
Structural bioinformatics

DeepTrio: a ternary prediction system for protein–protein

interaction using mask multiple parallel convolutional

neural networks

Xiaotian Hu1, Cong Feng1, Yincong Zhou1, Andrew Harrison2 and Ming Chen 1,3,*

1Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China, 2Department of Mathematical

Sciences, University of Essex, Colchester CO4 3SQ, UK and 3Biomedical Big Data Center, the First Affiliated Hospital, Zhejiang

University School of Medicine; Institute of Hematology, Zhejiang University, Hangzhou 310058, China

*To whom correspondence should be addressed.

Associate Editor: Pier Luigi Martelli

Received on April 9, 2021; revised on October 5, 2021; editorial decision on October 6, 2021; accepted on October 20, 2021

Abstract

Motivation: Protein–protein interaction (PPI), as a relative property, is determined by two binding proteins, which
brings a great challenge to design an expert model with an unbiased learning architecture and a superior generaliza-
tion performance. Additionally, few efforts have been made to allow PPI predictors to discriminate between relative
properties and intrinsic properties.

Results: We present a sequence-based approach, DeepTrio, for PPI prediction using mask multiple parallel convolu-
tional neural networks. Experimental evaluations show that DeepTrio achieves a better performance over several
state-of-the-art methods in terms of various quality metrics. Besides, DeepTrio is extended to provide additional
insights into the contribution of each input neuron to the prediction results.

Availability and implementation: We provide an online application at http://bis.zju.edu.cn/deeptrio. The DeepTrio
models and training data are deposited at https://github.com/huxiaoti/deeptrio.git.

Contact: mchen@zju.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Various kinds of biological macromolecule interactions, especially
protein–protein interactions (PPIs) (Jones and Thornton, 1996),
play a fundamental role in biological information exchange, energy
production and material transportation. A number of high-
throughput and low-throughput experimental approaches, like
yeast-two-hybrid purification followed by mass spectrometry (Lage,
2014), affinity capture-western, cocrystal structure analysis, bimol-
ecular fluorescence complementation and biochemical modification
analysis (Oughtred et al., 2019), have been leveraged to identify
PPIs. Thus, a tremendous number of PPIs have been identified and
used to construct PPI databases, such as DIP (Salwinski et al., 2004;
Xenarios et al., 2002), BioGRID (Oughtred et al., 2019; Stark et al.,
2006) and STRING (Szklarczyk et al., 2019), which makes it pos-
sible to identify PPIs in silico instead of the time-consuming and
labor-intensive experimental methods.

Traditionally, protein 3D structure has been regarded as an essen-
tial profile for PPI prediction. However, with the discovery of intrin-
sically disordered proteins whose spatial structures interconvert on a
series of timescales (Uversky et al., 2008), the protein 3D structure is

no longer regarded as the only determinant of PPIs, and that the pro-
tein primary structure may offer more clues for PPI prediction. Since
the protein sequence can be easily obtained by many inexpensive and
time-saving experimental technologies or directly inferred from gene
sequences, it has become the most accessible type of protein profiles.
Currently, a variety of protein properties can be predicted using the
protein sequences. Some of them only depend on the protein itself like
solubility (intrinsic property), while others require the information
from another object like PPI (relative property). However, there are
few existing prediction methods consider PPI as a relative property.

Many sequence-based machine learning methods have been
developed for PPI prediction, such as Guo’s work (Guo et al., 2008),
Wang’s work (Wang et al., 2018), DPPI (Hashemifar et al., 2018),
DNN-PPI (Li et al., 2018), DeepFE-PPI (Yao et al., 2019) and
Protein–Protein Interaction Prediction Based on Siamese Residual
RCNN (PIPR) (Chen et al., 2019). Guo’s work (Guo et al., 2008)
curates seven physicochemical properties of amino acids (such as
hydrophobicity, polarity and volumes of side chains) as protein fea-
ture descriptors. Each protein sequence is represented as seven vec-
tors according to these descriptors. For a given protein sequence,
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auto covariance (AC) variables are used to describe the average
interactions between residues throughout the whole sequence, and
in downstream analysis, a support vector machine (SVM) (Cortes
and Vapnik, 1995) is leveraged to determine whether the given pro-
teins interact. DPPI (Hashemifar et al., 2018) utilizes PSI-BLAST
(Altschul et al., 1997) to construct a comprehensive protein repre-
sentation. DPPI incorporates a random projection module into the
convolutional neural network (CNN) architecture, which projects
the protein representations learned by the convolutional layers to
two different vector spaces. The random projection module can help
the model learn about the interaction potential of two input pro-
teins. Finally, a linear transformation unit computes a probability
value indicating whether two proteins interact in the prediction
module. DeepFE-PPI (Yao et al., 2019) exploits a novel residue rep-
resentation method, Res2vec, to embed protein sequences, which
may describe more precisely residue–residue interactions and supply
more effective information for the downstream model. DeepFE-PPI
employs the deep neural networks (DNN) as the learning architec-
ture, and uses both a batch normalization module and a dropout
module to prevent over-fitting. PIPR (Chen et al., 2019) uses a pre-
trained semilatent vector to represent amino acids for capturing
their contextual similarity and physicochemical properties. PIPR
employs a residual recurrent convolutional neural network (RCNN)
as the model architecture, and achieves the state-of-the-art perform-
ance for PPI prediction. In addition, PIPR is extended to contain
three independent models for different application scenarios involv-
ing PPI prediction, interaction type prediction and binding affinity
estimation.

Although a growing number of PPI predictors have been pro-
posed in recent years, there remains some room for improvement: (i)
it can be beneficial for prediction if a model can consider PPI as a
relative property rather than an intrinsic property; (ii) few efforts
have been made to provide an intuitive description of the inner
mechanism of pairwise-input neural networks and illustrate the ef-
fect of each amino acid residue on PPI.

In this paper, we propose DeepTrio, a deep-learning framework
based on a mask multiscale CNN architecture, in which multiple
parallel filters provide valuable insights for PPI prediction by appre-
hending the multiscale contextual information of protein sequences.
In comparison to existing tools, the main contributions of our work
are: (i) an additional class, single-protein class, is introduced to our
model, which allows DeepTrio to discriminate between the relative
property and intrinsic property; (ii) due to the application of the
single-protein class and masking operation, DeepTrio requires only
one training set to build a model that can not only identify PPIs, but

also further investigate the effect of each protein residue on PPI
without any additional specific training; (iii) DeepTrio is also avail-
able as an online tool for inexperienced users in order to address the
cross-platform usage and dependency related issues.

2 Materials and methods

Since PPI prediction is a binary classification task, most of the exist-
ing models are trained to classify the input data into two classes:
interacting or noninteracting. However, we have designed DeepTrio
for ternary prediction that takes as input a pair of protein sequences,
and generates a three-dimensional vector output indicating the prob-
ability of interaction, noninteraction and single-protein. The overall
framework of DeepTrio is illustrated in Figure 1a. DeepTrio also
employs a Siamese architecture, which involves two identical sub-
networks sharing the same configuration and weights, to ensure that
two input sequences are represented and analyzed equally. In add-
ition, DeepTrio can calculate the importance score for each residue
by using the masking method.

2.1 Data collection
There are four datasets used for training and testing the models in
this study. Two datasets are derived from the Biological General
Repository for Interaction Datasets (BioGRID) (Oughtred et al.,
2019), and the other two datasets are derived from the database of
interacting proteins (DIP) (Salwinski et al., 2004; Xenarios et al.,
2002).

2.1.1 BioGRID multivalidated physical interaction data

The BioGRID database (Oughtred et al., 2019) is a comprehensive,
specialized database for PPIs derived from multiple major species,
whose multivalidated physical interaction subsets curate PPIs
according to the criteria by which the interacting pairs must be vali-
dated in at least two different experimental systems or two different
publication sources. Since the Saccharomyces cerevisiae (yeast) and
Homo sapiens (human) data are widely used to evaluate the per-
formance of PPI predictors (Chen et al., 2019; Guo et al., 2008;
Hashemifar et al., 2018; Yao et al., 2019), we use the human and
yeast multivalidated physical interaction datasets in BioGRID as the
benchmarks for training and evaluating. The protein sequences are
retrieved from the UniProt (UniProt Consortium, 2019) and
restricted in length to a minimum of 150 and a maximum of 1500
residues. The human dataset involves 7705 proteins forming 31 164
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Fig. 1. Details of the DeepTrio framework. (a) The development flowchart of DeepTrio. (b) Masking operation for three different purposes: generating single-protein cases, cal-

culating the effect of each residue on PPI and padding the short sequences. (c) The strategy for constructing BioGRID negative datasets. Given an interacting protein pair SA

and SB, we randomly choose one protein (e.g. SB) from them, and then shuffle its sequence with 2-let counts (excluding the first residue) to get a novel protein S0B. A negative

sample is generated by pairing SA and S0B
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positive cases and the yeast dataset contains 3553 proteins forming
13 462 positive cases. Following the same strategy as PIPR, we use
CD-HIT (Fu et al., 2012; Li and Godzik, 2006) to decrease sequence
redundancy of the datasets, in which two PPIs are considered similar
if they share a sequence identity greater than 40%.

The negative samples in these two benchmarks are generated by
shuffling one sequence of a positive case with 2-let counts (excluding
the first residue of the protein) (Fig. 1c). It has been demonstrated
that the possibility of interaction can be deemed negligible if a se-
quence of one interacting pair is shuffled (Kandel et al., 1996).
Additionally, the shuffled sequence retains the same amino acid
composition and approximately the same di-peptide frequencies as
the original sequence.

2.1.2 Saccharomyces cerevisiae core data

The S.cerevisiae core dataset, as a widely used benchmark, is com-
posed of 11 188 PPI cases including 5594 positive cases proposed by
Guo et al. (2008) and a heterogeneous set of 5594 negative cases
according to different papers. The positive cases are selected from
the DIP database (Salwinski et al., 2004; Xenarios et al., 2002),
where proteins shorter than 50 amino acids and sharing �40% se-
quence identity are removed. The negative cases in these datasets are
generated by randomly pairing the proteins without obvious evi-
dence of interaction. However, there are some differences between
the S.cerevisiae positive sets from DeepFE-PPI and PIPR, so we use
both of the S.cerevisiae datasets to train and test DeepTrio and other
baseline approaches.

2.1.3 Single-protein data

The single-protein case consists of two components: a normal pro-
tein sequence and a masked sequence whose all residues are masked
by blank bits (Fig. 1b). Each unique sequence in the positive and
negative datasets corresponds to one case in the single-protein set.
This set is designed for relieving the obscure influence caused by the

relative property and preventing the potential weight polarization in
the intermediary layers. The way we train single-protein data are the
same as the positive and negative cases. Note that this set is only
used for training DeepTrio, and does not participate in the evalu-
ation for DeepTrio.

2.2 Protein feature encoder
DeepTrio employs a Siamese architecture with the multiple parallel
convolution (multiscale convolution) module to capture various pro-
tein features in multiscale windows. It takes as input a protein pair
(X, X0), and yields two protein representations (Hconc:; H0conc:) for
downstream analysis (Fig. 2).

2.2.1 Single-protein data

The input protein sequence is projected into a sparse orthonormal
vector space by performing one-hot encoding transformation in the
input module. For two input proteins SA and SB, each of them is
transformed into a binary matrix X 2 R

L�23 as follows:

X ¼

x1

..

.

xi

..

.

xL

2
6666664

3
7777775
;

where xi 2 R
1�23 (i ¼ 1; 2; . . . ;L) is a binary vector of length 23 (22

for the proteinogenic amino acids and 1 for the mask bit) corre-
sponding to the ith amino acid residue in a sequence, and L is fixed
to 1500. A trainable embedding weight matrix We 2 R

23�d (opti-
mized by backpropagation) is used to map X to a dense continuous
vector space by the following equation:

Fig. 2. DeepTrio overall architecture. The protein sequences are converted into liquid-like tensors by a tunable embedding module. The container-like layers of different size

constantly shape the flowing tensors, where Z is the number of samples in a batch
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E ¼ XWe;

where E 2 R
L�d is the embedded representation of one input protein

and d is the feature dimension of the amino acid symbol lexicon.

2.2.2 Masking module

A Boolean matrix, B 2 R
L�1, will be attached to the embedded rep-

resentation E in this module, which eliminates the masked residues
from the calculation in the downstream modules. This operation
will be called in three scenarios (Fig. 1b):

i. The length of protein sequences is fixed to 1500. Thus, the

shorter sequences will be padded with mask bits.

ii. In the single-protein case, the whole sequence of one of the pro-

teins is masked by mask bits. Thus, there is only one protein

participating in the calculation of the deep-learning model

when the single-protein case is inputted.

iii. When DeepTrio investigates the effect of a particular residue bi

on PPI, a mask bit will be attached to this residue, which blocks

the calculation of bi in the downstream layers.

2.2.3 Multiple parallel convolutional module with pooling

The embedded representation E is analyzed by N parallel convolu-
tion filters with Mn (n ¼ 1; 2; . . . ;N) kernels (Fig. 2). Each convo-
lution filter extracts a certain specific aspect of protein profiles and
outputs as follows:

T
nð Þ

k;m ¼
Xln

i¼1

Xd

j¼1

v
ðm;nÞ
i;j � Eiþ k�1ð Þ�sn ;j

;

where ln and sn denote the length of the convolution window and
stride in the nth convolution filter, respectively. The output T

ðnÞ
k;m

(k ¼ 1; 2; . . . ; L�ln
sn
þ 1) is the mth interior element in the kth row of

the nth convolution filter, v
ðm;nÞ
i;j is the jth interior element in ith row

of the mth kernel in the nth convolution filter, and Eiþk;j is the jth in-
terior element in ðiþ kÞth row of the embedded matrix E. Note that
the bias calculation is not applied to the convolution calculation.

The filter outputs are activated by the rectified linear unit
(ReLU) (Xu et al., 2015) and yield a set of feature maps,

A nð Þ 2 R
L�ln

sn
þ1

� �
�Mn ;n ¼ 1; 2; . . . ;N

� �
, which are calculated as

follows:

A
nð Þ

k;m ¼ ReLU T
nð Þ

k;m

� �
;

where A
nð Þ

k;m is the mth interior element in the kth row of AðnÞ. After
obtaining these feature maps, a global max-pooling operation is per-
formed for reducing the dimension of feature maps and highlighting
the most significant features. The max-pooling output HðnÞ 2 R

1�Mn

(for the nth convolution filter) is given by

h nð Þ
m ¼ max A

nð Þ
1;m;A

nð Þ
2;m; . . . ;A

nð Þ
L�ln

sn
þ1;m

� 	
;

H nð Þ ¼ h
nð Þ

1 ; h
nð Þ

2 ; . . . ;h nð Þ
m ; . . . ;h

nð Þ
Mn

� �
;

where hðnÞm is the mth element of HðnÞ. Next, we flatten and concaten-
ate all the HðnÞ (n ¼ 1; 2; . . . ; N) to get a new row vector
Hconc: 2 R

1�N:

Hconc: ¼ H 1ð Þ; H 2ð Þ; . . . ; H Nð Þ
h i

:

2.3 Prediction and learning objectives
Two max-pooling outputs generated by the aforementioned mod-
ules are first merged into one vector, and then passed into the
dense layers to calculate the probability value for PPI. The learning

architecture is trained to optimize the cross-entropy loss between
predictions and targets by backpropagation with AMSGrad algo-
rithm (Reddi et al., 2019).

2.3.1 Prediction module

Two max-pooling outputs, HA
conc: and HB

conc:, given by the two sub-
networks (sharing the same configuration and weights), are com-
bined via element-wise addition and transformed into a merged
vector Hmerged 2 R

1�N. Compared with the element-wise multiplica-
tion, the addition operation prevents Hmerged being a zero-vector
when the single-protein case is inputted. The merged vector Hmerged

is first passed through two dense layers, and then normalized by the
softmax function as follows:

F ¼ ReLU ReLU HmergedWf1

� �
Wf2

� �
;

ci ¼ r Fið Þ ¼
exp Fið Þ
X3

j¼1

exp Fj

� � ;

where Wf1
2 R

N�f1 , Wf2
2 R

f1�3 are the weight matrices of the first
and the second dense layers, respectively. The ith dimension of c 2
R

1�3 corresponds to the confidence score, ci 2 ½0; 1�, of the ith class.

2.3.2 Learning objective

For a given protein pair p, its class label yp is defined as

yp ¼
1; 0; 0ð Þ interacting
0; 1;0ð Þ negative
0;0; 1ð Þ single protein

:

8<
:

The learning model is trained to minimize the following cross-
entropy loss and classify the inputs into their corresponding classes
correctly

Loss ¼ CEE cp; ypð Þ ¼ � 1

Z

XZ

z¼1

X3

i¼1

y
p
i lnc p

i ;

where CEE is the cross-entropy error function, c
p
i and y

p
i represent

the ith scalar components of the model prediction cp and its corre-
sponding class label yp, respectively, and Z is the number of inputs
in a batch.

2.3.3 Optimization strategy

We adopt AMSGrad (Reddi et al., 2019), a variant of Adam opti-
mizer (Kingma and Ba, 2014), to optimize the cross-entropy loss of
our learning model. Following the same strategy as PIPR, the learn-
ing rate a is set to 0.001, and the exponential decay rates b1 and b2

are set to 0.9 and 0.999, respectively.

2.3.4 Hyperparameter tuning

The hyperparameter searching space of our model consists of 13
dimensions (including the hyperparameters for the embedding di-
mension, dropout rates, convolution kernel lengths, convolution
strides and optimizers), which form about 140 000 combinations
(Supplementary Table S1). It is too large for the grid search algo-
rithm to find the optimal combination. Therefore, we leverage a
Bayesian tuning tool GpyOpt (The GPyOpt Authors, 2016) to opti-
mize the search process, which has been proved to be more efficient
than the randomized grid search (Wang et al., 2019). For the opti-
mization program GpyOpt, we set the number of initial random
searching points and the maximum number of iterations to 10 and
50, respectively. The performance of all candidate models and their
corresponding hyperparameter settings are listed in Supplementary
Table S2.
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2.3.5 Implementation details

We randomly initialize the weights of the embedding, convolution
and dense layers according to the Glorot uniform distribution
(Glorot and Bengio, 2010), which is a common strategy used by
deep-learning methods for model initialization (Kulmanov et al.,
2018; Seo et al., 2018; Wang et al., 2020). We design DeepTrio
based on the open-source TensorFlow 2.0 library (Abadi et al.,
2016), and implement training and evaluation for all baseline mod-
els using a NVIDIA Tesla P100 GPU with 16 GB of memory.

2.4 Calculating the effect of protein residues on

prediction
Suppose we have a pair of interacting proteins SA ¼
ðbA

1 ; b
A
2 ; . . . ; bA

i ; . . . ;bA
LÞ and SB ¼ ðbB

1 ; b
B
2 ; . . . ; bB

i ; . . . ; bB
LÞ, where bA

i

and bB
i are the ith residues of SA and SB, respectively. To calculate

the effect of the residue bA
i on prediction with respect to SB, we first

calculate the probability that SA does not interact with SB [i.e.
Pneg:ðSA; SBÞ]. Second, we attach a mask vector (with an inactive bit
in the ith component) to the embedded representation of SA (generat-
ing a new sequence called ŜA) and recalculate the probability that
ŜA does not interact with SB [i.e. Pneg:ðŜA; SBÞ]. Finally, the effect of
bA

i on prediction with respect to SB is assigned to be

UB bA
i

� �
¼ Pneg: ŜA; SB

� �
� Pneg: SA; SBð Þ:

3 Results

We report the performance of DeepTrio and other approaches on
four different PPI datasets. Further, we test the performance of

Table 1. Evaluation of PPI prediction performance on the BioGRID S.cerevisiae dataset based on 5-fold cross-validation

Methods Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) MCC (%) F1-score (%)

DeepFE-PPIa (Yao et al., 2019) 85.24 6 0.52 85.49 6 1.41 84.99 6 2.77 85.49 6 2.11 70.57 6 1.06 85.19 6 0.79

PIPRa (Chen et al., 2019) 95.76 6 0.25 94.61 6 0.53 97.06 6 0.41 94.47 6 0.55 91.56 6 0.48 95.82 6 0.24

DeepDuoa 97.06 6 0.28 98.06 6 0.51 96.02 6 0.35 98.10 6 0.50 94.14 6 0.57 97.02 6 0.30

DeepTrioa 97.55 6 0.38 98.95 6 0.20 96.12 6 0.74 98.98 6 0.21 95.15 6 0.74 97.52 6 0.40

Note: We report the mean values and standard deviations for the test sets.
aThose models are retrained using the same data.

Table 2. Evaluation of PPI prediction performance on the BioGRID H.sapiens dataset based on 5-fold cross-validation

Methods Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) MCC (%) F1-score (%)

DeepFE-PPIa (Yao et al., 2019) 87.66 6 0.57 89.42 6 1.05 85.47 6 2.27 89.85 6 1.40 75.44 6 1.09 87.37 6 0.78

PIPRa (Chen et al., 2019) 97.60 6 0.08 97.57 6 0.35 97.63 6 0.44 97.56 6 0.36 95.20 6 0.15 97.60 6 0.10

DeepDuoa 98.04 6 0.05 98.83 6 0.28 97.23 6 0.28 98.85 6 0.27 96.09 6 0.10 98.02 6 0.05

DeepTrioa 98.12 6 0.12 99.00 6 0.17 97.23 6 0.28 99.01 6 0.17 96.26 6 0.23 98.11 6 0.13

Note: We report the mean values and standard deviations for the test sets.
aThose models are retrained using the same data.

Table 3. Evaluation of PPI prediction performance on the S.cerevisiae core dataset from DeepFE-PPI based on 5-fold cross-validation

Methods Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) MCC (%) F1-score (%)

SVM-AC (Guo et al., 2008) 87.35 6 1.38 87.82 6 4.84 87.30 6 5.23 87.41 6 6.33 87.34 6 1.33 75.09 6 2.51

SVM-MCD (You et al., 2014) 91.36 6 0.4 91.94 6 0.69 90.67 6 0.77 NA 91.3 6 0.73 84.21 6 0.59

DeepFE-PPI (Yao et al., 2019) 94.78 6 0.61 96.45 6 0.87 92.99 6 0.66 NA NA 89.62 6 1.23

DeepDuoa 92.16 6 0.55 96.57 6 1.22 87.46 6 1.46 96.83 6 1.27 91.78 6 0.59 84.71 6 1.10

PIPRa (Chen et al., 2019) 92.26 6 0.44 94.17 6 0.65 90.11 6 0.56 94.42 6 0.56 92.09 6 0.53 84.60 6 0.89

DeepTrioa 92.57 6 0.63 96.33 6 0.88 88.53 6 1.19 96.62 6 0.83 92.26 6 0.65 85.43 6 1.22

Note: Performance values for majority of baseline approaches are obtained from Yao et al. (2019), and NA denotes unavailability of the values from the origin-

al papers. We report the mean values and standard deviations for the test sets.
aThose models are retrained using the same data.

Table 4. Evaluation of PPI prediction performance on the S.cerevisiae core dataset from PIPR based on 5-fold cross-validation

Methods Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) MCC (%) F1-score (%)

DPPI (Hashemifar et al., 2018) 94.55 96.68 92.24 NA 94.41 NA

PIPR (Chen et al., 2019) 97.09 6 0.24 97.00 6 0.65 97.17 6 0.44 97.00 6 0.67 97.09 6 0.23 94.17 6 0.48

DeepDuoa 94.14 6 0.30 96.37 6 1.43 91.74 6 1.26 96.51 6 1.41 93.98 6 0.27 88.40 6 0.67

DeepFE-PPIa (Yao et al., 2019) 91.04 6 0.45 89.14 6 1.58 93.52 6 1.67 88.55 6 2.01 91.25 6 0.4 82.23 6 0.86

DeepTrioa 94.78 6 0.28 97.18 6 0.28 92.20 6 0.49 97.33 6 0.30 94.63 6 0.29 89.67 6 0.55

Note: Performance values for majority of baseline approaches are obtained from Yao et al. (2019), and NA denotes unavailability of the values from the origin-

al papers. We report the mean values and standard deviations for the test sets.
aThose models are retrained using the same data.
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DeepTrio on the multiple specie dataset where proteins are filtered
based on different thresholds of sequence identity. In addition to the
binary prediction of PPIs, DeepTrio can generate an intuitive protein
portrait for the detection of potentially important residues for inter-
action. Lastly, a logically concise online application has been devel-
oped to help researchers make better use of DeepTrio.

3.1 Performance comparison of DeepTrio with other

approaches
The main task of DeepTrio is to estimate the interaction probability
of a given protein pair based on its sequences. We compare
DeepTrio with several state-of-the-art PPI prediction methods
including SVM-AC (Guo et al., 2008), SVM-MCD (You et al.,
2014), DPPI (Hashemifar et al., 2018), PIPR (Chen et al., 2019) and
DeepFE-PPI (Yao et al., 2019) on a variety of benchmark datasets.
Furthermore, we also report the performance of a simplified variant
of DeepTrio (named as DeepDuo), which has the same learning
architecture as DeepTrio but is not trained by the single-protein
dataset. By setting the simplified control of DeepTrio, we can fur-
ther investigate how the single-protein cases influence the prediction
performance of our model.

3.1.1 BioGRID multivalidated physical interaction data

We perform 5-fold cross-validation on the BioGRID human and
yeast datasets. Under this setting, the data are equally divided into
five parts and each part has an equal chance to train and test the
models. We aggregate eight quality metrics including accuracy, pre-
cision, sensitivity, specificity, F1 score, Matthews correlation coeffi-
cient (MCC) and average precision (AP) to assess the prediction
performance of the models. Higher values in all these metrics indi-
cate better performance.

As shown in Tables 1 and 2, the RCNN architecture of PIPR
promises a remarkable performance and gets the highest scores in
sensitivity on both the human and yeast datasets. However,
DeepTrio achieves the best performance in other metrics by leverag-
ing a multiscale convolution architecture that can better learn the
deep features from protein sequences. For example, DeepTrio out-
performs PIPR by 0.52% and 1.79% in accuracy, and by 1.43%
and 4.34% in precision on the human and yeast datasets,
respectively.

In addition, we report the comparison between DeepDuo and
DeepTrio on the BioGRID benchmarks, which provides insights
into the role of single-protein training in PPI prediction. It is
observed that DeepTrio perform consistently better than DeepDuo
in all of the evaluation metrics (Tables 1 and 2). For example,
DeepTrio attains an accuracy value of 97.55% (which is 0.49%
higher than DeepDuo), and an MCC value of 95.15% (which is
1.01% higher than DeepDuo) in the yeast dataset. These results

suggest that the single-protein training process can improve our
model performance on the BioGRID datasets.

3.1.2 Saccharomyces cerevisiae core data

We first use DeepFE-PPI’s S.cerevisiae dataset to evaluate the per-
formance of DeepTrio. The positive set from DeepFE-PPI is identical
with that from You et al. (2015). To make the data suitable for the
model input, we remove 255 cases that contains proteins longer
than 1500 amino acids, and use the truncated data to retrain and
evaluate DeepTrio and PIPR. The evaluation shows that, under the
highest scores attained by DeepFE-PPI on its own data, DeepTrio
achieves better performance than PIPR with respect to five evalu-
ation metrics (Table 3). Second, we test the performance of
DeepTrio and DeepFE-PPI on PIPR’s dataset, where we remove 231
cases containing proteins longer than 2000 amino acids. The results
in Table 4 show that DeepTrio attains better performance than
DeepFE-PPI (such as 3.74% higher in accuracy, 8.04% higher in
precision and 7.44% higher in MCC) on PIPR’s dataset. However,
PIPR achieves the state-of-the-art performance on its own dataset,
but exhibits worse performance than DeepTrio in precision and spe-
cificity. In addition, DeepTrio also outperforms DeepDuo on both
of the S.cerevisiae datasets in most metrics (Tables 3 and 4).
Detailed performance of DeepTrio, PIPR and DeepFE-PPI on two S
cerevisiae datasets is provided in the Supplementary Material.

3.1.3 Comprehensive comparison between DeepTrio and PIPR

Based on the four datasets mentioned above, we count how many
times DeepTrio or PIPR attains higher scores with respect to six
metrics. Table 5 shows that DeepTrio offers robust performance
over the four datasets and outperforms PIPR in many evaluation
metrics, especially in precision and specificity.

3.2 PPI prediction on multispecies dataset
Following the same strategy as PIPR (Chen et al., 2019), we perform
5-fold cross-validation of DeepTrio on the multispecies dataset
(Caenorhabditis elegans, Escherichia coli and Drosophila mela-
nogaster), where proteins are filtered based on different thresholds
of sequence identity (40%, 25%, 10% and 1%). To make the data
suitable for the model input, we also remove the cases containing
proteins longer than 1500 amino acids. The results in Table 6 show
that DeepTrio performs consistently well on a series of datasets with
different sequence identities.

3.3 PPI prediction on independent test set
Here, we use the virus–human interaction dataset in Liu-Wei et al.
(2021) as an independent test set to assess the performance of
DeepTrio and other approaches (trained by the BioGRID human–
human interaction dataset). Following the preprocessing methods in
the previous studies (Hashemifar et al., 2018; Khurana et al., 2018;
Rawi et al., 2018), we first decrease sequence redundancy in the
virus protein data with a maximum sequence identity of 10%.
Second, we exclude all the virus sequences in the independent test
set with a sequence identity of �25% to any sequence in the
human–human interaction training set. The negative independent
test data are generated by randomly shuffling the protein sequences
in the virus–human interaction dataset (this method is elaborated in
Section 2.1.1). The final independent test set is composed of 8929

Table 6. Evaluation of PPI prediction performance on the multispecies (C.elegans, D.melanogaster and E.coli) dataset

Sequence identity Protein number Positive pairs Negative pairs Accuracy (%) Precision (%) Sensitivity (%)

Any 11 108 31 227 30 368 98.20 99.51 96.92

�40% 9354 24 406 20 461 97.83 99.23 96.77

�25% 7454 18 193 14 485 97.52 98.78 96.74

�10% 5478 11 777 8839 97.32 98.87 96.42

�1% 4932 10 110 7284 97.11 98.89 96.10

Table 5. Statistics for the better performance achieved by DeepTrio

and PIPR on four datasets with respect to six evaluation metrics

Methods Accuracy Precision Sensitivity Specificity F1-score MCC

PIPR 1 0 4 0 1 1

DeepTrio 3 4 0 4 3 3
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interacting and 8929 noninteracting protein pairs. The results in
Figure 3 show that DeepTrio exhibits competitive performance on
the independent test set in comparison to PIPR.

3.4 Detecting and visualizing potentially important

residues for interaction
Since experiment-based methods require meticulous operations and
lots of time to identify the important sites for interaction, it is crucial
to conduct a prior assessment of experimental protocols and prere-
ject initial targets with the lowest interaction probability. Thus, we
extend DeepTrio to an additional scenario that helps detect the po-
tentially important sites for interaction (which are not limited to the
residues in core binding regions, but also include some other crucial
residues that shape the external and internal structures, provide skel-
eton support through long aliphatic side chains or create the hydro-
phobic environment). The main goal of this extension is to find out
which residues take the main responsibility for the prediction results
and visualize the importance score for each residue in a sequence.

Recently, a handful of previous works have already applied sev-
eral visualization techniques to provide interpretable explanations
for deep-learning models. DeepBind (Alipanahi et al., 2015) uses

‘mutation maps’ to illustrate the effect that each possible point mu-
tation may have on binding affinity between DNA and proteins.
DeepChrome (Singh et al., 2016) utilizes a network-centric ap-
proach (Yosinski et al., 2015) to extract the class-specific feature
patterns that are highly influential in gene expression predictions.
DeepSig (Savojardo et al., 2018) employs the deep Taylor decom-
position approach (Montavon et al., 2017) to determine a relevance
score measuring the contribution of each input neuron toward the
prediction. In this work, owing to the integration of the single-
protein training strategy and masking operation, it is possible to
allow DeepTrio to visualize the contribution of each input neuron
toward the prediction (which is elaborated in Section 2.4).

We validate the visualization results given by DeepTrio (the
model is trained using the BioGRID human multivalidated physical
interaction data) with the recent experimental evidence in biochem-
ical studies. Note that all the PPIs mentioned below, along with their
mutants, are not included in the training data of DeepTrio.
Figure 4a shows the importance map of the mutant human calreti-
culin (CALR) (that loses most of the C-terminal acidic residues and
gains a novel common C-terminus with 36 amino acids rich in posi-
tively electrostatic charges caused by a heterogeneous set of þ1 bp
frameshift mutations in exon 9) (Nangalia et al., 2013). These

Fig. 3. Performance comparison of DeepTrio with PIPR and DeepFE-PPI on independent test set. (a) Comparison of area under receiver operating curve (AUC).

(b) Comparison of AP with respect to the interacting class. (c) Comparison of AP with respect to the noninteracting class

Fig. 4. An ‘importance map’ are employed to visualize the effect of each amino acid residue on interaction, where residues in red colors exert positive effects and those in blue

colors exert negative effects on prediction. (a) Analysis of the potential importance of each residue in CALR p. L367fs*46 for interaction with MPL. The positively charged res-

idues in the last 36 amino acids exhibit a strong trend of higher importance scores, which have been proved essential for the physical interaction between CALR p. L367fs*46

and MPL. (b) Analysis of the potential importance of each residue in ChoKa for interaction with the SH3 domain of c-Src. The poly-proline region in ChoKa residues 53–78

harbors relatively higher scores in the importance map, which are reported crucial for the interaction with the SH3 domain of c-Src (Kall et al., 2019)
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positively charged residues in the novel C-terminus are reported es-
sential for mediating the erroneous activation of MPL signaling and
the physical interaction between mutant CALR and the thrombo-
poietin receptor MPL, which can lead to myeloproliferative disor-
ders (Elf et al., 2016, 2018). We use the ‘importance map’ to
illustrate the importance score of each residue in the mutant CALR
(p.L367fs*46) (Fig. 4a). The ‘importance map’ is rendered as a heat
map with l squares (where l is the length of the given protein), and
each line in the heat map is set to 20 squares. It can be observed in
Figure 4a that most of the residues with crimson backgrounds are
enriched in the C-terminus, where the positively charged residues (like
arginine and lysine) exhibit a strong trend of higher importance
scores. These results are basically consistent with the previous findings
in experimental studies (Elf et al., 2016, 2018). Figure 4b depicts the
importance map of Choline kinase alpha (ChoKa). ChoKa catalyzes
the phosphorylation of choline to phosphocholine, and its high ex-
pression has proven to be associated with cancer malignancy and
poor patient prognosis (Ramı́rez De Molina et al., 2002, 2005).
Recent biophysical and biochemical studies (Kall et al., 2019) have
demonstrated that the ChoKa poly-proline region in residues 49–79
(especially prolines 61 and 62) mediates the physical interaction be-
tween ChoKa and the SH3 domain of c-Src tyrosine kinases. It can be
seen in the ChoKa importance map (Fig. 4b) that the highly scored
residues are enriched in the N-terminal poly-proline region, which is
consistent with the findings in the aforementioned experimental
studies.

In practice, the importance map shows a preference for find-
ing the key residues that share similar properties in the adjacent
regions and a sensitivity decrease for large protein assessment.
Another noteworthy observation in both Figures 4a and 4b is
that the vast majority of the negative-effect residues harbor the
pale-blue backgrounds, which can be explained by the hypothesis
that most of point mutations will reduce the interaction between
two proteins that have already reached the optimal conformation
for binding.

3.5 Online server
To provide an accessible interface in a logically concise manner, we
develop an online application based on the DeepTrio model. The
PPI prediction results and importance maps can be easily obtained
by submitting two protein sequences to the web server. Moreover,
the results from multiple submissions will be recorded on the web
page, and they can be conveniently filtered and downloaded from
the website. This online application is available at http://bis.zju.edu.
cn/deeptrio.

4 Conclusion

With the development of deep-learning algorithms such as CNN
(LeCun and Bengio, 1995), recurrent neural networks (Hochreiter
and Schmidhuber, 1997) and graph neural networks (Scarselli et al.,
2009), an increasing number of sequence-based deep-learning meth-
ods have been developed for PPI prediction. A state-of-the-art ap-
proach, PIPR, adopts an RCNN architecture to capture the local
features and contextualized information and has achieved remark-
able performance, whereas it does not provide a convenient imple-
mentation for inexperienced users and a visualization method to
make the model interpretable. However, DeepTrio provides a super-
ior prediction for PPI and an intuitive visualization for the import-
ance of each protein residue in both online and offline implements.
Besides, a variety of experimental evaluations show that the add-
itional single-protein training indeed improves the performance of
PPI prediction by inherently preventing weight polarization. For fu-
ture work, a possible direction is to incorporate molecular docking
calculation into DeepTrio for more accurate prediction of key
regions for PPI. We also explore the possibilities of using dynamic
visualization techniques to interpret our model better.

In summary, we propose a deep-learning-based model, DeepTrio,
to predict PPIs using raw protein sequences. By adopting the multiple

parallel convolution filter architecture that allows DeepTrio to cap-
ture the deep features from the protein profiles, our model achieves
encouraging performance on the benchmark datasets in terms of vari-
ous evaluation metrics. We also integrate the single-protein training
strategy and masking operation to prevent weight polarization in the
intermediary layers and enable DeepTrio to visualize the contribution
of each protein residue to the prediction results. Furthermore, we also
provide an online application for PPI prediction and important residue
detection.
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