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1 | INTRODUC TION
As the majority of human emerging infectious diseases are zoonotic, 
many efforts have been made to identify the animal species that 
may act as potential reservoir of zoonotic viruses (Olival et al., 2017). 
Bats (Chiroptera) are regarded as potential reservoirs or source of zo‐
onotic infections, as they sum up a number of traits, including (a) an 
outstanding variety of species (Tsang, Cirranello, Bates, & Simmons, 
2016); (b) gregarious habits (with colonies that often comprise hun‐
dreds or thousands of individuals); (c) resistance to viral infections, 
as they often harbour viruses without clinical signs (Zhang et al., 
2013); and iv) high mobility, in some cases represented by long‐dis‐
tance migratory movements (e.g. Flaquer et al., 2009).

To date, over 60 distinct viruses have been detected in bats, sug‐
gesting that these mammals can act as frequent viral hosts (Brook 
& Dobson, 2015; Fischer et al., 2016; Lelli et al., 2015; Liang et al., 
2017; Smith & Wang, 2013). Identified viruses belong to the follow‐
ing families: Adenoviridae, Astroviridae, Bunyaviridae, Caliciviridae, 
Circoviridae, Coronaviridae, Filoviridae, Flaviviridae, Hepeviridae, 

Herpesviridae, Orthomyxoviridae, Papillomaviridae, Paramyxoviridae, 
Parvoviridae, Picornaviridae, Polyomaviridae, Poxviridae, Reoviridae, 
Retroviridae, Rhabdoviridae, Totiviridae (Chen, Liu, Yang, & Jin, 2014). 
Virological investigations worldwide have identified in bats zoonotic 
pathogens like Lyssavirus (Family Rhabdoviridae), Nipah and Hendra 
viruses (Paramyxoviridae), Ebola and Marburg viruses (Filoviridae), 
beta coronaviruses, including SARS‐like CoV and MERS‐like CoV, 
astroviruses, orthoreoviruses (Calisher, Childs, Field, Holmes, & 
Schountz, 2006; Fischer, Pinho Dos Reis, & Balkema‐Buschmann, 
2017; Lelli, Moreno, et al., 2013; Lelli, Papetti, et al., 2013), Melaka 
virus (Chua et al., 2011). Spillover events from bats to human can 
happen directly or indirectly via intermediate hosts (domestic or 
wildlife animals). It should be stressed, however, that direct bat‐to‐
human transmission of viruses causing highly pathogenic disease 
has been demonstrated only for rabies viruses and related lyssavi‐
ruses, and for Nipah and Melaka viruses, whilst for other viruses (e.g. 
SARS‐CoV), transmission has been only supposed (Calisher et al., 
2006; Chua et al., 2011; Guan et al., 2003). Evaluating this potential 
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Abstract
In recent years, bats have been found to harbour many viruses, raising several ques‐
tions about their role as reservoirs and potential disseminators of zoonotic viruses. 
We investigated the presence of six virus families in bats in three regions of Central‐
Southern Italy. Astroviruses were identified in seven of 13 bat species. Sequence 
analysis revealed marked genetic heterogeneity among the astroviruses identified, 
with nucleotide identity ranging between 60.26% and 87.62%. Astrovirus diversity 
was not associated with the bat species, the geographic areas or the bat colony, sug‐
gesting the circulation of several astrovirus strains in Italian ecosystems. Genetic di‐
versification and interspecies transmission appear common in bat astroviruses and 
could provide, potentially, the bases for transmission to humans and other mammals. 
Yet overemphasizing this risk might have detrimental consequences for bat conser‐
vation and preservation of the important ecosystem services bats provide.
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risk is crucial in Western countries. Several bat species avoid human 
settlements and have little chance to enter into contact with humans 
(Russo & Ancillotto, 2015), and other species are at risk of extinc‐
tion (e.g. Conenna, Rocha, Russo, & Cabeza, 2016; O’Shea, Cryan, 
Hayman, Plowright, & Streicker, 2016), making the risks negligible. 
However, increasing anthropization of the environment is altering 
the ecosystems, disrupting usual habitats and/or creating novel eco‐
logical niches that may overlap with human activities. It should be 
considered, however, that bats provide important ecosystem ser‐
vices (Aizpurua et al., 2018; Ancillotto et al., 2017; Boyles, Cryan, 
McCracken, & Kunz, 2011; Kunz, Braun de Torrez, Bauer, Lobova, & 
Fleming, 2011). Overemphasizing the potential risks posed by bats 
to humans may generate unjustified alarmism, a fact that has raised 
considerable concern in conservationists (López‐Baucells, Rocha, & 
Fernández‐Llamazares, 2017), as also highlighted by the EUROBATS 
agreement on the conservation of bat populations in Europe (work‐
ing group on “Communication, Bat Conservation and Public Health”). 
Under this perspective, surveillance may still be important to avoid 
or mitigate potential conflicts and eventually improve bat conserva‐
tion policies.

In Italy, a few studies have been carried out to assess the pres‐
ence of viruses in bats (Lelli, Moreno, et al., 2013; Lelli, Papetti, 
et al., 2013) but only in the Northern regions. These studies de‐
tected orthoreoviruses and coronaviruses in various bat species. 
However, there are no data for the Central‐Southern Italian regions, 
which are characterized by a warmer, drier climate and a different 
biogeography.

In this study, we screened 13 bat species living in these geo‐
graphic areas. The bat species were selected ad hoc to represent a 
range of environmental and behavioural differences. Our data set 
covered species that form large colonies in caves and show high 
fidelity to their roosting sites (e.g. Miniopterus schreibersii); species 
that roost in trees in small groups and switch roosts frequently (e.g. 
Barbastella barbastellus); and synanthropic species that are more 
likely to enter into contact with humans (e.g. Pipistrellus kuhlii). The 
bats were screened for a large panel of viruses, including rabies 
viruses, coronaviruses, reoviruses, caliciviruses, astroviruses and 
enteroviruses.

2  | MATERIAL S AND METHODS

2.1 | Sample collection

We overall sampled 147 individuals from three regions of Central‐
Southern Italy. Most bats we screened were caught on emergence 
from their roosts with harp traps or at drinking sites with mist nets. 
In such cases, bats were promptly removed from the trap or the 
net and their forearm length and body mass were measured, re‐
spectively, with a caliper to the nearest 1 mm and a digital scale to 
the nearest 0.1 g. Sex was assessed by inspecting genitalia (Racey, 
1988), and wings were trans‐illuminated to distinguish juveniles 
from adults (Anthony, 1988). In females, we ascertained preg‐
nancy by palpation (Racey, 1988), and lactation by the presence of 

enlarged nipples surrounded by a hairless skin area and by extrud‐
ing milk with a gentle finger pressure on the nipple base. Bats were 
immediately released after processing. A few samples came from 
animals hosted at rehabilitation centres. Saliva was sampled from 
each bat with a dry sterile swab, which was placed in viral trans‐
port medium (Chu, Poon, Guan, & Peiris, 2008), and transported 
in a cool box to the laboratory for the analysis. Bat droppings ex‐
pelled during manipulation of specimens were collected, stored in 
sterile vials and preserved in cool boxes during transportation.

Sampling was carried out in Abruzzo, Lazio and Campania re‐
gions. Species identification was carried out by a bat taxonomist, 
and the bat species included Barbastella barbastellus, Eptesicus 
serotinus, Miniopterus schreibersii, Myotis capaccinii, Myotis emargi
natus, Myotis myotis, Myotis mystacinus, Myotis nattereri, Nyctalus 
leisleri, Pipistrellus kuhlii, Pipistrellus pipistrellus, Plecotus auritus and 
Rhinolophus euryale.

2.2 | Nucleic acid extraction

Nucleic acids were extracted with the MagMax automated system 
(Applied Biosystems, Monza, Italy). Oro‐pharyngeal swabs were 
suspended in 0.4 ml of phosphate‐buffered saline (PBS) and incu‐
bated at room temperature for 30 min under shacking. After incu‐
bation (0.3 ml), samples were loaded in the MagMAx extraction 
sample plate. Faecal samples were suspended in 1 ml PBS, vigor‐
ously vortexed for 3 min and centrifuged at 17,949 g for 3 min, 
and faecal suspension was loaded on the MagMax plate. RNA was 
extracted from all the samples following the manufacturer’s in‐
structions, and nucleic acids were eluted in 90 μl elution buffer 
containing 40 μl Rnase Inhibitor (Promega, Milan, Italy) and imme‐
diately analysed by real‐time RT‐PCR/RT‐PCR or stored at −80°C 
until use.

2.3 | Real‐time RT‐PCR for the detection of rabies 
virus and MERS‐CoV

The presence of rabies virus and MERS‐coronavirus (MERS‐CoV) 
was investigated by real‐time RT‐PCR using two commercial kits, 
that is Rabies virus Real Time RT‐PCR kit (Shanghai ZJ Bio‐Tech Co., 
Ltd) and MERS‐CoV Real Time RT‐PCR kit (Shanghai ZJ Bio‐Tech Co., 

Impacts

• Identification of astroviruses in four bat species never 
found positive before.

• Identification of astrovirus in bats living in Italy.
• Strains of astrovirus identified revealed a high degree of 

genetic diversity, not related to bat species.
• Mechanisms other than host specificity may drive virus 

genetic diversification.
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Ltd). The reaction was carried out following the manufacturer’s in‐
structions. All the tests were performed with a 7500 Fast Real time 
PCR system (Applied Biosystems, Monza, Italy). Positive and nega‐
tive controls were included in the kits.

2.4 | Identification of other viruses by end‐point 
RT‐PCR

The primers employed for detection of the different viruses are in‐
dicated in Table 1. All the assays were carried out with the Flexid 
Mastercycler NexsusX2 (Eppendorf) using the SuperScript™One‐
Step RT‐PCR kit (Life Technologies Italia). Coronaviruses (CoVs) were 
searched as described by Drosten et al. (2003) (Table 1). For reovirus 
detection, the nucleic acids were preventively denatured (2 μl viral 
extract with 1.4 μl of DMSO at 97°C for 5 min) and then reverse‐
transcribed and amplified using a nested protocol, as described 
previously (Leary et al., 2002; Table 1). For the detection of calici‐
virus RNA, a set of calicivirus universal primers was used, targeting 
conserved motives of the RNA‐dependent RNA polymerase (RdRp; 
Jiang et al., 1999; Zintz et al., 2005; Table 1). Detection of astrovi‐
ruses (AstVs) was performed with a nested protocol suing a set of 
conserved primer targeting the RdRp region (Chu et al., 2008) using 
1 μl of RNA (Table 1). Screening for enteroviruses was carried out 
using a nested protocol (Iturriza‐Gomara, Megson, & Gray, 2006). 
The primer details and sequence are listed in Table 1. Positive con‐
trols for the various PCR assays included human (Mamastrovirus spe‐
cies 1) and canine astrovirus (Mamastrovirus species 5), bovine and 
canine CoVs and canine reovirus strains. Members of the Norovirus 

(genogroups II and IV) and Vesivirus genus (feline and canine strains) 
were used as positive control for the calicivirus PCR. Human entero‐
virus A (EV71), bovine enterovirus E and swine enterovirus G were 
used as positive controls for enterovirus PCR.

All the PCR products were analysed by Tape Station 2200, an au‐
tomated platform for electrophoresis, (Agilent Technologies), using 
the D1000 screentape system.

2.5 | Sequence and phylogenetic analysis

Amplicons of the PCR‐positive samples were sequenced as previ‐
ously described (Amoroso et al., 2013). The nucleotide sequence 
similarity searches were performed using the BLAST server (http://
www.ncbi.nlm.nih.gov/genbank/index.html). Nucleotide sequences 
of AstVs were aligned using the program Clustal W (Larkin et al., 
2007) with reference sequences of Mamastrovirus (MAstV), using 
an avian astrovirus (AvAstV) JF414802 as outgroup (Supporting 
Information Table S1). Phylogenetic analyses were carried out by 
Mr Bayes (Huelsenbeck & Ronquist, 2001; Ronquist & Huelsenbeck, 
2003) program implemented in the software package Geneious v. 
9.1.8 (Biomatters, New Zealand). Bayesian inference was performed 
using four “chains” run over one million generations (with the first 
2000 trees discarded as “burn‐in”) and supplying statistical sup‐
port with subsampling over 200 replicates. jModelTest (Posada, 
2008) was used to identify the most appropriate model of evolu‐
tion. The identified program settings for all partitions, under the 
Akaike information criteria, included six character states (general 
time‐reversible model), a proportion of invariable sites and a gamma 

Virus Primer Sequences Reference

Coronavirus IN‐2 GGGTTGGGACTATCCTAAGTGTGA Drosten et al. 
(2003)IN‐4 TAACACACAAACACCATCATCA

Reovirus L1RV5 GCATCCATT GTAAATGACGAGTCTG Leary et al. (2002)

L1RV6 CTTGAGATTAGCTCTAGCATCTTCTG

L1RV7 GCTAGGCCGATATCGGGAATGCAG

L1RV8 GTCTCACTATTCACCTTACCAGCAG

Calicivirus P289 TGACAATGTAATCATCACCATA Jiang et al. (1999)

P290 GATTACTCCAAGTGGGACTCC

186 TGACGATTTCATCATCMCCRTA Zintz et al. (2005)

187 GATTACTCCASSTGGGAYTCMAC

Astrovirus FOR 1 GARTTYGATTGGRCKTAY Chu et al. (2008)

FOR 2 GARTTYGATTGGRCKAGGTAYGA

REV GGYTTKACCCACATNCCRAA

FOR N1 CGKTAYGATGGKACKATHCC

FOR N2 AGGTAYGATGGKACKATHCC

Enterovirus EV1 CGGCCCCTGAATGCGGC Iturriza‐Gomara 
et al. (2006)EV2 CACCGGATGGCCAATCCA

EVD2 CCCCTGAATGCGGCTAAT

EVU2 ATTGTCACCATAAGCAGCCA

TA B L E  1   Primers used for the 
detection of viruses

http://www.ncbi.nlm.nih.gov/genbank/index.html
http://www.ncbi.nlm.nih.gov/genbank/index.html
info:ddbj-embl-genbank/JF414802
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distribution of rate variation across sites (GTR+I+G). The Sequences 
of the AstV strains identified in this study were deposited in the 
GenBank database with the accession numbers from MG004195 
to MG004212.

3  | RESULTS

All the screened bats were negative to reoviruses, caliciviruses, en‐
teroviruses, rabies viruses and MERS‐CoV. When analysed for the 

Bat species
Geographic area of 
capture Number of animals AstV Positive

Barbastellabarbastellus Abruzzo 14 1

Eptesicusserotinus Lazio 1 1

Miniopterusschreibersii Campania 78 10

Myotiscapaccinii Campania 14 3

Myotisemarginatus Campania 5 1

Myotismyotis Abruzzo 2 1

Myotismystacinus Abruzzo 5 0

Myotisnattereri Abruzzo 2 0

Nyctalusleisleri Abruzzo 2 0

Pipistrelluskuhlii Lazio 1 1

Pipistrelluspipistrellus Abruzzo 3 0

Plecotusauritus Abruzzo 10 0

Rhinolophuseuryale Campania 10 0

TA B L E  2   Presence of astrovirus in the 
bat species monitored in this study. Only 
the PCR‐positive samples confirmed upon 
sequence analysis were considered in the 
table

F I G U R E  1   Map of the sampling sites 
and geographic location of astrovirus 
positive samples. 1 = Eptesicus serotinus, 
Pipistrellus kuhlii; 2 = Myotis myotis/blythii, 
Barbastella barbastellus; 3 = Miniopterus 
schreibersii, Myotis emarginatus, Myotis 
capaccinii. Regions in which captures 
occurred are indicated in grey

info:ddbj-embl-genbank/MG004195
info:ddbj-embl-genbank/MG004212
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presence of CoV, 10 bat samples yielded faint amplicons of the ex‐
pected size (453 bp). Upon direct sequencing, the quality of the se‐
quences was very low and the sequences were not usable, likely due 
to the low DNA concentration.

Astrovirus RNA was detected in 33/147 samples (22.45%), and, 
upon direct sequencing, 18/33 samples (54.54%) contained AstV 
RdRp sequences, for a total confirmed prevalence of 18/147 (12.24%).

A total of 33/147 bats (22.45%) tested positive for AstVs, yield‐
ing a 422‐bp amplicon from the viral RdRp. Upon sequencing, only 
18 sequences were of good quality and were further analysed. 
The sequence‐confirmed prevalence in our samples was as high as 
12.24% (18/147). Astrovirus RNA was identified in 10 of 78 M. sch
reibersii (12.82%), in three of 14 M. capaccinii (21.42%), in one of 14 
B. barbastellus (7.14%) and in an additional four bat species (Table 2). 
Geographic location of sampling sites from which positive samples 
were taken is indicated in Figure 1. Upon interrogation (November 
2017) of GenBank sequence database (Table 3), different patterns of 
recognition (best nucleotide matches) were displayed by the 18 Italian 
AstV strains (Table 3). Only two strains (Miniopterusschreibersii/84, 
GenBank Accession Number MG004202 and Myotiscapaccinii/100, 
MG004203) showed 100% nucleotide (nt) sequence identity to each 
other, although they were identified in two different bat species 
(Miniopterus schreibersii and Myotis capaccinii). The two strains exhib‐
ited the highest (80.9%) nt identity to a strain (EU847196) detected 
in Hong Kong 2005 from a Miniopterus magnate (Table 3).

Five AstV strains from different bat species (Miniopterussc
hreibersii/2015, MG004197, Barbastellabarbastellus/39, MG004201, 

Myotisemarginatus/1915, MG004196, Miniopterusschreibersii/74, 
MG004209 and Pipistrelluskuhlii/99, MG004204) showed 
79.2‐86.1% nt identity to AstV strains (JQ814858, JQ814861, 
JQ814862, JQ814863, respectively) identified in China from 
Miniopterusschreibersii in 2010 Table 3). Five AstV strains 
(Miniopterusschreibersii/75, MG004210, Eptesicusserotinus/01, 
MG004208, Miniopterusschreibersii/86, MG004205, Myotismyo
tisblythii/38, MG004200 and Miniopterusschreibersii/08, MG004195) 
displayed 78.3‐85.1% nt identity to AstV strains(EU847220, 
EU847195, EU847197 and EU847159, respectively) detected in 
Hong Kong from Miniopterus pusillus and Miniopterus magnate in 
2004‐2006 (Table 3).

Two AstV strains identified in M. Schreibersii (Miniopterussch
reibersii/83, MG004211 and Miniopterusschreibersii/99, MG004212) 
showed nt identity as high as 90.4–92.1% to AstV strains (FJ571120 
and KJ571418) identified in Hong Kong from two different bat spe‐
cies, Taphozous melanopogon and Hipposideros larvatus, respectively, 
in 2007–2008 (Table 3).

One AstV strain from M. Schreibersii (Miniopterusschreibersii/94, 
MG004206) showed the highest (89.2%) nt identity to an AstV strain 
(KJ652321) identified in Hungary from Myotis emarginatus in 2013 
(Table 3).

Two AstV strains from different bat species 
(Miniopterusschreibersii/88, MG004207 and Myotiscapaccinii/2315, 
MG004198) showed 84.1–86.5% nt identity to AstV strains 
(KY575650 and KY575651) identified in Madagascar from 
Miniopterus griveaudi in 2014 (Table 3).

TA B L E  3   Interrogation by BLAST search of NCBI nucleotide database (December 2017) based on the ORF1b (RdRp) sequences 
generated in this study. The strain with the highest % nucleotide identity (% PI) and E value (E‐v) found in the database (BM, best match) is 
shown for each bat sequence generated in this study

Italian bat strain Accession BM
Accession of 
the BM E‐v %PI

Miniopterusschreibersii/84 MG004202 Bat/HKY/2005/AFCD246 EU847196 1.75e‐57 80.9

Myotiscapaccinii/100 MG004203 Bat/HKY/2005/AFCD246 EU847196 1.75e‐57 80.9

Miniopterusschreibersii/2015 MG004197 Bat/CHN/2010/Miniopterusschreibersii 3 JQ814858 3e‐60 81.2

Barbastellabarbastellus/39 MG004201 Bat/CHN/2010/Miniopterusschreibersii 6 JQ814861 2e‐82 86.1

Myotisemarginatus/1915 MG004196 Bat/CHN/2010/Miniopterusschreibersii 7 JQ814862 1e‐78 85.1

Miniopterusschreibersii/74 MG004209 Bat/CHN/2010/Miniopterusschreibersii 7 JQ814862 9e‐56 81.3

Pipistrelluskuhlii/99 MG004204 Bat/CHN/2010/Miniopterusschreibersii 8 JQ814863 1e‐48 79.2

Eptesicusserotinus/01 MG004208 Bat/HKY/2006/AFCD303 EU847220 1.39e‐46 81.1

Miniopterusschreibersii/86 MG004205 Bat/HKY/2005/AFCD208 EU847195 3e‐45 78.3

Myotismyotis/blythii/38 MG004200 Bat/HKY/2005/AFCD208 EU847195 2e‐71 83.2

Miniopterusschreibersii/08 MG004195 Bat/HKY/2005/AFCD269 EU847197 1e‐79 85.1

Miniopterusschreibersii/75 MG004210 Bat/HKY/2004/WCF16 EU847159 1e‐54 80.2

Miniopterusschreibersii/99 MG004212 Bat/CHI/2007/Guangxi/LD110 FJ571120 8e‐81 92.1

Miniopterusschreibersii/83 MG004211 Bat/CHI/2008/MG30/Hainan KJ571418 5e‐103 90.4

Miniopterusschreibersii/94 MG004206 Bat/HUN/2013/Bb1 KJ652321 1e‐79 89.2

Miniopterusschreibersii/88 MG004207 Bat/MDG/2014/FMNH 228882 KY575650 2e‐52 86.5

Myotiscapaccinii/2315 MG004198 Bat/MDG/2014/SMG18853 KY575651 7e‐67 84.1

Myotiscapaccinii/28 MG004199 Bat/GAB/2009/09GB738Mi KU51046i 4e‐84 87.2

info:ddbj-embl-genbank/MG004202
info:ddbj-embl-genbank/MG004203
info:ddbj-embl-genbank/EU847196
info:ddbj-embl-genbank/MG004197
info:ddbj-embl-genbank/MG004201
info:ddbj-embl-genbank/MG004196
info:ddbj-embl-genbank/MG004209
info:ddbj-embl-genbank/MG004204
info:ddbj-embl-genbank/JQ814858
info:ddbj-embl-genbank/JQ814861
info:ddbj-embl-genbank/JQ814862
info:ddbj-embl-genbank/JQ814863
info:ddbj-embl-genbank/MG004210
info:ddbj-embl-genbank/MG004208
info:ddbj-embl-genbank/MG004205
info:ddbj-embl-genbank/MG004200
info:ddbj-embl-genbank/MG004195
info:ddbj-embl-genbank/EU847220
info:ddbj-embl-genbank/EU847195
info:ddbj-embl-genbank/EU847197
info:ddbj-embl-genbank/EU847159
info:ddbj-embl-genbank/MG004211
info:ddbj-embl-genbank/MG004212
info:ddbj-embl-genbank/FJ571120
info:ddbj-embl-genbank/KJ571418
info:ddbj-embl-genbank/MG004206
info:ddbj-embl-genbank/KJ652321
info:ddbj-embl-genbank/MG004207
info:ddbj-embl-genbank/MG004198
info:ddbj-embl-genbank/KY575650
info:ddbj-embl-genbank/KY575651
info:ddbj-embl-genbank/MG004202
info:ddbj-embl-genbank/EU847196
info:ddbj-embl-genbank/MG004203
info:ddbj-embl-genbank/EU847196
info:ddbj-embl-genbank/MG004197
info:ddbj-embl-genbank/JQ814858
info:ddbj-embl-genbank/MG004201
info:ddbj-embl-genbank/JQ814861
info:ddbj-embl-genbank/MG004196
info:ddbj-embl-genbank/JQ814862
info:ddbj-embl-genbank/MG004209
info:ddbj-embl-genbank/JQ814862
info:ddbj-embl-genbank/MG004204
info:ddbj-embl-genbank/JQ814863
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info:ddbj-embl-genbank/MG004198
info:ddbj-embl-genbank/KY575651
info:ddbj-embl-genbank/MG004199
info:ddbj-embl-genbank/KU51046i
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One AstV strain (Myotiscapaccinii/28, MG004199) revealed 
87.2% nt identity to an AstV strain (KU510465) identified in Gabon 
from Miniopterus inflatus in 2009 (Table 3).

Upon sequence comparison, a marked genetic heterogeneity was 
revealed among the 18 AstV strains characterized in this study, with 
the nt identity ranging from 63.26% to 100% to each other. The AstV 
sequences were also aligned with representatives trains retrieved 
from GenBank database and subjected to phylogenetic analysis in 
the partial ORF1b (RdRp) region. The topology of the phylogenetic 
tree was supported by a Bayesian posterior probability approach 
using both a generalized time‐reversible (GTR) and a gamma varia‐
tion model and supplying statistical support with subsampling over 
200 replicates. Upon phylogenetic analysis, the eighteen strains 
identified in this study segregated into a distinctive monophyletic 
group intermingled with AstV strains identified in bats from China, 
Hong Kong, Hungary, Madagascar and Gabon (Figure 2) (Supporting 
Information Table S1) and supported by bootstrap values ≥95.

4  | DISCUSSION

In this study, we investigated the presence of various human viral 
pathogens in 14 different species of bats captured in Central and 

Southern Italy. None of the samples was positive to rabies virus that 
is the most serious concern for the potential human transmission. 
From an epidemiologic point of view, bat‐associated rabies cases 
are rare, with the incidence rates in Canada and the Unites States 
being as low as 2.2‐6.7 human cases per billion persons/year over 
a 57‐year period (Velasco‐Villa et al., 2017). However, there is still 
a potential risk that needs attention, especially for bat specialists 
and rehabilitators, who handle bats and are often exposed to bites. 
Our study, in spite of the relatively small number of sampled animals, 
confirms that this risk is negligible in Italian territories.

Consensus diagnostic molecular assays are useful to detect novel 
viral species or genetically different viral strains, but they are usually 
not highly sensitive. Using broadly reactive consensus primers, CoV 
RNA was detected in 10/147 (6.8%) samples. These results could 
not be confirmed with sequence analysis. However, the samples also 
tested negative by a quantitative assay specific for MERS‐CoV, thus 
ruling out the presence of this virus in the sampled population.

Using consensus primers universal for the Astroviridae family, 
AstV RNA was detected in 33/147 samples (22.45%) and, upon di‐
rect sequencing, 18/33 samples (54.54%) contained AstV RdRp se‐
quences, for a total confirmed prevalence of 18/147 (12.24%).The 
presence of AstV in bats was first reported in 2008 (Chu et al., 2008), 
and it has been subsequently confirmed in various investigations 

F I G U R E  2   Phylogenetic tree based on a 333 nucleotide (nt) fragment of ORF1b (RdRp) of astrovirus detected in the present study or 
retrieved from the GenBank database. Bayesian evolutionary analyses were carried out using four “chains” run over one million generations 
(with the first 2,000 trees discarded as burn‐in) with the generalized time‐reversible (GTR), gamma variation model and supplying statistical 
support with subsampling over 200 replicates. Posterior probability values >95 are reported on the tree branches. The scale bar indicates 
the number of nt substitutions per site. Black circles indicate the AstV sequences detected in this study
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in Europe and Asia (Drexler et al., 2011; Fischer et al., 2016, 2017; 
Kemenesi et al., 2014; Zhu et al., 2009). The RT‐PCR prevalence 
(22.45%) observed in our study was higher than that observed in 
Hungary (6.94%) (Kemenesi et al., 2014) and similar to that found 
in Germany (25.8%; Fischer et al., 2016). Studies in China identified 
AstV in 46% of the tested bats (Chu et al., 2008; Xiao et al., 2011). 
The prevalence was also found to greatly vary by bat species (Fischer 
et al., 2017). As an example, a study carried out in China revealed 
the presence of Astrovirus in 83.3% of the samples of Myotis pylosus 
analysed, whilst the prevalence was found much lower for other spe‐
cies (Chu et al., 2008). To detect and characterize the AstV strains, 
we amplified and sequenced a fragment of 422 bp of the RdRp gene, 
which represents the most conserved region of the AstV genome. 
Upon sequence analysis, we observed a remarkable genetic diver‐
sity among the various bat AstV strains detected in Italy. Such a 
high degree of variation was observed also within species and in the 
same geographic area or colony. These findings do not confirm the 
bat species specificity of AstV, proposed by other authors (Fischer 
et al., 2016). Intriguingly, two AstV strains were virtually identical 
(100% nt) to each other in the fragment of the RdRp region, but they 
were identified from two different bat species, M. schreibersii and 
M. capaccinii.

So far, AstVs in bats have been searched for and identified in 
Asia, Africa and in some European countries (Germany, Czech 
Republic and Hungary; Fischer et al., 2016; Kemenesi et al., 2014). 
Our study extended the available information in terms of geographic 
distribution and also of bat species harbouring AstVs, as we could 
identify AstV in four novel bat species (B. barbastellus, M. capaccinii, 
P. kuhlii, M. emarginatus).

Astrovirus infection is associated with gastro‐enteritis in most 
animal species, and humans AstVs are regarded as a common cause 
of viral diarrhoea in children (Mendez, Aguirre‐Crespo, Zavala, & 
Arias, 2007; Xiao et al., 2017). Avian AstVs have also been associated 
with extra‐intestinal diseases, such as nephritis in chicken (Imada 
et al., 2000) and hepatitis in ducks (Todd et al., 2009). Recently, 
AstVs have been also detected in the nervous tissues of minks with 
shaking disease (Blomstrom, Widen, Hammer, Belak, & Berg, 2010) 
and of bovines with neurological disorders (Bouzalas et al., 2014; Li 
et al., 2013). Neurological disease in immunocompromised human 
patients has been associated with AstV infection (Brown et al., 2015; 
Fremond et al., 2015; Lum et al., 2016; Quan et al., 2010). In our re‐
search, all the animals positive to AstV appeared healthy, as also re‐
ported in previous studies in bats (Fischer et al., 2017). Astroviruses 
could therefore simply be nonpathogenic members of the bat vi‐
rome. However, more information is needed on bat‐borne immune 
response to state whether these viruses are really nonpathogenic 
for bats.

Bats could play an important role in transmitting such viruses 
to humans, as AstV transmission usually follows an oral‐faecal 
route. Contamination of food or drinking water could for exam‐
ple occur by bat droppings. On this regard, it is however import‐
ant to underline that the probability that human ingest food and 
water contaminated by AstV coming from human faeces looks 

much higher—see, for instance, the high percentage (28.70%) of 
human AstVs recently found in mussels harvested in the Gulf of 
Naples, Italy (Fusco et al., 2017). Interspecies transmission of 
AstV has been documented on more occasions (De Battisti et al., 
2012; De Benedictis, Schultz‐Cherry, Burnham, & Cattoli, 2011; 
Mihalov‐Kovacs et al., 2017; Nagai et al., 2015). Also, novel human 
AstVs (MLB1, MLB2, VA1, HMO‐C, HMO‐B, HMO‐A, VA‐2) have 
been identified that are genetically unrelated to “classical” human 
AstVs (Banyai, Meleg, Moschidou, & Martella, 2010; Finkbeiner, 
Holtz, et al., 2009; Finkbeiner, Le, Holtz, Storch, & Wang, 2009; 
Finkbeiner, Li, et al., 2009; Kapoor et al., 2009) and closer to an‐
imal AstVs. The origin of animal‐like human AstVs has not been 
deciphered yet.

The potential zoonotic risks associated with bats have attracted 
the attention of researchers, mostly after the discovery of SARS‐like 
and MERS‐like CoVs (two coronaviruses highly pathogenic for hu‐
mans) in European bat species, although the zoonotic risks posed 
by bat viruses, likely very limited, should be assessed more properly 
(Kohl & Kurth, 2014), in large structured studies.
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