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Abstract

Motivation

Copy number variations (CNV) include net gains or losses of part or whole chromosomal

regions. They differ from copy neutral loss of heterozygosity (cn-LOH) events which do not

induce any net change in the copy number and are often associated with uniparental dis-

omy. These phenomena have long been reported to be associated with diseases and partic-

ularly in cancer. Losses/gains of genomic regions are often correlated with lower/higher

gene expression. On the other hand, loss of heterozygosity (LOH) and cn-LOH are common

events in cancer and may be associated with the loss of a functional tumor suppressor

gene. Therefore, identifying recurrent CNV and cn-LOH events can be important as they

may highlight common biological components and give insights into the development or

mechanisms of a disease. However, no currently available tools allow a comprehensive

whole-genome visualization of recurrent CNVs and cn-LOH in groups of samples providing

absolute quantification of the aberrations leading to the loss of potentially important

information.

Results

To overcome these limitations, we developed aCNViewer (Absolute CNV Viewer), a visuali-

zation tool for absolute CNVs and cn-LOH across a group of samples. aCNViewer proposes

three graphical representations: dendrograms, bi-dimensional heatmaps showing chromo-

somal regions sharing similar abnormality patterns, and quantitative stacked histograms

facilitating the identification of recurrent absolute CNVs and cn-LOH. We illustrated aCN-

Viewer using publically available hepatocellular carcinomas (HCCs) Affymetrix SNP Array

data (Fig 1A). Regions 1q and 8q present a similar percentage of total gains but significantly
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Renault S-F, Letouzé E, Imbeaud S, et al. (2017)

aCNViewer: Comprehensive genome-wide

visualization of absolute copy number and copy

neutral variations. PLoS ONE 12(12): e0189334.

https://doi.org/10.1371/journal.pone.0189334

Editor: Michael Baudis, Universitat Zurich,

SWITZERLAND

Received: August 3, 2017

Accepted: November 23, 2017

Published: December 19, 2017

Copyright: © 2017 Renault et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The source code and

test data sets are available at https://github.com/

FJD-CEPH/aCNViewer.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0189334
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189334&domain=pdf&date_stamp=2017-12-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189334&domain=pdf&date_stamp=2017-12-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189334&domain=pdf&date_stamp=2017-12-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189334&domain=pdf&date_stamp=2017-12-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189334&domain=pdf&date_stamp=2017-12-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189334&domain=pdf&date_stamp=2017-12-19
https://doi.org/10.1371/journal.pone.0189334
http://creativecommons.org/licenses/by/4.0/
https://github.com/FJD-CEPH/aCNViewer
https://github.com/FJD-CEPH/aCNViewer


different copy number gain categories (p-value of 0.0103 with a Fisher exact test), validated

by another cohort of HCCs (p-value of 5.6e-7) (Fig 2B).

Availability and implementation

aCNViewer is implemented in python and R and is available with a GNU GPLv3 license on

GitHub https://github.com/FJD-CEPH/aCNViewer and Docker https://hub.docker.com/r/

fjdceph/acnviewer/.

Contact

aCNViewer@cephb.fr

Introduction

Human cancers can be characterized by different levels of genomic instability. Whole or sec-

tions of chromosomes can be recurrently rearranged, lost, or amplified. Such changes can

depend on either the type, the stage, or the grade of the tumors providing important clinical

and biological information [3–5]. These gains/losses of genomic regions can have effects rang-

ing from the simple gene dosage effect, where gains or losses are associated with a respectively

higher or lower gene expression [6–8], to effects on chromatin structure with potential long-

range effects on global expression [9]. In particular, LOH and cn-LOH events can be linked

with a loss of function via the loss of a tumor suppressor gene as exemplified by the classical

Knudson two-hit model [10,11]. These numerical or structural chromosomal abnormalities

have been intensively characterized for nearly 50 years by increasingly resolutive methods.

Earlier methods typically involved cytogenetics with (spectral) karyotyping [12]. This tech-

nique was succeeded by CGH [13] and SNP [14,15] arrays, and more recently next generation

sequencing (NGS) [16,17]. CGH arrays only allow the identification of relative copy number

variations [13] and many tools, such as CGHregions [18], CGHpro [19], have been developed

for that purpose. On the other hand, SNP-arrays and NGS are more precise and enable the

estimation of absolute copy number as well as copy neutral events. This became possible

through the use of different developed algorithms such as PICNIC [20], GAP [21], ASCAT

[22], OncoSNP [23], GPHMM [24], ExomeCNV [25], VarScan2 [26], ABSOLUTE [27] and

Sequenza [28]. Some of these tools [22,28] can also predict the average ploidy and/or the per-

centage of contamination of the tumor with constitutional DNA from normal cells. CGH

arrays produce log2 intensity ratios, LRR, between the samples of interest and a reference sam-

ple allowing the identification of regions with gains (LRR > 0) or losses (LRR < 0). From SNP

array and WGS/WES data though, it is possible to calculate LRR values along with B Allele Fre-

quencies (BAF) given by the formula: b / (a+b) with a and b being the intensities of the a and b

alleles respectively. The addition of BAF values to LRR values facilitates absolute copy number

estimates. Indeed, both ASCAT and Sequenza introduce C, the sample ploidy, and ρ, the per-

centage of tumor cells within the sample of interest along with na and nb, the number of copies

of alleles a and b in their respective models. ASCAT will use two equations (one for LRR and

one for BAF) expressed as functions of the unknowns, C, ρ, na and nb. By rearranging these

two equations, na and nb will then be expressed as functions of the LRR and BAF values, C,

and ρ. By iterating through a range of realistic values for C and ρ, different values of na and nb

are calculated along with a goodness-of-fit score in order to estimate na, nb, C, and ρ. Con-

versely, Sequenza uses a probabilistic model where the probability densities of LRR and BAF
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are modeled using a non-standardized Student’s t-distribution. Sequenza uses a maximum a

posteriori approach over a range of realistic values for C and ρ to first estimate C and ρ before

estimating na and nb. These algorithms treat each sample individually and display different

Fig 1. Quantitative stacked histograms using 96 HCC samples on Affymetrix 500K Human Mapping Array data from [1]. A) Frequency of CNV and

cn-LOH events along the genome. The left axis indicates the frequency of gains or losses among the 96 samples and the legend below indicates the number

of copy number gains or losses from the reference baseline. The black line indicates the frequency of cn-LOH along the genome in negative ordinates. B)

Frequency of homozygous/heterozygous CNVs along the genome. Copy-neutral events / gains and losses are respectively displayed in positive and

negative ordinates.

https://doi.org/10.1371/journal.pone.0189334.g001
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output files which show copy number or copy neutral variations and tumor ploidy and/or the

percentage of tumoral DNA in the samples. However, they do not provide a genome-wide

visualization of the different chromosomal aberrations for groups of samples; this would facili-

tate the identification of recurrent events. Other tools have been developed for the visualiza-

tions of CNVs of different samples simultaneously in one figure. These either use CGH array

data such as in ChARMView [29], or SNP array or/and NGS data such as in Circos [30],

YMAP [31], the extensively used Integrative Genomics Viewer [32] and the commercially

available Nexus Copy NumberTM Software (Biodiscovery). However, these visualization tools

only represent the chromosomal aberrations in a relative manner. Only gains and high gains

or losses and high losses are indicated even when the algorithm used for the CNV analysis

gives absolute CNV results. Hence information is lost when using these tools. Furthermore,

some of them do not allow a representation of all the samples in one superimposed figure

where frequencies of the events can be visually identified [29] or they show only a chromo-

somal view instead of a whole genome view [32].

Here, we developed aCNViewer, a genome-wide visualization tool for the representation of

absolute copy number and copy neutral variations (chromosome losses and gains, LOH and cn-

LOH) of groups of samples. This includes a whole pipeline for processing raw SNP and whole

exome/genome paired (tumor/peritumoral) bam data. aCNViewer allows the easy identification

of recurrent events through three different graphical outputs: dendrograms, bi-dimensional

heatmaps, and stacked histograms. These represent a comprehensive visualization of copy num-

ber and copy neutral variations which might help the understanding of the underlying biology

of the tumors and identify potential candidate genes implicated in tumorigenesis.

Results & discussion

aCNViewer includes a whole pipeline for processing raw SNP and whole exome/genome paired

(tumor/peritumoral) bam data with ASCAT [22] and Sequenza [28] algorithms respectively

which allow the identification of absolute copy number and copy neutral variations for each

sample individually (Fig 3). The CNV data are converted into a matrix using a basic windowing

approach. The user specified window length gives the resolution used by aCNViewer to com-

pute dendrograms and bi-dimensional heatmaps. Additionally, from the CNV data, genomic

segments with associated sample names and copy number values are merged to obtain non-

overlapping segments containing the list of all samples sharing a related genomic position and

copy number value. The estimated ploidy for each sample is subtracted from the copy number

values of these resulting segments or, alternatively, from the entries of the matrix constructed

for dendrograms and heatmaps. Thus, a copy number of 0 means no copy number change.

These adjusted windows or the matrix of segments at base resolution (see section “Construction

of Ms, a matrix of segments at base resolution” below) are then plotted into a stacked histogram

representing genome-wide absolute copy number and copy neutral variations over all samples

in a group (Fig 1A). aCNViewer also outputs a record of recurrently aberrant regions with the

frequency of each event along with different statistics implemented in GISTIC [33].

In order to illustrate aCNViewer, we processed publically available Affymetrix 500K

Human Mapping Array data on 96 hepatocellular carcinomas (HCCs) [1] classified according

to Barcelona Clinic Liver Cancer (BCLC) staging and generated the graphical outputs using

Fig 2. Quantitative stacked histograms produced by aCNViewer showing the frequency of CNVs and cn-LOH along

the genome in HCCs. Quantitative stacked histograms generated using A) 96 freely available HCC Affymetrix 500K Human

Mapping Array data [1], B) 243 HCC WES experiments from [2] and C) 317 pooled HCCs from both SNP and WES

experiment data.

https://doi.org/10.1371/journal.pone.0189334.g002
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2Mb windows. The dendrogram allows the identification of two main groups of HCCs based

on CNVs. These did not cluster according to their BCLC staging (Fig 4A) nor other clinical or

molecular features available. In the bi-dimensional heatmap representation of CNVs, the abso-

lute CNVs (0–8 copies and>8) are shown in all HCC samples and reveal that the samples clus-

ter in two main groups according to their ploidy: 1) diploid and pseudo-diploid tumors and 2)

polyploid (mainly pseudo-tetraploid) tumors (Fig 4B). Finally, the stacked histogram (Fig 1A)

allowed the easy detection of recurrent CNVs and cn-LOH among HCCs. The zero baseline

indicates the “normal” copy number of the chromosomes, which is in most cases diploid but

can also be triploid, tetraploid or more. The use of a correct baseline is essential for the identifi-

cation of recurrent CNVs as exemplified in S1 Fig where one pseudo-diploid HCC sample and

one pseudo-tetraploid HCC sample harbored most of the shared chromosomal aberrations

Fig 3. Overview of the different steps handled by aCNViewer. aCNviewer can process Affymetrix and Illumina SNP arrays as well as NGS data. LRR

and BAF files are obtained after processing SNP raw data by PennCNV for Affymetrix and a threshold quantile normalization (tQN) for Illumina and

subsequent use of ASCAT for CNV and cn-LOH detection. For NGS data, paired tumoral and non-tumoral whole exome/genome sequencing bam data are

converted into seqz format and processed by Sequenza for CNV detection. aCNViewer converts CNV data into a CNV matrix with the window size defined

by the user and which is subsequently used to compute dendrograms and heatmaps. Quantitative stacked histograms can be generated using the same

matrix or a matrix of segments at base resolution (default behaviour). Text files are also available through GISTIC [33] providing a robust statistical way to

select recurrent CNVs.

https://doi.org/10.1371/journal.pone.0189334.g003
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(chr 1q gain, chr 8p loss, and chr 8q gain). Differences between the two tumors would not

have been revealed in the pseudo-tetraploid HCC sample if the ploidy baseline of both samples

were set by default to 2. All reported recurrent gains and losses listed in Fig 1 of [1] are also

found in our histogram (Fig 1A). Moreover, due to the representation of absolute CNVs, statis-

tically significant differences (p-value of 0.0103 with a Fisher exact test) between the two most

frequent CN gains can be found: region 1q presents a copy gain “� +4” for about 7% of the

samples compared to 25% of the samples for region 8q (Fig 1A). These results were confirmed

in another independent set of 243 HCC samples from WES experiments [2]. aCNViewer was

used to reproduce the differences in CN gains between regions 1q and 8q (S2B Fig, p-value of

5.6e-7 with a Fisher exact test). This suggests a possible biological implication of these quanti-

tative CNV differences in HCC and confirms the need of such a representation of CNV and

cn-LOH for a better understanding of the underlying biology of the disease (losses seem to be

more pronounced, though, in the histogram generated using the WES data (Fig 2B) compared

to the one from the SNP array data (Fig 2A). See Supplementary section “Comparison of the

quantitative stacked histograms between SNP array and WES data” in S1 File for more details).

By using CGHregions [18] on the Affymetrix data set [1], we confirmed that the global trend

of gains and losses are consistent with ASCAT results (S2 Fig) (some differences are notable

though and this is discussed in the supplementary section “Comparison of the quantitative

stacked histograms using SNP array data from [1] processed with ASCAT and CGHregions”

in S1 File). Finally, we merged HCC CNV data from Affymetrix 500K Human Mapping Array

and WES sequencing experiments processed with ASCAT and Sequenza respectively to obtain

a whole-genome visualization of recurrent CNV and cn-LOH events on a larger group of sam-

ples. Thus, we demonstrate the possibility by aCNViewer to generate a single graph based on

data from multiple experimental designs in order to gain more statistical power (Fig 2C). 1,237

samples from Hapmap3 on the Affy6 platform (ftp://ftp.ncbi.nlm.nih.gov/hapmap/raw_data/

hapmap3_affy6.0/) were processed using aCNViewer (S5 and S6 Figs). As expected, few recur-

rent copy number events were present.

aCNViewer has certain limitations including the fact that it does not currently account for

intra-tumor heterogeneity. Having a simultaneous view of the copy number landscape along

with the clonality status of these events could help to better understand the mechanisms of the

disease [34]. Another current limitation of aCNViewer is the absence of a function to compare

two groups of samples. One simple way to do that, though, would be to generate the quantita-

tive histograms for both groups separately and compare these plots as we did in Fig 2.

Design and implementation

aCNViewer relies on the absolute copy number and copy neutral variations obtained with

ASCAT and Sequenza which can respectively process SNP arrays and NGS data (Fig 3).

ASCAT and Sequenza results go into a basic windowing approach according to a user-defined

window length or chromosomal fraction. This determines the resolution of the representation,

generating a matrix of copy number or copy neutral events (Fig 3). This matrix (or alterna-

tively a matrix of relative copy number values obtained by subtracting the associated estimated

sample ploidy from each copy number value) is then used to compute firstly dendrograms for

the identification of samples sharing the same chromosomal aberrations (Fig 4A) and secondly

bi-dimensional heatmaps (Fig 4B) for the identification of chromosomal regions with similar

Fig 4. Hierarchical clustering of HCCs from [1] according to BCLC staging and based on CNVs. A) Dendrogram

representation. B) Bi-dimensional heatmap. A 2Mb window length is used for computation. The chromosomes of each

window are shown on the right and the BCLC staging of each tumor is given on top of the bi-dimensional heatmap.

https://doi.org/10.1371/journal.pone.0189334.g004
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abnormality patterns. Finally, using either the matrix of relative copy number values or a

matrix of segments at base resolution (see section “Construction of Ms, a matrix of segments at

base resolution” below), a quantitative stacked histogram is generated with absolute whole

genome copy number and copy neutral variation profiles showing the frequency of recurrent

events across all selected samples (Fig 1A). A similar histogram is generated with a whole

genome view of homozygous/heterozygous CNVs (Fig 1B). aCNViewer is implemented in

python for the pipelining steps and in R for the generation of dendrograms, heatmaps, and

stacked histograms and thus runs on all linux/unix platforms.

Let us define C = {CA(i)} as the list of copy number segments extracted from ASCAT /

Sequenza or any other CNV caller chosen by the user for all samples A and genomic positions

i. In some instances, CA(i) will be simply named C when the reference to a specific sample and

genomic position is unnecessary.

Generation of M, a matrix of copy number values

Each chromosome is divided into non-overlapping windows of a user-defined length, L, speci-

fied either in number of bases or percentage of chromosome length. For each window W and

for each sample A, all CNV data in that interval is retrieved and potential missing regions (for

SNP arrays, ASCAT may not give a CNV value between two sets of probes with distinct CNV

values and for NGS, Sequenza will not assign any value for uncovered regions) are inserted

into the CNV data with A’s sample ploidy, calculated as described in the section “Ploidy calcu-

lation” below, so that each base in W has a CNV value. The global CNV value of W for sample

A is then set to be the average of the CNV values within W rounded to the nearest integer.

There is one particular case: if W is overlapping with a centromeric region E, W becomes W—

E and if the new length of W< L/2, W is merged with its nearest contiguous window W’ in

order to obtain a window of comparable size to the others.

After this step, a matrix M of CNV values with samples as rows and windows as columns is

constructed and will be the basis for most of the subsequent plots.

Ploidy calculation. A matrix Mp of CNV values is constructed using a resolution of 10%

of the chromosome length and a default ploidy of 2 for “missing” CNV values (as the window

length is relatively large, the default ploidy will actually not have a great effect on the CNV

value of each window). From Mp, for each sample A, all the windows related to A and their

related CNV values, CA = {CA(i)} for all genomic positions i, are extracted. The ploidy of A is

set to be the most frequent CNV value in CA. If several values appear with the same frequency,

the ploidy is set to the average of these values. Our ploidy estimates had 95% concordance with

ASCAT tumor ploidy estimates rounded to an integer. In order to have a consistent way to

evaluate the sample ploidy for SNP arrays and WGS/WES data, our method is used by default.

It is, however, customizable and the user can choose to use ASCAT, Sequenza (set useCustom-
Ploidies to 1), or user-defined ploidies.

Generation of a matrix of relative copy number values. Copy number values are calcu-

lated by ASCAT or Sequenza if aCNViewer is used on SNP array or raw sequencing data.

Alternatively, they can be calculated from other tools as long as they are provided in the

ASCAT segment format (https://github.com/FJD-CEPH/aCNViewer#othercnvformats). By

default, these copy number values are used by aCNViewer to produce dendrograms and heat-

maps. Relative copy number values can also be used (set option useRelativeCopyNbForCluster-
ing to 1) to produce the same types of graphical representations. In this case, for each sample

A, the relative copy number values C’A are calculated using the following formula for all geno-

mic positions i: C’A(i) = CA(i)—pA where CA(i) is the copy number value for genomic position

i and sample A and pA is the estimated ploidy of sample A. Thus, C’A(i) is 0 when the copy
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number value is equal to pA and it is negative when the copy number value is lower than pA.

C’A (i) has a minimal value of -pA in the case where CA(i) is 0 but it has no upper limit. Thus a

respective copy number value of -3 and -4 is possible only for samples with pA� 3 and pA� 4

respectively. In order to keep the graphical representations readable, we limited the values of

C’A(i) so that -4� C’A(i)� 6. Using the matrix M, a matrix of relative copy number values M’

can be constructed using the definition of C’A(i).

Dendrograms

Using M or M’ as an input, R’s hclust function is used to generate dendrograms with the default

agglomeration method set to “ward.D”; though this setting can be changed by the user. The plot

of the dendrograms has been customized to show shaped colored leaves representing all the dif-

ferent groups each sample belongs to. aCNViewer can also generate a set of dendrograms for

each feature listed in a file with clinical information. This allows an easy visual inspection in

order to spot the main features correlated with the dendrogram structure (Table 1).

Heatmaps

Using M or M’ as an input, R’s heatmap.2 function in the gplots package is used in aCNViewer

with the default hierarchical clustering function set to hclust and the default agglomeration

method set to “ward.D” (both parameters are customizable by the user). Similarly to dendro-

grams, it is possible to generate one heatmap for each feature listed in a file with clinical infor-

mation (see option “sampleFile” in Table 1). The other options for bi-dimensional heatmap

include the possibility to cluster the chromosomal windows (S3A Fig) and the possibility to

use the absolute CNV data, the absolute CNV data relative to the estimated tumor ploidies

(S3B Fig), or relative to a standard ploidy of two (S3C Fig, Table 1).

Stacked histograms

Stacked histograms allow the representation and identification of recurrent CNV and cn-LOH

events along the genome in groups of samples while retaining the quantitative information

present in CNV data. This has never been performed before. Default stacked histograms will

be generated using the matrix of segments at base resolution Ms obtained from raw copy num-

ber data or alternatively M’.

Construction of Ms, a matrix of segments at base resolution. Let us define Ms = {KA(i)}

as the matrix of segments at base resolution for all samples A and genomic positions i. Ms will

be constructed from C simply by segmenting the genomic positions i so that they are all non-

overlapping. This is equivalent to having the windowing approach, described in section “Gen-

eration of M, a matrix of copy number values”, with the advantage of not having to fill in “the

blanks” for a given window. First, C is sorted by genomic position. Then, we iterate through C

in order to create the segments KA(i) as follows: first consider two consecutive copy number

segments CA(i) and CB(j) for respectively sample A at genomic position i and sample B at geno-

mic position j. Note that A equals B only if the genomic positions i and j are non-overlapping

(i.e. a CNV caller will produce non-overlapping CNV calls for any given sample). If A equals B

then we define KA(i) = CA(i) and KB(j) = CB(j). If i and j are overlapping (and thus A 6¼ B), we

have, at most, three sets of genomic positions to consider: i\j (the intersection of i and j), i-j

(the genomic position present in i but not in j) and j-i. We instantiate K for these genomic loca-

tions as follows: KA(i\j) = CA(i), KB(i\j) = CB(j), KB(j-i) = CB(j) and KA(i-j) = CA(i).

After going through all the segments in C, we obtain the matrix Ms of CNV values with

samples as rows and segments (with various lengths but all non-overlapping) as columns.
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Table 1. aCNViewer main options.

Category Option (default value) Description

General —plotAll (1) specify whether all available plots should be generated (values are 0 or 1)

—refBuild REF_BUILD the genome build used to generate the CNV segments (hg18 and hg19 are

currently supported. For custom build, please check the github website˚

-w WINDOW_SIZE (2000000) / -p PERCENT WINDOW_SIZE defines the window length in bp used to cut the genome in

order to generate a matrix of CNV events. Alternatively, PERCENT can be used

instead of WINDOW_SIZE in order to set the window size in percentage of

chromosome length where PERCENT is a floating number between 0 and 100.

-t TARGET_DIR set the path of the output folder

-b BIN_DIR set the path of the folder containing all required binaries. For a detailed

description of the structure, please refer to https://github.com/FJD-CEPH/

aCNViewer#binDir.

-f FILE_NAME Path to the CNV file in PennCNV/ASCAT format. Can also process Sequenza

results and in that case the following option—fileType Sequenza should be

added and FILE_NAME should point to the folder containing Sequenza results.

—ploidyFile FILE_NAME /—useCustomPloidies

USE_CUSTOM_PLOIDIES (1)

Can either be a tab-delimited file with at least 2 columns: "sample" and "ploidy"

or an integer, which will set the same ploidy to all samples. By default

(USE_CUSTOM_PLOIDIES is 1), the ploidy is calculated using the CNV file

grouped into windows of 10% of chromosomal length. The ploidy is then set to

be the most represented CNV value for each sample. It is possible to use

ASCAT/Sequenza ploidies by leaving FILE_NAME to null and by setting

USE_CUSTOM_PLOIDIES to 0.

—runGISTIC (0) specify whether to run GISTIC in order to have a statistical way to prioritize

regions of interest (values are 0 or 1)

—smallMem SMALL_MEM (0) If small_mem is 1, GISTIC will run in small memory mode and will only require

about 10GB of RAM vs 50GB of RAM otherwise at the expense of a longer

running time.

—rColorFile FILE_NAME file* allowing to customize graph colors

—outputFormat FORMAT allow to customize output formats for the different types of available plots

(histograms, heatmaps and dendrograms). The default value is hist:png

(width = 4000,height = 1800,res = 300);hetHom:png(width = 4000,

height = 1800,res = 300);dend:png(width = 4000,height = 2200,res = 300);heat:

pdf(width = 10,height = 12). For more information, please refer to https://github.

com/FJD-CEPH/aCNViewer#outputFormat.

histogram —lohToPlot LOH_TO_PLOT (cn-LOH) Tell what values should be added to the histogram. Values should be one of "cn-

LOH" for plotting cn-LOH only, "LOH" for LOH only, "both" for cn-LOH and LOH

or "none" to disable this feature.

—useFullResolutionForHist (1) tell whether to plot histogram using full (base) resolution i.e. CNVs are not

grouped into windows according to a user-defined length. If 0, the resolution of

the plot will be given by either WINDOW_SIZE (option -w) or PERCENT (option

-p)

Heatmap —useRelativeCopyNbForClustering (0) indicate whether the CNV matrix used for the heatmap should be relative copy

number values or raw copy number

—keepGenomicPosForHistogram (0) if set to 1, the fragmented genome is kept in its original position and not cluster

windows according to sample CNV patterns

Heatmap/

dendrogram

—sampleFile SAMPLE_FILE a tab-delimited file that should contain a column named Sample with the name

of each sample and at least another column with the phenotypic/clinical feature.

This file can contain a sample alias, which will be used as the official sample id if

provided. This parameter can be used for dendrograms as well.

-G FEATURE_NAME refers to the name of the column of the phenotypic/clinical feature of interest in

SAMPLE_FILE if specified. If you omit this parameter, one plot per feature

defined in SAMPLE_FILE will be generated. This file can contain a sample alias,

which will be used as the official sample id if provided. This parameter can be

used for dendrograms as well.

* an example can be found at https://github.com/FJD-CEPH/aCNViewer/blob/master/img/rColor.txt

˚ for more information, please check the github website: https://github.com/FJD-CEPH/aCNViewer

https://doi.org/10.1371/journal.pone.0189334.t001
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Histogram creation. Ms (default value) or M’ is used as an input and for each segment S

(or window for M’) and for each copy number value C (ranging from -4 to +6), the percentage

of overall samples in S having the copy number value C can now be calculated. These percent-

ages in S for each copy number value C are then stacked and plotted according to the genomic

position of S in positive ordinates for gains and in negative ordinates for losses.

Cn-LOH/LOH calculation: ASCAT and Sequenza generate allele-specific CNVs and thus

allow the identifications of cn-LOH by considering only copy number events where one of the

two alleles has no copies and the other one has the same number of copies as the sample ploidy.

By considering only these events, we can generate the matrices cn-M’ and cn-Ms equivalent to

their counterparts M’ and Ms. For each event in cn-M’ or cn-Ms, the total percentage of sam-

ples having this event is calculated. The copy neutral variations are then plotted in the stacked

histograms as a black line indicating for each segment or window the percentage of samples

presenting the current cn-LOH in negative ordinates.

Stacked histograms options include the possibility to plot LOH represented as a blue line

indicating the percentage of samples presenting LOH in negative ordinates (see option “lohTo-
Plot” in Table 1, S4A Fig). The estimated sample ploidy is used by default (S4A Fig) or can be

adjusted using a user defined value (see option “ploidyFile” in Table 1, S4B Fig with a ploidy of

two for every sample).

The stacked histograms are also represented in text format with the list and percentage of

samples for each copy number value C allowing the user to easily identify samples of interest

(Fig 1A). GISTIC results with focal and broad copy number events with their associated statis-

tics are also available if the “runGISTIC” option has been enabled giving the user the choice of

the criteria for selecting potentially interesting events.

Heterozygous/homozygous CNVs. Similarly to the construction of cn-M’ and cn-Ms,

we can construct hH-M’ and hH-Ms by considering raw CNV data as segments with the

following features: sample name, gain, no net change of copy number or loss and a status

indicating whether the segment is heterozygous (both alleles have non null copy number

values) or homozygous (at least one the alleles has a null copy number value). By adding for

each event in hH-M’ or hH-Ms the percentage of samples presenting the event, a stacked histo-

gram can be plotted with either gains or no net change of ploidy (the copy number value is

equal to the sample ploidy) represented in positive ordinates and losses in negative ordinates

(Fig 1B).

Output files and options

For each processed sample, all the output files produced by ASCAT and Sequenza are fully

available and listed in Table A in S1 File. The resulting CNV data are then used as an input

data in aCNViewer. The user may manually exclude samples from the analysis if desired (see

options “sampleToExcludeList” and “sampleToProcessList” in Table 1) and the automated

ploidy estimation of each sample can also be modified at the user’s convenience (see “ploidy-

File” option in Table 1). The user can define different groups of samples according to any char-

acteristics (age groups, gender, tumor stage, etc.) to be processed by aCNViewer (see

“sampleFile” option in Table 1).

aCNViewer allows three types of high quality graphical outputs suitable for publication:

dendrograms, bi-dimensional heatmaps, and stacked histograms in jpg/png/tiff/bmp/pdf for-

mat whose resolution is defined by the user (see “outputFormat” option in Table 1). The colors

used in the graphs are set by default but are totally customisable (see option “rColorFile” in

Table 1). Moreover, it also produces text format files allowing the easy identification of samples

with recurrent CNV events using GISTIC [33].
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Availability and future directions

Following the accelerating global trend towards precision medicine, there is an increased

need for evermore precise tools to help physicians gain insights from the rapidly accumulating

available data. Having access to clear and precise pictures summarizing CNVs and cn-LOH

genome-wide could help to achieve more comprehensive interpretations. We have shown

that aCNViewer can help identifying rapidly recurrent CNVs in datasets from Affymetrix

SNP arrays as well as WES/WGS data. The application and source code are available as open

source on GitHub and Docker and a demo can be found at https://github.com/FJD-CEPH/

aCNViewer. Future developments of aCNViewer include the adaptation of the quantitative

histograms and statistics on methylation data where copy number events would be replaced by

variations in methylation levels. To our knowledge, this type of representation on methylation

data would be original and would allow the rapid identification of group of samples sharing

the same methylation pattern in specific regions of the genome. This could be further extended

to any type of data by considering a matrix of event densities where each value of this matrix

would represent the density of a given event (reads, single nucleotide variants, indels, somatic

variants, etc.) in each genomic window. This representation would help identify regions with a

high density of a given event shared by a large number of samples.

Supporting information

S1 File. This file contains supplementary sections “Comparison of the quantitative stacked

histograms between SNP array and WES data”, “Comparison of the quantitative stacked

histograms using SNP array data from [1] processed with ASCAT and CGHregions” and

Table A (List of files produced by ASCAT and Sequenza).

(DOCX)

S1 Fig. ASCAT profile of two HCCs including a pseudo-diploid sample (A) and a pseudo-tet-

raploid sample (B) and presenting similar chromosomal aberrations.

(TIF)

S2 Fig. Quantitative stacked histograms produced by aCNViewer showing the frequency

of CNVs and cn-LOH along the genome in HCCs using 96 freely available HCC Affymetrix

500K Human Mapping Array data [1] processed by ASCAT (A) and CGHregions (B).

(TIF)

S3 Fig. Various options for bi-dimensional heatmap graphical representations of HCCs

from [1] using a window length of 2Mb. Bi-dimensional heatmap representations without

clustering of chromosomal windows with (A) absolute CNV data, (B) absolute CNV data rela-

tive to the estimate tumor ploidy and (C) absolute CNV data relative to a ploidy of 2.

(TIF)

S4 Fig. Quantitative stacked histograms generated on data from [1] showing the impor-

tance of the choice for each sample’s ploidy. A) The estimated sample ploidy has been taken

into account to generate relative copy number values. The blue line represents all LOH events.

B) Using a ploidy of 2, cn-LOH events are represented by the black line.

(TIF)

S5 Fig. Quantitative stacked histogram on Affy6 Hapmap3 data.

(TIF)

S6 Fig. Heatmap on Affy6 Hapmap3 data using 2Mb windows.

(TIF)
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Rossi, Alexandre How-Kit.

Visualization: Victor Renault, Fabien Pichon, Alexandre How-Kit.

Writing – original draft: Victor Renault, Jörg Tost, Eric Letouzé, Sandrine Imbeaud, Jessica
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