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Purpose: Inflammatory bowel disease (IBD) is difficult to diagnose and classify. The 
purpose of this study is to establish an artificial intelligence model based on fecal multi- 
omics data for multi-classification diagnosis of IBD and its subtypes.
Materials and Methods: A total of 299 clinical cohort studies were included in this study, 
including 86 healthy people, 140 CD patients and 73 UC patients. Based on the idea of 
hierarchical modeling for different groups, we model the total population and the groups with 
self-evaluation of “very well” and “slightly below par”, respectively. The original total 
features were fecal multi-omics data, including metagenomics, metatranscriptomics, proteo
mics, metabolomics, viromics, faecal calprotectin. The importance, collinearity and other 
feature engineering methods were used to evaluate the features. Finally, three individualized 
diagnosis models with less features and high accuracy were obtained.
Results: First, we screened 111 features to form the optimal feature set for the total 
population and established a three-classification individual diagnosis model with AUC of 
0.83, which can simultaneously diagnose health, CD and UC. Secondly, according to the 
hierarchical modeling of the total population, we established two models for population with 
different self-evaluation. For “very well” population, we screened 59 features and established 
a three-classification diagnostic model with AUC of 0.85. For the self-evaluation population 
with “slightly below par”, we finally included 22 features and established a three- 
classification diagnostic model with AUC of 0.84. Only metabolomics and metatranscrip
tomics features were included in the optimal feature sets.
Conclusion: This study provides a valuable method for high accuracy, noninvasive diag
nosis and subtype identification of IBD patients. Researchers can choose biomarkers in 
different models according to different self-evaluation of patients. Simple noninvasive 
fecal sampling can be used to detect metabolomics and metatranscriptomics data, thus 
replacing the tedious and painful clinical colonoscopy and biopsy procedures.
Keywords: inflammatory bowel diseases, artificial intelligence, multi-omics, noninvasive, 
precision medicine

Introduction
Inflammatory bowel disease (IBD) is a chronic and incurable disease with a high 
incidence rate, which seriously affects patients’ health and life span.1,2 IBD mainly 
includes Crohn’s disease (CD) and ulcerative colitis (UC).3 Intestinal tract is the largest 
immune organ in human body. The imbalance of host intestinal microenvironment is 
closely related to a variety of intestinal diseases.4 Therefore, the accurate diagnosis of IBD 
and its subtypes and other intestinal diseases is very important.
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At present, the clinical diagnosis of IBD and its sub
types are mostly invasive methods such as colonoscopy 
and pathological examination.5 Mossotto et al reported 
their support vector machine (SVM) model, which distin
guishes CD and UC with an accuracy of 0.833 in test data 
set (48 people), using only eight histological and endo
scopic features.6 In a study of identifying the severity of 
IBD, they use convolutional neural network model to 
distinguish mayo 0 vs mayo 1–3 with an AUC of 0.86 in 
3981 pictures of 114 UC patients. The AUC for distin
guishing mayo 0–1 vs mayo 2–3 was 0.98.7 The defect of 
invasive testing is that patients bear more pain, risk and 
cost. Using blood and stool samples for noninvasive detec
tion and artificial intelligence modeling analysis is 
expected to solve the diagnosis dilemma of IBD patients. 
Franzosa et al established a random forest model based on 
the multi-omics data of fecal samples for the diagnosis of 
CD, UC and control groups. When only 47 metabolite 
features were used, the accuracy of training set was 
63.87%, and that of independent test set was 76.9%. 
When 76 features (47 metabolite features + 29 microbial 
features) were used, the accuracy of training set was 
65.16%, and that of independent test set was 76.92%.8 

There is still room for improvement in the existing three 
classification diagnosis models for patients with nonIBD, 
CD and UC.

In this study, we established an artificial intelligence 
diagnosis model based on 6-dimensional multi-omics data 
of stool samples from nonIBD, CD and UC groups. In order 
to accurately stratify the target population, we implemented 
feature engineering and deep learning modeling for patients 
with different self-evaluation. The results showing that 
among the people who self-evaluated as “very well”, 59 
features were used to identify nonIBD, UC and CD, achiev
ing an AUC of 0.8503. Similarly, among people who self- 
evaluated as “slightly below par”, only 22 features were 
used to obtain an AUC of 0.8355. This study provides 
more non-invasive diagnostic technology for IBD patients 
with different self-evaluation status.

Data and Methods
We download all available data from the Inflammatory 
Bowel Disease Multi-omics Database (IBDMDB) data
base portal at http://ibdmdb.org/protocols provided by 
Lloyd-Price et al.4 The available data includes of micro
bial metagenomics, metatranscriptomics, metabolomics, 
proteomics, viromics and host faecal calprotectin 
obtained from stool, 16S rRNA gene sequencing and 

host transcriptomes obtained from colon biopsy tissues, 
and serological profiles obtained from blood samples. 
Due to the lack of data at a large number of sampling 
time points, we comprehensively considered the maxi
mum number of samples and omics that can be included 
in the analysis. A total of 6 omics were included in the 
analysis process, including microbial metagenomics, 
metatranscriptomics, metabolomics, proteomics, viro
mics and host faecal calprotectin.

Data preprocessing uses Python (v.3.8). The process 
includes removing features with a missing rate higher than 
5%, then filling in missing values with min/2 of each 
feature. Then the z-score standardization (0–1 standardiza
tion) method is performed to make the data obey the 
N (0,1) distribution.

Feature engineering dimensionality reduction includes 
two aspects: the importance of features and the collinearity 
between features. Feature importance selection uses recur
sive feature elimination cross validation (RFECV) to elim
inate low importance. First, we choose a linear model to 
calculate all feature coefficients, then make a loop to elim
inate zero importance features until the decrease in the 
number of features threatens the accuracy of prediction. 
This method is provided in RFECV function which is in 
the scikit-learn library in Python. The screening of high 
collinearity features uses the “identify_collinear” function 
of the Feature Selector to calculate the correlation coefficient 
between the features. We set the threshold at 0.9 and remove 
the features whose correlation is greater than 0.9. The 
machine learning models we use include linear model and 
nonlinear model. Among them, the linear model uses linear 
support vector machine, and the nonlinear model includes 
AdaBoost, random forest and multilayer perceptron. Among 
them, linear support vector machine, random forest, 
AdaBoost use the function of scikit learn module of python, 
multilayer perceptron, and python module of Python. In the 
above four models, we use default parameters for the first 
three models; for multilayer, we use the default parameters 
Perceptron, we use a feedforward neural network composed 
of eight hidden layers and one output layer.

Results and Discussion
All samples of 6 omics sampled at the same time are included 
in the first model. The feature engineering process of this 
model included a total of 144 samples (69 people). 144 
samples were randomly divided into training set (100 sam
ples) and test set (44 samples) at a ratio of 3:1, then the 
training set is divided into training set (75 samples) and 
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validation set (25 samples) at the ratio of 4:1. First, we input 
all features into feature engineering screening. All features 
are filtered by RFECV three times with steps of 0.01, 3, and 
1, respectively. The “cumulative importance” threshold is set 
to 1, and all features with a contribution degree of 0 are 
removed to obtain 355 features (Figure 1A). Then, we filter 
355 features through collinearity, delete all features with 
collinearity higher than 0.9, leaving 111 features (Figure 
1B). Through these two screening steps, we successfully 
filtered out the non-redundant features that are most impor
tant for subtype identification. The remaining noise features 
do not participate in the final model prediction. 111 features, 
which consists of 96 metabolites and 15 metatranscripts 
(Figure 1C). We use these 111 features to test in all datasets. 
No cross-validation is used between the training set, valida
tion set, and test set. The testB contains 155 samples (76 per
sons), of which the number of samples is nonIBD: UC: CD 
=38:41:76 (number of people=18:20:38). In conclusion, the 
model included a total of 299 samples for prediction, of 
which the ratio of nonIBD: UC: CD samples was 
86:73:140 (number of people=26:28:46) (Supplementary 
Figure s1A).

In order to further examine the superiority of the fea
tures after dimensionality reduction, we compare the pre
diction performance of the optimal 111 features 
(Accuracy=0.6683; AUC=0.8280) (Figure 1D–F, 
Supplementary Figure s1B-E) with the same number of 
random 111 features (Accuracy=0.5678; AUC=0.7314) 
(Figure 1G–I) and all features (Accuracy=0.5779; 
AUC=0.6885) (Figure 1J–L) without dimensionality 
reduction. It turns out that even though the number of 
original features without dimensionality reduction far 
exceeds 111, the prediction performance of the model is 
far lower than the optimal 111 features. This phenomenon 
shows that the original features contain a lot of noise, 
which interferes with or even misleads the prediction of 
the model. The predictability of 111 random features is 
also far lower than the optimal 111 features.

To improve the modeling results (including 1. reducing 
the number of features and 2. improving the accuracy of 
prediction), we stratified the samples based on self- 
evaluation of IBD patients. We discarded the “poor”, 
“very poor”, and “terrible” groups with too few samples. 
By evaluating the maximum number of omics and the 
number of samples that can be included, we finally 
included 6 omics and established two stratified models 
for people who self-evaluated as “very well” and “slightly 
below par” (Supplementary Table s1). From 

a demographic point of view, there is little difference 
between the “very well” and “slightly below par” popula
tions in terms of gender and diagnosis ratio. We evaluated 
11 indicators, including “Anal fissure”, “Abscess”, 
“Abdominal pain”, “Number of liquid or very soft stools 
in the past 24 hours”, “Arthralgia”, “hbi”, “Arthralgias”, 
“Bowel frequency during the day”, “Urgency of defeca
tion”, “Blood in the stool”, “sccai”. Basically, all indica
tors show that the symptoms of people who self-evaluate 
as “very well” are milder and more stable than those of 
people who are “slightly below par”.

We adopt a method of stratifying samples based on the 
self-evaluation of patients, and determine their disease 
activity through the evaluation of syndromes during the 
sampling period, thereby subdividing the confounding data 
into 2 layers. The two layers of samples can cover 90.97% 
of the overall sample, which is enough to represent the 
mixed sample itself. We can tell that people who self- 
evaluate as “slightly below par” have significantly more 
active disease statues than those who self-evaluate as 
“very well” (Supplementary Table s1). Therefore, the bio
markers obtained by hierarchical modeling are more in 
line with the features of the samples contained in the 
specific layer, the noise features are filtered and deleted, 
so it is possible to obtain better prediction results with 
fewer features.

Among the people whose self-evaluation is “very 
well”, the second model predicts a total of 207 samples 
(83 people), and the nonIBD: UC: CD sample ratio is 
86:39:82 (26:19:38 people) (Supplementary Figure s2A). 
Among them, the data set participating in the feature 
engineering dimensionality reduction includes 107 sam
ples. The test set (33 samples) is obtained according to 
the ratio of 3:1, and the remaining samples are divided into 
training set (55 samples) and validation set (19 samples) at 
a ratio of 4:1. No cross-validation is used between the 
training set, validation set, and test set. The testB contains 
100 samples (59 persons), of which the number of samples 
is nonIBD: UC: CD =38:18:44 (number of peo
ple=18:14:27). Similar to model 1, we use all features as 
input for feature engineering screening. All features are 
first screened by RFECV twice, with steps of 0.03 and 4, 
respectively. We set the “cumulative importance” thresh
old to 0.999, and remove the low-contribution features to 
obtain 164 features. TThen, we filter 164 features through 
collinearity, and delete all features with collinearity higher 
than 0.9, leaving 64 features (Figure 2B). Finally, the step 
is adjusted to 5, the RFECV screening is performed again 
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Figure 1 Key information and results of model 1 modeling. 
Notes: In the importance screening process, the cumulative importance scores of the features obtained in the third importance screening (left) and the 20 features with the highest 
importance scores (right) (A). The correlation between 111 features obtained through collinearity screening, 111 features including 15 metatranscripts and 96 metabolites (B). The 
expression of 111 features in 299 samples. The samples are arranged in the order of nonIBD, UC and CD. The distance between features is calculated using Canberra distance, and the 
clustering method uses complete linkage (C). Using the optimal 111 features modeling, the accuracy and the loss value of the training dataset in 300 epochs (D). The confusion matrix of 
the optimal 111 features (E). The AUC score of the optimal 111 features (F). Using the random 111 features modeling, the accuracy and the loss value of the training dataset in 300 
epochs (G). The confusion matrix of the random 111 features (H). The AUC score of the random 111 features (I). Using the all features modeling, the accuracy and the loss value of the 
training dataset in 300 epochs (J). The confusion matrix of the all features (K). The AUC score of the all features (L).
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Figure 2 Key information and results of model 2 modeling. 
Notes: In the importance screening process, the cumulative importance scores of the features obtained in the third importance screening (left) and the 20 features with the highest 
importance scores (right) (A). The correlation between 59 features obtained through collinearity screening, 59 features including 5 metatranscripts and 54 metabolites (B). The 
expression of 59 features in 207 samples. The samples are arranged in the order of nonIBD, UC and CD. The distance between features is calculated using Canberra distance, and 
the clustering method uses complete linkage (C). Using the optimal 59 features modeling, the accuracy and the loss value of the training dataset in 300 epochs (D). The confusion 
matrix of the optimal 59 features (E). The AUC score of the optimal 59 features (F). Using the random 59 features modeling, the accuracy and the loss value of the training dataset in 
300 epochs (G). The confusion matrix of the random 59 features (H). The AUC score of the random 59 features (I). Using the all features modeling, the accuracy and the loss value 
of the training dataset in 300 epochs (J). The confusion matrix of the all features (K). The AUC score of the all features (L).
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to obtain 59 final features (Figure 2A). The 59 features 
include 5 metatranscripts and 54 metabolites (Figure 2C), 
and they participate in the construction of predictive mod
els. We found that hierarchical modeling not only greatly 
reduces the number of features, but also achieves better 
prediction performance, especially AUC.

The optimal 59 features obtained by modeling after 
stratification are reduced by almost 1/2 compared with 
the optimal 111 features before stratification. Once more, 
we compare the perform predictive performance of the 
optimal 59 features (Accuracy=0.7068; AUC=0.8503) 
(Figure 2D–F, Supplementary Figure s2B-E) with the 
same number of random 59 features (Accuracy=0.5263; 
AUC=0.6895) (Figure 2G–I) and all the features without 
dimension reduction (Accuracy=0.5489; AUC=0.6292) 
(Figure 2J–L). The results show that while greatly redu
cing the number of features, the optimal 59 features not 
only have better prediction effects than the original fea
tures without dimensionality reduction, but also better than 
the optimal 111 features obtained by the unhierarchical 
model (Accuracy=0.6683; AUC =0.8280) (Figure 1D–F). 
The prediction performance of random 59 features is the 
worst.

Among the people whose self-evaluation was “slightly 
below par”, the third model predicted a total of 151 sam
ples (69 people), and the ratio of nonIBD: UC: CD sam
ples was 86:29:36 (26:17:26 people) (Supplementary 
Figure s3A). The data set participating in the feature 
engineering dimensionality reduction includes 77 samples 
(45 people). The data set is split in exactly the same way 
as the above two models to obtain a training set (39 
samples), a validation set (14 samples) and Test set (24 
samples). Again, this model does not use cross-validation. 
The testB contains 74 samples (46 persons), of which the 
number of samples is nonIBD: UC: CD = 38:18:18 (num
ber of people= 20:9:14). In model 3, all features are 
filtered by RFECV only once, with a step of 0.66. We set 
the “cumulative importance” threshold to 1, and remove 
features with 0 contribution (Figure 3A). After that, we 
deleted all the features with collinearity higher than 0.9, 
leaving 22 features (Figure 3B), including 3 metatran
scripts and 19 metabolites (Figure 3C), and they jointly 
participated in the construction of the prediction model. 
Again, we used fewer features to build a better prediction 
model than the unhierarchical model, and the model accu
racy is the best among the three models.

Based on the optimal 22 features obtained by modeling 
all samples of IBD patients whose self-evaluation was 

a little worse (slightly below par), the best accuracy rate 
among the three models was obtained. Similarly, we com
pare the optimal 22 features (Accuracy=0.7245; 
AUC=0.8355) (Figure 3D–F, Supplementary Figure s3B- 
E) with the same number of random 22 
(Accuracy=0.4592; AUC=0.5866) (Figure 3G–I) features 
and all features without dimensionality reduction 
(Accuracy=0.5306; AUC= 0.6148) (Figure 3J–L). The 
optimal prediction result achieved by stratifying the over
all sample according to the specific label verifies for 
the second time that the hierarchical modeling method is 
feasible and superior. In this model, the accuracy rate and 
AUC are also improved while the number of features is 
greatly reduced.

The modeling results prove the superiority of the sam
ple layered modeling method. As expected, compared with 
the mixed sample (model 1), the sample stratification 
method uses fewer features to obtain a better prediction 
effect. We used only 59 features to obtain an AUC of 
0.8503 in the test set of the self-evaluated “very well” 
population (model 2), and use only 22 features to get an 
AUC of 0.8355 in the test set of the self-evaluated 
“slightly below par” population (model 3). Franzosa et al 
did the similar work,8 whose research uses random forest 
classifiers to classify nonIBD, UC and CD. The accuracy 
of the training set is 65.16% (155 samples), and the accu
racy of the verification set is 76.92% (65 samples). The 
random forest method was tested on 111/59/22 features 
obtained from the three models constructed in this study, 
and the prediction accuracy rates of 69.35%, 64.66% and 
64.29% were obtained, respectively (Supplementary 
Figure s4A-C). Using the same biomarkers in the three 
models, the prediction accuracy obtained by the random 
forest classifier is lower than the result obtained by the 
artificial neural network.

Among 111 features, a metatranscript named 
Methylenetetrahydrofolate reductase (1.5.1.20: 
Methylenetetrahydrofolate reductase (NAD(P)H)) is poten
tially related to IBD. Its mutant 677T leads to the accumulation 
of homocysteine, which may increase the risk of thrombosis in 
patients with IBD.9 Peptide deformylase (3.5.1.88: Peptide 
deformylase|g__Parabacteroides.s__Parabacteroides_merdae) 
is a class of metalloenzyme responsible for catalyzing the 
removal of the N-formyl group from N-terminal methionine 
after translation.10 It plays a key role in the process of bacterial 
synthesis of protein, but it is not necessary for normal human 
cells to synthesize protein. Therefore, PDF is one of the few 
antibacterial targets.11 Its relationship with IBD requires 
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Figure 3 Key information and results of model 3 modeling. 
Notes: In the importance screening process, the cumulative importance scores of the features obtained in the importance screening (left) and the 20 features with the highest 
importance scores (right) (A). The correlation between 22 features obtained through collinearity screening, 22 features including 3 metatranscripts and 19 metabolites (B). The 
expression of 22 features in 151 samples. The samples are arranged in the order of nonIBD, UC and CD. The distance between features is calculated using Canberra distance, and 
the clustering method uses complete linkage (C). Using the optimal 22 features modeling, the accuracy and the loss value of the training dataset in 300 epochs (D). The confusion 
matrix of the optimal 22 features (E). The AUC score of the optimal 22 features (F). Using the random 22 features modeling, the accuracy and the loss value of the training dataset in 
300 epochs (G). The confusion matrix of the random 22 features (H). The AUC score of the random 22 features (I). Using the all features modeling, the accuracy and the loss value 
of the training dataset in 300 epochs (J). The confusion matrix of the all features (K). The AUC score of the all features (L).
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further experiments to analyze. In order to further explore the 
potential link between biomarkers in nonIBD, UC and CD, we 
used Wilcoxon rank-sum test to perform a difference analysis 
(Supplementary Table s2-4). 1-deoxy-d-xylulose-5-phosphate 
reductoisomerase (1.1.1.267: 1-deoxy-D-xylulose-5-phos
phate reductoisomerase|g__Parabacteroides.s__Parabacteroid 
es_distasonis) is the second key rate-limiting enzyme in the 
2-C-methyl-d-erythritol-4-phosphate (MEP) pathway. The 
MEP pathway is an essential pathway for pathogenic micro
organisms to synthesize terpenoids. Therefore, it is also used as 
an important target for screening antibiotics.12,13 We found that 
UC (log2FC=1.52, p=0.0006) and CD (log2FC=0.7703, 
p=0.4311) had an up-regulation trend relative to nonIBD, but 
the expression level of CD (log2FC=−0.7497, p =0.0021) was 
significantly suppressed compared to UC, this phenomenon 
implies that there are different degrees of intestinal flora MEP 
pathway metabolic disorders in both UC and CD, which affect 
the normal physiological functions of intestinal flora. 
Abnormal fumarate hydratase (FH) (4.2.1.2: Fumarate hydra
tase|g__Faecalibacterium.s__Faecalibacterium_prausnitzii) 
can lead to cancer, metabolic dysregulation is not only 
a consequence of oncogenic transformation but that it can be 
a driving factor for cancer. The results of difference analysis 
showed that the FH expression of CD was significantly down- 
regulated relative to UC (log2FC=−1.0173, p =0.0007) and 
nonIBD (log2FC=−0.4424, p =0.0104), while UC 
(log2FC=0.5749, p =0.2580) had a slight up-regulated trend 
relative to nonIBD. FAD synthetase (2.7.7.2: FAD synthetase| 
g__Clostridium.s__Clostridium_leptum) is responsible for the 
synthesis of FAD. FAD participates in the key metabolic 
processes of organisms.14 The lack of FAD in intestinal bac
teria will cause the lack of FAD in the host’s intestinal cells and 
the reduction of related enzyme functions. FAD participates in 
the execution of many functions.15 FAD is the strongest free 
radical scavenger, and glutathione (GSH) constitutes the most 
important antioxidant barrier for cells. FAD can also convert 
homocysteine into S- adenosyl methionine (SAM), thereby 
avoiding the accumulation of homocysteine. The disorder of 
FAD may lead to decreased mitochondrial function of the 
patient’s intestinal cells, and decreased repair ability after 
DNA damage. The massive death of intestinal cells is related 
to the formation of local intestinal ulcers and inflammation. 
Compared with the nonIBD group, the FAD enzymes in the 
UC (log2FC=−1.6483, p =0.0841) and CD groups were 
greatly reduced, especially CD (log2FC=−0.6701, 
p =0.0035), suggesting a more serious intestinal metabolic 
disorder and damage to the intestinal barrier in CD. Among 
the 59 features obtained in model 2, 4 of the 5 metatranscripts 

included are significantly different between the groups. Studies 
have shown that partial inhibition of DNA synthesis stimulates 
the production of inorganic diphosphatase.16 Notably, consis
tent with previous research results, we found that, compared 
with nonIBD, in UC and CD, the significant down-regulation 
of DNA helicase (3.6.4.12: DNA helicase|g__Ruminococcus. 
s__Ruminococcus_lactaris) (log2FC=−0.5214, p=0.0198) 
(log2FC=−0.4085, p=0.0410) is accompanied by significant 
up-regulation of inorganic diphosphatase (3.6.1.1: Inorganic 
diphosphatase|g__Lachnospiraceae_noname.s__Lachnosp 
iraceae_bacterium_7_1_58FAA) (log2FC=3.7212, p=0.0665) 
(log2FC=1.8134, p=0.0143). The potential connection 
between this phenomenon and IBD deserves further investiga
tion. Phosphoenolpyruvate carboxykinase (PC) (4.1.1.49: 
Phosphoenolpyruvate carboxykinase (ATP)|g__Odoribacter. 
s__Odoribacter_splanchnicus) regulate metabolic adaptation 
and achieve glucose-independent tumor growth,17 which 
expression level was significantly up-regulated in CD relative 
to nonIBD (log2FC=0.7869, p=0.5727) and UC 
(log2FC=1.8889, p=0.0007). In contrast, PC was significantly 
down-regulated in UC (log2FC=−1.1021, p=0.0008) com
pared to nonIBD. This situation may imply that the protection 
mechanism of UC plays a certain compensatory function.

When we look for markers that are significantly differ
ent among the three groups of nonIBD, UC and CD, it is 
interesting that they are basically metabolites 
(Supplementary Table s2-4). The most significant differ
ences are all unknown compounds, emphasizing the need 
for further compound annotation efforts and follow up to 
determine the significance of these compounds in IBD.4 

We provide a wealth of candidate information for follow- 
up research and development, including m/z and retention 
time (RT) information (Supplementary Table s5). Among 
111 features. Features with the greatest differences 
included C18n_QI6575 (m/z = 386.2704, RT = 15.34 
min), and a feature named HILn_QI3222 with an m/z of 
460.2348 and RT of 6.59 min. Compared with nonIBD, 
C18n_QI6575 (log2FC=12.963, p=3.15E-22) 
(log2FC=11.6072, p=2.08E-11) and HILn_QI3222 
(log2FC=8.9885, p=8.43E-19) (log2FC=8.2486, p=2.60E- 
06) were significantly up-regulated in UC and CD, and 
relative to UC, the expression in CD was both down- 
regulated (log2FC=−1.3558, p=3.94E-08) (log2FC= 
−0.7399, p=4.60E-07). Among the 59 features obtained 
by model 2, C18n_QI382 (m/z = 123.0076, RT = 1.58 
min), which has the largest difference, and C18n_QI3056 
(m/z = 273.0519, RT = 0.75 min), which has the largest 
difference obtained by model 3, showed surprising 
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similarity to the expression patterns of the two markers 
with the largest difference among 111 features. The fea
tures with the largest difference overall showed 
a significant increase in UC (log2FC=3.9564, p=4.84E- 
11) (log2FC=7.8504, p=3.32E-10) and CD 
(log2FC=2.8606, p=5.50E-12) (log2FC=7.2542, 
p=0.0002), while the upregulation of CD was inhibited 
(log2FC=−1.0958, p=0.0009) (log2FC=−0.5963, 
p=0.0100). This phenomenon implies that metabolic phy
siology is disturbed in UC and CD, and it is likely that 
there is a certain compensatory mechanism in CD, which 
can suppress this disorder to a certain extent.

The artificial intelligence model we developed for the 
diagnosis and subtype identification of IBD is applicable. 
Firstly, according to the universal approximation theorem, 
the artificial neural network can approach the target func
tion infinitely.18 Although the models are similar to 
a “black box”, we can still try to explain the mechanism 
of the interaction between features and models through the 
importance weight of features and the relative expression 
abundance between groups.

Secondly, from the perspective of application, our 
model possess important clinical application value. First, 
the patient’s stool samples could be collected for metabo
lome and metatranscriptome testing. We can obtain the 
individual expression profile of 3 different optimal bio
marker combination, including the abundance of bacterial 
transcripts and the metabolite-related information such as 
mass charge ratio (m/z) and retention time. According to 
the patients’ different self-evaluation status, we can chose 
the optimal model for further prediction. The method we 
developed is highly accurate and non-invasive. The dis
advantage is the high cost. In the future research, we can 
consider designing specific targeting primers to directly 
detect the metatranscription biomarkers included in the 
model. With the development of sequencing analysis tech
nology, the metabolites are annotated and standard pro
ducts can be targeted for detection, we can directly target 
metabolites (instead of omics) to further reduce costs. 
Based on the above considerations, our method can 
directly detect the biomarkers to be tested in stool samples 
for the diagnosis and subtype identification of IBD, instead 
of the complicated and painful clinical colonoscopy and 
biopsy process.

In summary, we used a stratified method to improve the 
artificial intelligence modeling accuracy of IBD and its 
subtypes. We screened out the most important features 

from the 6 omics, which are all directly derived from 
stool samples and directly related to the state of the intes
tine. Interestingly, the biomarkers screened by the three 
models only include metabolites and metatranscripts at the 
same time, indicating that IBD subtypes are most closely 
related to these two omics. Through the characteristics of 
the metatranscriptome, we can also trace back to which 
bacteria the metatranscript came from, which may reveal 
the potential connection between the host and its gut 
microbes, which can provide great value for subsequent 
research. In addition, the number of people with poor self- 
evaluation in this model is too small (including “poor”, 
“very poor” and “terrible”), and the sample we model does 
not cover this part of the population. Moreover, the accu
racy of model 1 obtained by artificial neural network 
modeling is not high enough, and no other classifiers are 
used for modeling. Finally, many of the biomarkers we 
obtained were unidentified, which requires further research 
to identify and sort these valuable metabolites.

Conclusion
In this study, we established artificial intelligence models 
by using non-invasive data for IBD diagnosis. Totally, we 
included expression profiles from 6 omics features. In 
order to accurately stratify the target population, we 
implemented feature engineering and deep learning mod
eling for patients with different self-evaluation. Using 
sample stratification modeling, we reduced the feature 
numbers and improved the diagnosis accuracy. The mod
els could include 90.97% total individuals. Compared to 
nonIBD group, many selected feature biomarkers are up- 
regulated in ulcerative colitis (UC) and Crohn’s disease 
(CD) patients, and their expression level were suppressed 
to a certain extent in CD compare to UC, which may 
imply the compensatory effect in CD group. 
Furthermore, the model constructed in this study can be 
applied to the clinic. According to the patients’ different 
self-evaluation statue, biomarkers in different models are 
selected for prediction. The method we developed can 
diagnose and subtype IBD with high accuracy and non- 
invasiveness only by collecting stool samples, instead of 
complicated and painful clinical colonoscopy and biopsy 
procedures.
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