The
user can access the different analysis steps through a graphical
user interface (GUI). Unlike MNE Scan and NeuroPype, RT-
NET permits the generation and use of a realistic head model
based on electrode positions collected just before EEG record-
ings, leading to an enhanced precision in neural activity re-
construction. To ensure very short processing times, it relies
on an adaptive spatial filter for artifact attenuation as well as
for source localization. In the present study, we assessed the
effectiveness and validity of RT-NET on hdEEG data collect-
ed during hand movements. Specifically, we compared the
neural activity reconstructed online with that estimated by an
offline analysis workflow.

Methods

RT-NET was written using the MATLAB (The Mathworks,
Natick, MA, US) programming environment. Therefore,
existing libraries and functions for EEG data analysis such
as EEGLab, Fieldtrip, Brainstorm, SPM and Lab Streaming
Layer (LSL) can be easily integrated. The source code and the
software manual can be downloaded using the following
links: https://www.nitrc.org/projects/rtnet or https://github.
com/robertoguarnieri/rtnet. Being the source code available,
software customization or extension is possible. The
documentation specifies the software requirements and
guides the user through the whole processing pipeline. RT-
NET has been specifically developed for optimal integration
with the stages of a classical hdEEG experiment (Liu et al.
2017; Michel and Brunet 2019), such as the collection of a
magnetic resonance (MR) image, of electrode positions, as
well as of hdEEG data (Fig. 1).

Toolbox Description

As already mentioned, the GUI of RT-NET gives access to all
the functions required for online brain activity reconstruction.
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Therefore, there is no need for the user to have programming
experience. The GUI offers indeed a simplified, structured and
user-friendly tool (Fig. 2).

The GUI is organized in five different modules: Study
overview, Head segmentation, Leadfield matrix creation,
Spatial filter creation and Real-time activity estimation.
Each time an analysis step is completed through a module of
RT-NET, a new panel is activated. First, in the Study
Overview window, the user, after the initialization of a new
project, can choose the output folder and the type of EEG
system that will be used. Before the EEG session, an anatom-
ical image of the participant’s head needs to be acquired using
MR imaging, or alternatively, a template included in the soft-
ware’s directory can be used. Through the Head segmentation
module, the structural MR image is segmented into different
tissue classes. Next, the EEG cap is positioned over the par-
ticipant’s scalp and the electrode positions are recorded. After
the co-registration of the complete set of electrode positions
over the MR image and the generation of a realistic volume
conductor model, the Leadfield matrix creation tool calculates
the linear relationships between neural currents in the brain
(sources) and electric potentials measured at the electrode
level. The Spatial filter creation module can be initialized
through the acquisition of an EEG calibration recording. By
using this recording, a spatial filter is produced, which is ca-
pable of attenuating artifactual signals in the hdEEG data and
estimating neural activity in the brain. With the Real-time
activity estimation module, the spatial filter is applied to the
EEG data, supporting the online reconstruction of brain
sources. A detailed description of RT-NET modules is provid-
ed here below.

Initialization and Study Overview

When the GUI is launched, the user is required to initialize a
new project through the Study Overview module. This permits
the user to choose the output folder for saving the data and the
EEG system that will be used for the experiment. The EEG
systems that are recognized by RT-NET are those compatible
with LSL (https://github.com/sccn/labstreaminglayer), an
open-source software solution for communicating with exter-
nal devices in real-time and with millisecond accuracy. It
should be noted that, although LSL is platform-independent,
it is more easily accessible in its Windows implementation.
This may also result in an easier use of RT-NET with the
Windows operating system. After defining the input required
by the Study Overview module, it is possible to start the Head
Segmentation module.

Head Segmentation

The second module of RT-NET, Head Segmentation, is de-
signed to automatically perform the segmentation of the MR
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Fig. 1. RT-NET modules and their execution during a typical hdEEG
experimental session. Prior to the hdEEG session, the anatomical MR
image is segmented into three tissue classes. During hdEEG, the
participant wears the hdEEG cap and the electrode positions over the
scalp are recorded. After the co-registration of the complete set of elec-
trode positions over the MR image, the leadfield matrix is generated. A

image of the subject’s head. The estimation of EEG signals
from the brain sources (also known as the forward solution)
requires a realistic head-volume conductor model to be gen-
erated from an individual’s MR image, and the correct elec-
trode locations to be defined with respect to the conductor
model. Therefore, the first processing stage of our workflow
involves the segmentation of the MR image into three differ-
ent tissue classes: brain, skull and skin (Gramfort et al. 2010).

calibration recording is acquired in the participant. This recording is used
to estimate an artifact attenuation filter, Fy, which reduces noise and non-
neuronal signals, and a source localization filter, K, for reconstructing
neural activity in the source-space. Finally, during the real-time EEG
experiment, the spatial filter is applied to the hdEEG data, generating
the reconstruction of active brain sources in an online modality.

This is done using the unified segmentation algorithm imple-
mented in SPM12 (Ashburner and Friston 2005) (https://
www.fil.ion.ucl.ac.uk/spm/software/spm12/). The choice of
segmenting the brain in three tissue classes is due to the
need of balancing realistic modelling and computational
efficiency (Fuchs et al. 2002).

The tissue probability maps produced by SPM12 are then
binarized using a winner-takes-all approach (Ashburner and
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Fig.2 RT-NET graphical user interface. Study Overview is the first panel
of the toolbox, in which it is possible to load the output folder of the study
and visualize the information. After that, the user can load the structural
image of the subject’s head, previously acquired, and start the Head
Segmentation. The Leadfield creation step starts when the file

containing the electrode positions over the subject’s scalp are loaded.
For the Spatial Filter Creation step, the user needs to acquire a hdEEG
calibration recording. A filter for real-time neural reconstruction is initial-
ized using this recording. Finally, the user can enable and customize the
online reconstruction of neural activity by using the Real-Time panel
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Friston 2005). Finally, the three tissue compartments in the
volume space are processed with Fieldtrip (http:/www.
fieldtriptoolbox.org) to build hexahedral meshes.

Leadfield Matrix Creation

Once the head segmentation is performed, the Leadfield ma-
trix creation window is activated. First, the electrode positions
file, previously acquired, needs to be loaded and then the
computations can start. This preprocessing module allows
the generation of the leadfield matrix, L, containing the scalp
potentials putatively measured for each possible configuration
of neural source position and orientation. Specifically, the
scalp potential 6, can be expressed as follows (Pascual-
Marqui et al. 2011):

0(t) =L-J(1) (1)

where, if nj is the number of electrodes and 7y the number
of voxels, then the leadfield matrix, L, has dimension [ng -
3ny]; the current density J(£) has dimension [3ny - 1]; and 0(¢)
has dimension [ng - 1].

The first step for leadfield matrix creation is the co-
registration of the electrode positions in the same space, de-
fined by the MR image. To this end, a rigid-body transforma-
tion matching the landmarks in the electrode space to the
corresponding ones in the MR space is computed and applied
to the electrode positions. These are then aligned to the head
surface extracted from the individual MR image using the
iterative closest point algorithm (Besl and McKay 1992) im-
plemented in SPM12. Finally, each electrode is orthogonally
projected onto the head surface.

The second step is the creation of the volume conductor
model. The meshes derived from MR images for the brain,
skull and skin compartments are used, along with the conduc-
tivity values defined for each of them. These are set by default
to 0.33, 0.01 and 0.43, respectively, in line with the relevant
literature (Haueisen et al. 1997; Holdefer et al. 2006), but can
also be modified by the user if needed.

The electrode positions and the volume conduction model
are combined to create the leadfield matrix by numerical sim-
ulations, which are conducted using the symmetric boundary
element method (sBEM) implemented in OpenMEEG
(Gramfort et al. 2010, 2011). The leadfield matrix, initially
computed for each mesh element spanning the gray matter,
is then resampled in the volume space, defined as a regular
volumetric grid with 6-mm resolution.

Spatial Filter Creation

The Spatial filter creation module permits the generation,
from a hdEEG calibration recording, of a spatial filter that
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will subsequently be used for online artifact reduction and
source localization. First, the user needs to choose the
length of the calibration recording (in minutes), the sam-
pling frequency (in Hz), the frequency band of interest (in
Hz), the EEG channels, the data decomposition technique,
the auxiliary electrical channels (i.e. electrooculogram or
electromyogram) to be used for artifact detection, the source
localization method and its parameters. Next, the calibration
recording can be acquired by pressing the corresponding
button.

First of all, we detect channels with low signal quality
and label them as ‘bad channels’. To this end, we use an
automated procedure that combines information from two
different parameters. The first parameter is the minimum
Pearson correlation of the signal in the frequency band of
interest selected by the user, against all the signals from the
other channels. The second parameter is the noise variance
in the band 200-250 Hz, where the contribution of the EEG
signal can be considered negligible. We define the list of
bad channels b, including those channels for which at least
one of the two channel-specific parameters are outliers as
compared to the total distribution of values. To ensure ro-
bustness of the detection, the threshold to define an outlier is
set to m +4s, where m is the average value and s is the
standard deviation. Subsequently, the list of neighboring
channels is defined using the FieldTrip toolbox (http://
www.fieldtriptoolbox.org). A channel adjacency matrix D
with dimension [ng - ng], is created, with each element d;
equal to 1 if channels i and j are adjacent (and not labelled as
‘bad channels’), and equal to 0 otherwise. A bad-channel
correction matrix C, with dimension [nz - ng], is then
created:

dij/ Xdi; if ieb

Cj =191 ifigh andi=j- (2)
0 ifi¢b and i£j

Next, we generate a data re-referencing matrix R to perform

average re-referencing (Liu et al. 2015). The matrix R, with
dimension [ng - ng], is defined as follows:

("E_l)]/”E ifi=j
— i G)
ng

rij:

We apply the spatial filters described by matrices C and R
to the raw EEG data X{(#), so to obtain a new EEG dataset X (),
in which all signals are in average reference and those from
bad channels are repaired:

Xy(t)=C-R-X(1). 4)
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Using EEGLab (https://scen.ucsd.edu/eeglab), we band-
pass filter the resulting EEG data in the frequency range se-

lected by the user, so to obtain the new EEG dataset X' q(1).
Then, we apply independent component analysis (ICA)
(Mantini et al. 2008) using a fast fixed-point ICA (FastICA)
algorithm (http://research.ics.aalto.fi/ica/fastica) in deflation
approach and with hyperbolic tangent as contrast function
(Hyvarinen 1999). Other ICA algorithms are implemented in
RT-NET, and can be alternatively used: FastICA in symmetric
approach, Infomax (Lee et al. 1999) and JADE (Cardoso
1999). The ICA model can be described as:

X, () =A-S() (5)

where X, = [X (1), ..., X,,(¢)] is the matrix of ng ob-
served signals; S(¢) = [S1(¢), ..., Sns(f)] is the matrix of ng
underlying signals, or independent components (ICs); A, with
dimension [n - ng], denotes the mixing matrix (Stone 2004).
The ICs can be retrieved by determining the unmixing matrix
W, with dimension [ng - ng], such that:

S(6) =W X,(0). (6)

After that FastICA has been run on the EEG calibration

dataset X' ¢(1), the ICs associated with the artifacts (or artifac-
tual ICs) are automatically identified. This can be done either
using ICLabel (https://sccn.ucsd.edu/wiki/ICLabel) (Pion-
Tonachini et al. 2019), or the IC artifact detection solution
implemented in Liu et al. (2017). The latter, which is the
default solution in RT-NET, relies on the following parame-
ters: 1) correlation between the power of the IC with vertical
electrooculogram (VEOG), horizontal electrooculogram
(hEOG) and electromyogram (EMG); 2) the coefficient of
determination obtained by fitting the IC power spectrum with
a 1/f function; 3) the kurtosis of the IC. An IC is classified as
artifactual if at least one of the above parameters is above its
specific threshold, set in accordance with previous studies (De
Pasquale et al. 2010; Liu et al. 2017; Mantini et al. 2009). The
unmixing matrix W, for the artifactual components S4(7) is
obtained by selecting the corresponding rows of the matrix
W, such that:

Sa(t) = Wa - X(2). (7)
An artifact attenuation filter F, with dimension [ng - ng],

is initialized as:

-1
Fo=I-X-Sy-(Sa-Sy) -Wa (8)

where [ is an identity matrix with dimension [ng - ng].
The artifact-free calibration dataset X »(t) is generated by

applying the initial artifact attenuation filter Fyy to X (1), as
follows:

X,(t) = Fo-X,(1). (9)

It should be noted that the artifact attenuation filter F(f) is
dynamically defined during the acquisition of real hdEEG
data, following the approach described in Guarnieri et al.
(2018). This approach is explained in detail in the next section,
dedicated to online data analysis.

Using the artifact-free calibration dataset X, (¢), a source
localization filter K, with dimension [3ny, - ng], is also created.
This specific filter depends on the selected source localization
algorithm. RT-NET integrates the exact low-resolution brain
electromagnetic tomography (eLORETA) algorithm
(Pascual-Marqui et al. 2011) as default solution. In this case,
the source localization filter K is calculated using the follow-
ing formula:

K=G"-L"-(L-G'-L" + aH)" (10)
where L is the leadfield matrix, G is a symmetric positive
definite weight matrix with dimension [3ny - 3ny], H is the
noise covariance matrix estimated from X,,(z), o> 0 is the
Tikhonov regularization parameter and * denotes the
Moore—Penrose pseudoinverse. The regularization parame-
ter « is set by default to 0.05 and can be changed by the user
if needed. Other source localization algorithms implement-
ed in RT-NET are the standardized low resolution brain
electromagnetic tomography (sLORETA) algorithm
(Pascual-Marqui 2002), the minimum norm estimates
(MNE) (Haméldinen and Ilmoniemi 1994), its weighted
version WMNE (Lin et al. 2006) and the linearly constrained
minimum variance beamformer (LCMV) (Van Veen et al.
1997). All the source localization methods above are imple-
mented in volumetric space. In particular, eLORETA,
LORETA, MNE and LCMV are those integrated in
FieldTrip (http://www.fieldtriptoolbox.org), whereas
SLORETA and wMNE are those in Brainstorm (https://
neuroimage.usc.edu/brainstorm).

Real-Time Activity Estimation

The Real-time activity estimation module allows the recon-
struction of ongoing neural activity for all the voxels in the
gray matter or, alternatively for selected regions of interest
(ROIs), by using the spatial filters created using the calibration
recording. The parameters that need to be defined before real-
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time activity estimation are: buffer length (in ms), total dura-
tion of the experiment (in minutes), sampling frequency and
the frequency band of interest for neural activity estimation
(both in Hz). Furthermore, it is necessary either to select the
ROIs for which neural activity needs to be extracted, or to
enable reconstruction in each voxel of the gray matter for
real-time mapping of neural activity.

Within the real-time activity estimation module, EEG data
are stored in a buffer with nysamples, determined based on the
sampling frequency and the buffer length set by the user. The
EEG data in the buffer X(7) is filtered in the frequency band of

interest, thereby obtaining X (7) . Next, the bad-channel cor-
rection matrix C and the re-referencing matrix R are applied:

X,(1)=C-R-X(r). (11)

Starting from the resulting dataset X 4(T), we estimate arti-
factual signals that are present in the buffer, using the matrix
W, obtained from the calibration dataset:

Sa(T) = Wa - X,(7). (12)

At this point, linear regression analysis is used to estimate
the weight matrix B4 associated with the artifactual signals in
the buffer. In particular, the following equation is considered
to account for the non-stationarity of the artifactual contribu-
tion in the EEG signals:

X,(7) = Ba*Sa(7) + &(7) (13)

where &(7) is the residual of X(7) that cannot be explained
by a linear combination of S4(7). Using the method proposed
in Guarnieri et al. (2018), an adaptive spatial filter F(7) is built

to dynamically obtain artifact-free signals X ,(7), such that:

Xp(1) = F(1) - Xo(7) (14)
where F(7) is defined as follows:
F(7) = I=X (7)#SL (1) %(Sa () 585 (7)) #W,y. (15)

Considering that the buffer is dynamically updated at the
same frequency as the sampling rate, the latest sample in the
artifact-cleaned EEG dataset X »(7) is continuously extracted
to estimate real-time neural activity in the sensor space Y(¢).

When the reconstruction of neural activity from ROIs is
selected, the primary voxel indices corresponding to the
ROIs are identified and the source localization matrix K is
downsampled accordingly. In this case, the dimension of
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matrix K becomes [3ny - ng], where ny is the number of
ROIs, and the neural signals are separately reconstructed for
the three directions. The source localization filter K is then
applied to Y(#), such that real-time neural activity in the source
space B(?) is also obtained:

B(t) =K - Y(t). (16)

By default, the artifact-free signals in the sensor space Y(?),
and in the source space B(f), are forwarded to LSL for real-
time visualization or control of other devices, such as a brain
stimulation system for closed-loop applications (Boe et al.
2014; Semprini et al. 2018). These reconstructed neural sig-
nals are also saved in the output folder, to be analyzed offline.

Validation of RT-NET

We assessed the performance of the RT-NET toolbox using
real hdEEG data. We compared the signals processed with
RT-NET against those obtained with our offline analysis
workflow (Liu et al. 2017). Specifically, we focused on the
modulations of neural activity induced by movements of the
right hand (Weiss et al. 2013).

Data Collection

Data used in this study were obtained from hdEEG recordings
collected in 10 healthy right-handed participants (five men
and five women, age range 23-39 years). All participants
reported normal or corrected-to-normal vision and had no
psychiatric or neurological history. They gave written in-
formed consent to the experimental procedures, which were
approved by the Institutional Ethics Committee of KU
Leuven.

In a first experimental session, a structural T1-weighted
MR image of the participant’s head was collected witha 3 T
Philips Achieva MR scanner (Philips Medical Systems, Best,
Netherlands) using a magnetization-prepared rapid-acquisi-
tion gradient-echo (MP-RAGE) sequence (Mugler and
Brookeman 1991). The scanning parameters were TR =
9.6 ms, TE=4.6 ms, 160 coronal slices, 250 x 250 matrix,
and voxel size 0.98 x 0.98 x 1.2 mm>. The MR image was
used during the EEG experimental session to generate the
volume conduction model for source localization.

In a second experimental session, electrode positions were
first acquired using the Xensor system (ANT Neuro,
Enschede, Netherlands). Subsequently, two hdEEG datasets
were collected: the first one, which was used for spatial filter
creation using RT-NET, with the participant being at rest for
4 min; the second one with them performing right-hand move-
ments for 6 min. hdEEG signals were sampled at 1 kHz using
the 128-channel actiCHamp system (Brain Products GmbH,
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Gilching, Germany). The electrode at vertex (Cz in the 10/20
international system) was used as the physical reference. In
addition, we also recorded horizontal and vertical EOG
(hEOG and vEOGQG) as well as three electromyography
(EMG) signals associated with the masseter (right), trapezius
(right), splenius capitis (right) and carpi radialis longus (right)
muscles. The first three EMG signals were used for artifact
removal, whereas the fourth EMG signal was used to detect
hand movement onsets. For the resting-state part of the EEG
session, participants were asked to fixate on a black cross in
the center of a white screen (eyes-open fixation). In the motor-
related part of the EEG session, participants were asked to
perform right wrist flections/extensions, alternating 6 s of
self-paced uninterrupted movements with 6 s of eyes-open
fixation.

Analysis of RT-NET Performance

A crucial metric to assess the performance of the toolbox is the
computational time. This was quantified using a computer
with a 2.5-GHz Intel Core i7 processor and 16 GB RAM,
running Windows 10. We quantified the time required for
the Head segmentation, Leadfield matrix creation and
Spatial filter creation modules of RT-NET. We also evaluated
the computational delay during online hdEEG acquisition and
processing. This analysis was conducted using a buffer length
of 500 ms, as in Guarnieri et al. (2018), band-pass frequency
between 1 and 50 Hz, and sampling frequency equal to
100 Hz.

The neural signals reconstructed in real-time using the
Real-time reconstruction module were used to produce spatial
maps reflecting event-related synchronization/
desynchronization (ERS/ERD) maps across trials. ERD/ERS
can be expressed using the following formula:

oty — DD

where P(f; t) is the power in a given frequency band and
time interval, and P,(f) is the average power over time in a
baseline period (Pfurtscheller and Lopes Da Silva 1999). ERD
maps were calculated for the beta band (13—30 Hz) in the
period [0 s, +2 s] with respect to movement onset. The beta
band was chosen, as it is typically implicated in motor execu-
tion (Pfurtscheller and Lopes Da Silva 1999). The baseline
period [—1 s, 0 s] was defined with respect to the same onset.
The ERD maps were visualized in real-time using a 3D corti-
cal model with 3500 vertices, which was generated using
FieldTrip (Oostenveld et al. 2011). The correlation between
ERD maps was calculated offline after the experiment, to
quantify the reliability of the results across trials.

- 100% (17)

After verifying the feasibility of using RT-NET in a real-
time hdEEG experiment, we also quantified the accuracy of
source localization. To this end, we used an offline analysis as
a benchmark. The offline analysis workflow was the same
applied to the calibration EEG dataset, and included bad-
channel correction, re-referencing, band-pass filtering, ICA-
based artifact removal, head modelling using SBEM and
source localization using eLORETA (Liu et al. 2017, 2018).
The reliability of task-related modulations in neural activity
was assessed using the average ERD map across trials, again
for the beta band. We also conducted an ERD analysis for
selected ROIs, whose MNI coordinates were chosen on the
basis of relevant fMRI studies (Debaere et al. 2003, 2004;
Gorgolewski et al. 2013; Lv et al. 2013; Rémy et al. 2008;
Weiss et al. 2013). The ROIs were the left primary motor
cortex (M1; MNI coordinates [-38, =20, 58]), the supplemen-
tary motor area (SMA; [0, —4, 56]), the left ventral premotor
cortex (VPMC; [-30, —10, 58]), and the left superior temporal
gyrus (STG; [—58, =32, 6]). The latter, whose activity is ex-
pected to be minimally modulated by motor task performance,
was used as the control ROI. For each ROI, the MNI coordi-
nates were converted to individual space. Spherical ROIs with
a radius of 6 mm were then created (Marrelec and Fransson
2011). Neural signals from the ROIs were extracted, and first
used to assess the presence of residual artifacts in the source-
localized data. This was quantified using the absolute tempo-
ral correlation between reconstructed neural signals and si-
multaneously collected EOG and EMG signals. By using tem-
poral correlations, we also compared ERD time-courses ob-
tained using RT-NET and the offline analysis workflow, ei-
ther in the beta band (13-30 Hz) and in the full band (1-
50 Hz). This permitted us to estimate the presence of motor-
related activity in the reconstructed neural signals. A
Wilcoxon signed rank test was carried out to assess significant
differences.

Results
Computation Time for RT-NET Analysis

Computational efficiency is a key feature of RT-NET, which
was specifically designed to support real-time processing of
hdEEG recordings, so we quantified processing times for the
different analysis stages. Average processing times for Head
segmentation, Leadfield matrix creation and Spatial filter
creation were 1938 s, 302 s and 735 s, respectively (Fig. 3).
The first of these three modules should be used before the real-
time EEG acquisition can start. The time required for the sec-
ond and third modules should be kept as short as possible.
Notably, the processing times we obtained for each of these
two modules permit their execution during the EEG experi-
mental session, and before the actual experiment. Besides the
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time required for preparatory steps, it is also important to
consider the computational efficiency for real-time acquisition
and processing. During our data collection, we measured
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Fig. 4. ERD maps in the beta band (13-30 Hz) for a single participant, obtained using RT-NET for 12 consecutive trials during right-hand movements.
The maps are represented over a 3D cortical model in dorsal view.

Fig. 5. Spatial correlation of ERD maps in the beta band (13-30 Hz)
calculated without artifact removal, offline and online processing,
respectively. The boxplots show the average across-trial correlations
across all participants.

acquisition time and delay. We divided our 6-minutes record-
ings, collected at a sampling rate of 1 kHz, into windows of
500 ms. Across all of them, the maximum delay introduced by
real-time processing for artifact attenuation and source local-
ization was 4 ms for each data buffer.
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Accuracy of RT-NET Analysis

First, we examined the ERD maps produced online during the
experiment for consecutive trials (Fig. 4). Each of them showed
beta-band ERD peak within the primary motor cortex. The av-
erage spatial correlation of the ERD maps across trials was equal
to 0.78. The correlation values obtained using EEG data proc-
essed with the online analysis workflow were not significantly
different (Wilcoxon signed rank test, p =0.06) from those ob-
tained using ERD maps from an offline analysis (Fig. 5). Also,
the beta-band ERD maps obtained using RT-NET were similar
to those obtained using offline processing (Fig. 6). Quantitively,
the correlation of group-level beta ERD maps obtained with RT-
NET with the offline processing with and without artifact re-
moval were equal to 0.76 and 0.56, respectively.
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Fig. 6. Motor-related power modulations in the beta band (13-30 Hz).
(A) ERD map obtained without artifact removal (raw); (B) ERD map
obtained with a complete offline processing workflow; (C) ERD map
obtained by RT-NET. The maps are represented over a cortical surface
in lateral, medial and dorsal views.

Similarities between online and offline processing were
observed not only in the ERD maps, but also for time-
courses reconstructed in three ROIs that are supposedly mod-
ulated by right-hand movements (left M1, SMA, left VPMC),
and one that is likely not to be involved in task execution (left
STG). Notably, there were no evident artifacts in the EEG
data, after these were processed using the spatial filter of
RT-NET (Fig. 7). The effectiveness of the online artifact re-
moval procedure implemented in RT-NET was quantitatively
assessed also by calculating the absolute correlation between
reconstructed neural signals and EOG/EMG signals (Fig. 8).
Values very close to zero were obtained for both online and
offline processing, with no significant difference between
them (Wilcoxon signed rank test, p =0.5542 and p =0.1923
for EOG and EMQG, respectively). We then moved to the as-
sessment of ERD after movement onset. Notably, a clear ERD
could be detected in left M1, SMA and left VPMC, but not in
the control region, left STG (Fig. 9). At the quantitative level,
we observed that the correlation of power-modulations for the
beta band (13-30 Hz), which primarily reflect motor-related
neural activity, was significantly higher (Wilcoxon signed
rank test, p <0.05) than for the full band (1-50 Hz) in left
M1, SMA and left VPMC (Fig. 10).

Discussion

We have introduced RT-NET, a novel software package for
real-time reconstruction of neural activity, which was specif-
ically developed for the processing of hdEEG recordings. It
includes a GUI that guides the user through the analysis steps
and streams the processed data externally for real-time visual-
ization or closed-loop applications. Below, we review the
strengths and weaknesses of the software in comparison with
alternative solutions and discuss the reliability of the results
produced in our validation study.

Primary Features of RT-NET and Comparison with
Alternative Solutions

RT-NET relies on a single-window GUI (Fig. 2) that gives
access to four different processing modules. They need to be
run sequentially and are compatible with the different stages
of'a hdEEG experiment (Fig. 1). In previous studies, we have
focused on methodological developments supporting the use
of hdEEG as a brain imaging tool (Michel et al. 2004). In
particular, we showed that combining high-density electrode
montages with accurate head models enables more precise
source localizations and thereby the reconstruction of brain
network activity in the human brain (Liu et al. 2017, 2018).
In the present study, we concentrated our efforts on develop-
ing novel solutions for the real-time reconstruction of brain
activity using hdEEG. RT-NET relies on the online artifact
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removal method described in Guarnieri et al. (2018), which is
initialized using a calibration dataset collected before the real
experiment. This allows the creation of a spatial filter to be
applied to the hdEEG data as they are acquired. This solution
ensures a low computation time (Fig. 3), which makes RT-
NET compatible with neural activity reconstruction.
RT-NET is not the only solution for acquisition and real-
time source analysis from electrophysiological data. Indeed,
MNE Scan and NeuroPype also provide comprehensive real-
time analysis tools for EEG data, including preprocessing and
source estimation. Notably, RT-NET has specific features that
are not present in MNE Scan and Neuropype: it permits the
creation of a realistic, individualized head model during the
EEG experimental session, using the electrode positions and
the T1-weighted MR image of the participant’s head. In partic-
ular, the MR image needs to be segmented to define individual
head tissues. This processing step is accomplished in RT-NET

using SPM12, which is also written in MATLAB. Another
valid tool for MR segmentation is Freesurfer (https://surfer.
nmr.mgh.harvard.edu) (Fischl 2012). Both FreeSurfer and
SPM12 can provide volumetric measures from T1-weighted
images, and a comparison between them has been performed
in several studies (Fellhauer et al. 2015; Palumbo et al. 2019;
Perdue and Diamond 2014). It has been reported that SPM12 is
computationally more efficient than FreeSurfer (Henson et al.
2019; Schwarz et al. 2016), and provides more robust segmen-
tations, except for the white matter (Guo et al. 2019).

Previous studies have already demonstrated that the use of
individualised head models leads to better source localization
results than templated head models (Akalin Acar and Makeig
2013; Brodbeck et al. 2011; Liu et al. 2018). Both MNE Scan
and RT-NET calculate the forward model by means of bound-
ary element method (BEM), which provides a realistically
shaped volume conductor model without a significant increase
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M1, SMA, left VPMC and left STG. M1: primary motor cortex; SMA:
supplementary motor area; VPMC: ventral premotor cortex; STG: supe-
rior temporal gyrus.
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Fig. 8. Absolute temporal correlation between EMG/EOG signals and
neural time-courses. The analysis was conducted for neural signals recon-
structed in left M1, SMA, left VPMC and left STG, without artifact
removal, with online processing and offline processing, respectively.
M1: primary motor cortex; SMA: supplementary motor area; VPMC:
ventral premotor cortex; STG: superior temporal gyrus.

in computational demand (Fuchs et al. 2002). Different BEM
implementations are available, and in particular, RT-NET and
NeuroPype rely on the symmetric BEM (sBEM) implemented
in OpenMEEG (Gramfort et al. 2010, 2011). This solution
outperforms other BEMs in terms of precision, but has rela-
tively longer computation times (Adde et al. 2003; Clerc et al.
2010; Gramfort et al. 2011).

MNE Scan, NeuroPype and RT-NET implement different
solutions for artifact attenuation, i.e. signal-space projection
(SSP) (Uusitalo and Ilmoniemi 1997), Artifact Subspace
Reconstruction (ASR) (Mullen et al. 2013) and a spatial filter
based on ICA (Guarnieri et al. 2018), respectively. It has been
shown that, in general, ICA-based artifact correction performs
better than SSP (Haumann et al. 2016) and ASR (Kim and
Kim 2018). Despite their low computational requirements,
both ASR and our ICA-based approach require a calibration
recording for reliable filter initialization. Notably, the combi-
nation of ASR and our ICA approach could certainly yield
superior artifact removal performance than each method sep-
arately. However, since ASR and ICA would be to be applied
sequentially, their computation times would sum up, and most
likely become incompatible with real-time processing
requirements.

The estimation of source activity by RT-NET is performed
by eLORETA (Pascual-Marqui et al. 2011). However, RT-
NET additionally includes MNE (Hdmaéldinen and
IImoniemi 1994), sSLORETA (Pascual-Marqui 2002),
wMNE (Lin et al. 2006) and LCMV (Van Veen et al. 1997).
In contrast, eLORETA, sLORETA and LCMYV algorithms are
implemented in NeuroPype, whereas MNE Scan can perform
source localization with Real-Time Clustered Minimum-

Norm Estimates (RTC-MNE) (Dinh et al. 2015) and Real-
Time Clustered Multiple Signal Classification (RTC-
MUSIC) (Dinh et al. 2017). There is no consensus about
which EEG source localization algorithm is best to use, as this
may largely depend on the signal-to-noise ratio of the EEG
data, the EEG montage density and coverage, and the accura-
cy of the head model used (Michel et al. 2004). eLORETA has
lower localization errors compared to LORETA and
sLORETA (Jatoi et al. 2014), but has relatively low spatial
resolution (Jatoi and Kamel 2017). Conversely, array signal
processing-based algorithms such as MUSIC (Mosher and
Leahy 1998) offer high resolution but at the cost of high com-
putational complexity (Jatoi and Kamel 2017), with risk of
data loss (Gaho et al. 2018). MNE (Hdmaldinen and
Ilmoniemi 1994) is less accurate than eLORETA (Im 2018),
which is minimally affected by the volume conduction prob-
lem under real conditions (Pascual-Marqui et al. 2011). It may
also fail in the localization of deep sources (Gaho et al. 2018).

RT-NET can stream data to other applications, as done in
the current study (Fig. 4), such that the reconstructed neural
activity can also be visualized in real-time. Generally speak-
ing, RT-NET may be beneficial for novel BCI applications,
such as source-based neurofeedback (Boe et al. 2014; van
Lutterveld et al. 2017) and closed-loop neuromodulation tech-
niques (Semprini et al. 2018).

Validation of Real-Time Neural Activity
Reconstruction by RT-NET

To validate the real-time reconstruction of neural activity
using RT-NET, we employed hdEEG recordings collected
during right-hand movements. Usually, simple motor tasks
are expected to induce prominent contralateral modulation of
brain activity. However, depending on task complexity, there
may also be ipsilateral modulation. The specific motor task
involved in our study is expected to elicit prominent contra-
lateral modulation of brain activity, and in particular an event-
related desynchronization in the beta band (Pfurtscheller and
Lopes Da Silva 1999), in the hand representation of the left
M1, in the SMA and in the left VPMC (Gorgolewski et al.
2013; Grodd et al. 2001; Lotze et al. 2000). The left STG,
which was used as a control region, did not show substantial
neural activity modulations. We performed an offline analysis
of the hdEEG data using the approach we defined in previous
studies (Liu et al. 2017). This served as a reference to assess
the effectiveness of real-time neural activity reconstruction by
RT-NET (Figs. 9 and 10).

The ERD map generated for the beta band showed the
strongest values in the region covering the left M1, SMA
and left VPMC for both online and offline processing
(Fig. 6). The peak locations in the map were consistent with
those previously reported in transcranial magnetic stimulation
and fMRI studies (Gorgolewski et al. 2013; Hlustik 2001;
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considerable similarity between the online and offline methods in terms
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Fig. 10. Correspondence of band-limited power time-courses between
online and offline activity reconstructions in left M1, SMA, left VPMC
and left STG. Comparisons were performed by examining the temporal
correlation of band-limited power time-courses for the full band (1-
50 Hz) and the beta band (13-30 Hz). A Wilcoxon signed rank test
revealed higher temporal correlation for the beta compared to the full
band for left M1 (p =0.0078), SMA (p =0.0156), left VPMC (p=
0.0078), but not for left STG (p =0.061). M1: primary motor cortex;
SMA: supplementary motor area; VPMC: ventral premotor cortex;
STG: superior temporal gyrus.

Weiss et al. 2013). Furthermore, the neural signals recon-
structed in the selected ROIs not only showed consistent
task-related modulations, but also had very small artifactual
contamination, as indicated by the absolute temporal correla-
tion with EOG and EMG signals (Figs. 7 and 8).

Overall, the results of the present study suggest that the
real-time processing of hdEEG data is sufficiently reliable,
both in terms of spatial maps and in terms of the reconstructed
time-course for specific brain regions. It should be noted,
however, that we used hdEEG signals collected during a hand
movement task, which is expected to produce robust neural
responses. Further methodological work may be necessary to
increase the sensitivity and accuracy of hdEEG-based studies
in which brain sources produce less intense and more distrib-
uted signals. Our results support the idea that hdEEG can be
used for solving brain dynamics with high spatial resolution.
As such, hdEEG could be used as an alternative to fMRI for
functional brain imaging, with the additional benefit of direct-
ly measuring brain activity. In addition, hdEEG can provide
faster neurofeedback as compared to fMRI (Thibault et al.
2016).

Limitations and Possible Caveats

A possible caveat of RT-NET may be the use of a relatively
simple head modelling strategy, to keep the processing time
compatible with that of a typical EEG experiment. Notably,
whereas the MR image segmentation can be performed before

the experiment, electrode positions need to be obtained from
the participant before the leadfield matrix can be created. In
this study we used a standard digitizing technique for
extracting electrode positions, but it is worth noting that 3D
scanning has been recently proposed to yield rapid and reli-
able electrode positioning (Taberna et al. 2019a; Taberna et al.
2019b). 3D scanning technology may be particularly useful
for hdEEG systems, approximately halving the acquisition
time. For the head modelling step, a three-layer sSBEM model
is currently used in RT-NET because of its relatively low
computational demand. Whereas most BEM implementations
rely on 3 layers (brain, skull, skin), the use of 4-layer BEMs
that includes the cerebrospinal fluid (CSF) around the brain
has been proposed to improve source localization (Akalin
Acar and Makeig 2013). BEM solutions using 4 layers
(Stenroos and Nummenmaa 2016) may be integrated in future
versions of RT-NET, if their computation time will become as
low as few minutes, such that they can be used in real-time
EEG experiments. It should also be noted that head modelling
approaches other than BEMs are also used by the neuroimag-
ing community: finite element methods (FEMs) and finite
difference methods (FDMs) (Hallez et al. 2007). FEMs and
FDMs can take advantage of a more refined head segmenta-
tion than BEMs, and typically yield more precise estimates of
the leadfield matrix. However, due to their computational re-
quirements, they are not compatible with the creation of a
head model in the course of an EEG experiment. Future meth-
odological developments for parallelized FEM and/or FDM
computations (Cuartas Morales et al. 2019) are warranted to
reduce processing times and make them compatible with the
requirements of real-time EEG experiments using RT-NET.
Furthermore, RT-NET performs online artifact attenuation as
well as source localization. To optimize artifact attenuation,
we recently proposed a method relying on a calibration dataset
(Guarnieri et al. 2018). This calibration dataset should contain
a sufficient number of artifactual occurrences for an effective
setup of the spatial filter. Although it remains difficult to de-
termine how long the calibration dataset should be, it may be
helpful to ask the participant to intentionally generate such
artifacts (Zhang et al. 2015). Finally, we would like to point
out that a more extensive validation of RT-NET using differ-
ent tasks and experimental conditions, would be very impor-
tant. In this study, we have tested RT-NET using hdEEG data
obtained during motor task performance. Further work should
extend the validation to hdEEG data during auditory stimula-
tion, such that it would be possible to examine the perfor-
mance of RT-NET when bilateral sources are active.

Conclusions

RT-NET is a toolbox for the online reconstruction of neu-
ral activity from hdEEG signals. It has been specifically
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conceived and designed to support real-time analyses in
the source space. This makes it unlike most software that,
given the high computational demand of hdEEG process-
ing, can only support offline source-space analyses.
Notably, the accuracy of online neural activity reconstruc-
tion by RT-NET is comparable to that achieved with
offline processing. We hope that our software package
will contribute to the development of novel BCI applica-
tions based on hdEEG, such as source-based
neurofeedback (Boe et al. 2014; van Lutterveld et al.
2017). Our future research endeavor will be directed to-
wards an extensive validation of RT-NET in a wide range
of real-time hdEEG experiments.
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