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Summary

Salmonella enterica serovar Typhimurium (S. Typh-
imurium) replicates inside mammalian cells within
membrane-bound compartments called Salmonella-
containing vacuoles. Intracellular replication is depen-
dent on the activities of several effector proteins
translocated across the vacuolar membrane by the
Salmonella pathogenicity island 2 (SPI-2)-type III
secretion system (T3SS). This is accompanied by the
formation in the vicinity of bacterial vacuoles of an
F-actin meshwork, thought to be involved in maintain-
ing the integrity of vacuolar membranes. In this study,
we investigated the function of the SPI-2 T3SS effector
SteC. An steC mutant strain was not defective for
intracellular replication or attenuated for virulence in
mice. However, the steC mutant was defective for
SPI-2-dependent F-actin meshwork formation in host
cells, although the vacuolar membranes surrounding
mutant bacteria appeared to be normal. Expression of
SteC in fibroblast cells following transfection caused
extensive rearrangements of the F-actin cytoskeleton.
Sequence analysis identified amino acid similarity
between SteC and the human kinase Raf-1. A His-
tagged SteC fusion protein had kinase activity in vitro
and a point mutant lacking kinase activity was unable
to induce F-actin rearrangements in vivo. We conclude
that SPI-2-dependent F-actin meshwork formation
depends on the kinase activity of SteC, which

resembles more closely eukaryotic than prokaryotic
kinases.

Introduction

Following uptake by host cells, Salmonella enterica
serovar Typhimurium (S. Typhimurium) replicates within
a membrane-bound compartment, the Salmonella-
containing vacuole (SCV). Numerous bacterial genes are
required for intracellular survival, replication and virulence
of this pathogen in mice. These include a multifunctional
virulence system called the Salmonella pathogenicity
island-2 (SPI-2) type III secretion system (T3SS; Water-
man and Holden, 2003). The SPI-2 T3SS is induced intra-
cellularly (Cirillo et al., 1998) and translocates several
effectors into the vacuolar membrane and host cell
cytosol (Waterman and Holden, 2003). These effectors
are involved in several physiological activities, including
the regulation of vacuolar membrane dynamics (Ruiz-
Albert et al., 2002; Boucrot et al., 2005; Henry et al.,
2006), inducing motility of infected cells (Worley et al.,
2006), targeting SCVs to the Golgi apparatus in epithelial
cells (Salcedo and Holden, 2003), and formation of an
actin cytoskeleton meshwork around SCVs (Méresse
et al., 2001; Unsworth et al., 2004).

At least two effectors, SseF and SseG, are encoded
within SPI-2, but several others are encoded by genes
located at different sites in the bacterial chromosome, and
the full repertoire of effectors is unknown (Waterman and
Holden, 2003; Kujat Choy et al., 2004; Geddes et al.,
2005). The expression of SPI-2 genes and genes encod-
ing effectors located outside the pathogenicity island
requires the SPI-2-encoded two-component regulatory
system SsrA–SsrB (Cirillo et al., 1998). In recent work we
used a DNA microarray of S. Typhimurium to compare the
levels of mRNAs in wild-type and ssrA mutant bacteria
grown in conditions that result in strong expression of the
SsrA–SsrB regulon. This led to the identification of an
effector (SseL) with deubiquitinase activity (Rytkönen
et al., 2007). Another gene whose RNA level was signifi-
cantly lower in the ssrA mutant compared with the wild-
type strain is STM1698 (Rytkönen et al., 2007). STM1698
was previously identified in a signature-tagged mutagen-
esis screen as a gene important in colonization of the
chick intestine (Morgan et al., 2004). A subsequent study
by Geddes et al. (2005) showed that the product of
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STM1698 is translocated into host cells in a SPI-2 T3SS-
dependent manner, and the gene was designated steC
(Salmonella translocated effector C). In this study we
have further characterized the product of steC. We show
that SteC is a kinase that is required for SPI-2 T3SS-
dependent actin meshwork formation in infected cells.

Results and discussion

SsrA-dependent intracellular expression of steC

A map of the chromosomal region encompassing steC is
shown in Fig. 1A. To determine if intracellular expression
of steC is regulated by SsrA–B, the steC open reading
frame and 300 bp of DNA upstream from its start codon
(see bar in Fig. 1A) was fused to a promoterless gfp gene.
The fusion was ligated into a plasmid and introduced into
wild-type or ssrA mutant strains, which were then used to
infect HeLa cells. Infected cells were fixed at 2 h intervals
following invasion, and examined by fluorescence and
differential interference contrast (DIC) microscopy.
Reporter activity was detected in intracellular but not
extracellular wild-type bacteria, 8 h post invasion
(Fig. 1B). No expression was detected in the ssrA mutant
strain, confirming that steC is part of the SsrA–B regulon.

Secretion and translocation of SteC-2HA

To detect secreted and translocated SteC, a gene encod-
ing a double haemagglutinin (2HA) epitope-tagged
version of SteC (steC-2HA) was introduced into the chro-
mosome in place of the steC allele in the wild-type strain
and an isogenic strain carrying a mutation in ssaV, which
encodes an essential component of the SPI-2 T3SS
(Beuzón et al., 1999). Wild-type and ssaV mutant strains
containing steC-2HA were grown in magnesium minimal

MES medium (MgM-MES) at pH 5.0, which induces the
expression of the SPI-2 T3SS and secretion of its effec-
tors (Beuzón et al., 1999). Under these conditions, SPI-2
T3SS-secreted proteins accumulate on the plastic surface
of the tube in which the bacteria are grown (Beuzón et al.,
1999; Yu et al., 2004). Proteins were recovered from this
location and from the bacterial cell pellet, separated by
SDS-PAGE and analysed by immunoblotting (Fig. 2A).
Rabbit anti-SseB antibody (Beuzón et al., 1999) was used
as a positive control. SteC-2HA was detected extracellu-
larly when expressed in the wild-type strain background,
but was found only in the bacterial cell pellet when
expressed in the ssaV mutant strain background. This
shows that S. Typhimurium requires a functional SPI-2
T3SS to secrete SteC in vitro.

To examine the translocation of SteC-2HA in host cells,
HeLa cells were infected with wild-type or ssaV mutant
strains containing steC-2HA. At 8 h post invasion, cells
were fixed, permeabilized with saponin to allow detection
of translocated protein (Yu et al., 2004) and immunola-
belled with anti-Salmonella and anti-HA antibodies. SteC-
2HA was readily detectable in HeLa cells infected with
wild-type bacteria, whereas cells infected with the ssaV
mutant did not show any immunolabelling with the anti-HA
antibody (Fig. 2B). This indicates that SteC requires a
functional SPI-2 T3SS to be translocated into host cells.
Cells infected with wild-type bacteria expressing SteC-
2HA were also labelled for LAMP-1, a lysosomal mem-
brane glycoprotein abundant on the SCV membrane and
Salmonella-induced filaments (Sifs), which are tubules that
extend from SCVs in infected epithelial cells (Garcia-del
Portillo et al., 1993). There was extensive colocalization
between SteC-2HA and SCV- and Sif-associated LAMP-1
(Fig. 2C). Therefore, SteC is a translocated SPI-2 effector
that shows a similar localization pattern to that of several
other SPI-2 effectors (Waterman and Holden, 2003).

Fig. 1. A. Map of the chromosomal region encompassing steC in S. Typhimurium. Black bar indicates the 1678 bp region containing the steC
promoter and open reading frame used for constructing the gfp fusion.
B. Intracellular expression of steC::gfp is dependent on ssrA. Confocal immunofluorescence analysis of HeLa cells infected with wild-type or
ssrA mutant bacteria carrying plasmid-borne steC::gfp fusions and fixed 8 h post invasion. Bacteria were detected with an anti-Salmonella
antibody (red in merged image). The upper panel shows an extracellular bacterium not expressing GFP and several intracellular bacteria
expressing GFP. Bars represent 5 mm.
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Intracellular replication and virulence assays

The SPI-2 T3SS is required for replication of S. Typhimu-
rium inside host cells (Waterman and Holden, 2003).
Therefore, an steC knock-out mutant was constructed to
investigate its intracellular growth, compared with that of
the wild-type strain and an ssaV mutant. Replication
assays were performed in epithelial (HeLa) cells and RAW
macrophages. At 2 h and 16 h post uptake in each cell
type, the growth of the steC mutant was indistinguishable
from that of the wild-type strain, while the ssaV mutant
displayed a strong replication defect in both cell types (data
not shown). To determine the importance of SteC for
virulence in the mouse model of systemic infection, the
steC mutant strain was subjected to a virulence test involv-
ing mixed infections of mice. A competitive index (CI),
which provides a value for the relative degree of virulence
attenuation, was determined after recovering bacteria from
spleens of infected animals, 48 h after intraperitoneal (i.p.)
inoculation (Beuzón and Holden, 2001). The CI for the steC
mutant strain versus the wild-type strain was 1.15%
� 0.08%, consistent with results of a previous study
(Geddes et al., 2005). Furthermore, we failed to detect a
virulence defect of the steC mutant when the mixed inocu-
lum was administered by the oral route (data not shown).

SteC is required for SPI-2-dependent F-actin meshwork
formation by intracellular bacteria

One characteristic of the SPI-2 T3SS, for which the cor-
responding effector(s) has not been identified, is the for-
mation of an F-actin meshwork around SCVs (Méresse
et al., 2001). Therefore, F-actin meshwork formation of
the steC mutant was investigated. Swiss 3T3 fibroblasts,

in which the SPI-2-dependent F-actin phenotype is par-
ticularly well defined (Méresse et al., 2001), were infected
for 8 h with different strains, then fixed and labelled to
detect Salmonella and F-actin. In wild-type-infected cells,
86.4% � 3.2% of microcolonies were associated with a
dense meshwork of F-actin, compared with 5.2% � 1.3%
in cells infected with the ssaV mutant (Fig. 3A and B).
Deletion of steC reduced the numbers of microcolonies
associated with F-actin to 1.7% � 0.6%. However, if the
steC mutant carried a functional steC allele under the
control of its own promoter on a plasmid, 94.3% � 1.2%
of microcolonies displayed an F-actin meshwork (Fig. 3A
and B). These results show that SteC is required for the
formation of the SPI-2-dependent F-actin meshwork.

Role of SteC in vacuole membrane integrity

Previous work from our laboratory has implicated SPI-2
T3SS-dependent F-actin reorganization in maintaining
the integrity of the Salmonella vacuolar membrane
(Méresse et al., 2001). We therefore investigated the
integrity of intracellular vacuoles enclosing the steC
mutant strain. RAW macrophages were infected for 12 h
with GFP-expressing wild-type, steC or sifA mutant
bacteria. The majority of sifA mutants lose their vacuolar
membrane by 8 h post uptake (Beuzón et al., 2000) and
therefore provide a positive control for vacuolar mem-
brane loss. Cells were treated with digitonin to selectively
permeabilize the host cell plasma membrane (Salcedo
and Holden, 2003), and labelled with an anti-Salmonella
antibody. Under these conditions, the majority (64.3%
� 4.1%) of wild-type bacteria failed to label with the anti-
Salmonella antibody, confirming the presence of an intact

Fig. 2. Intracellular translocation of SteC-2HA
requires a functional SPI-2 T3SS.
A. In vitro secretion of SteC-2HA. Wild-type
and ssaV mutant strains expressing
2HA-tagged SteC were grown overnight in
SPI-2-inducing conditions and bacterial cell
pellet and extracellular proteins (plastic) were
analysed by immunoblotting.
B and C. Localization of translocated
SteC-2HA. HeLa cells were infected for 8 h
with S. Typhimurium strains expressing
2HA-tagged SteC from the chromosome.
Cells were fixed and immunolabelled to detect
(B) the HA-epitope tag (red in merged image)
and Salmonella (green in merged image) or
(C) the HA-epitope tag (red in merged image),
Salmonella (blue in merged image) and
LAMP-1 (green in merged image). Boxed
insets in (C) are magnifications of indicated
regions showing colocalization between
SteC-2HA and LAMP-1 on Sifs. Bars
represent 5 mm.
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vacuolar membrane. However, only 28.6% � 3.4% of the
intracellular sifA mutant strain failed to label with the anti-
body, indicating that the majority had lost vacuolar mem-
brane integrity. Labelling of the steC mutant by this
method was similar to that of the wild-type strain
(60.2% � 3.3%). The integrity of vacuoles containing
steC mutant bacteria was also confirmed using LAMP-1
labelling as a marker for the Salmonella vacuolar mem-
brane (data not shown). Therefore, loss of SteC does not
result in noticeable destabilization of the SCV.

The evidence indicating a role for SPI-2-associated
F-actin in stability of the vacuolar membrane came from
experiments in which membranes enclosing wild-type but
not ssaV mutant bacteria were destabilized when infected
cells were treated with the actin-depolymerizing drugs
cytochalasin D or latrunculin B (Méresse et al., 2001).
However, prolonged exposure of host cells to these drugs
results in depolymerization of the vast majority of cellular
F-actin. In view of the results described above, it would
appear that the effects of these drugs on SCV mem-
branes are indirect and unrelated to SteC-directed actin
remodelling.

SteC is a kinase

steC is predicted to encode a protein of 457 amino acids,
originally annotated as a putative inner membrane protein
(McClelland et al., 2001). Functional predictions using
the InterProScan search engine (http://www.ebi.ac.uk/

InterProScan/) identified a region in SteC with similarity to
kinases. Visual alignment of this region (aa 232–280) with
several eukaryotic and prokaryotic kinases revealed resi-
dues in SteC (indicated in bold, Fig. 4A) that are highly
conserved in subdomains I, II and III of kinases (Hanks
et al., 1988). The consensus Gly-X-Gly-X-X-Gly is found
in subdomain I of many kinases and functions as a nucle-
otide positioning motif that has a critical role in ATP
binding (Bossemeyer, 1994). Subdomain II contains an
invariant Lys residue that anchors ATP and contributes to
the correct orientation of the triphosphate by interacting
with the a- and b- phosphates (Hanks and Hunter, 1995).
Mutation of this residue invariably results in a loss of
kinase activity (Bossemeyer, 1993; Iyer et al., 2005). The
nearly invariant Glu residue in subdomain III helps stabi-
lize interactions between the Lys residue and ATP (Hanks
and Hunter, 1995). The percentage identities of subdo-
mains I-III of several kinases to SteC (Fig. 4A, far right
brackets) indicate that this region of SteC has closest
similarity to the human RAF proto-oncogene serine/
threonine-protein kinase (Raf-1; Wellbrock et al., 2004).
However, SteC lacks the conserved central core of the
catalytic domain in subdomains VI through IX of eukary-
otic kinases, including highly conserved residues in the
catalytic loop, and the His-Arg-Asp, Asp-Phe-Gly and Ala-
Pro-Glu motifs, found in subdomains VI, VII and VIII
respectively, which are important for phosphotransfer
activity and substrate recognition of the kinase (Hanks
et al., 1988; Hanks and Hunter, 1995).

Fig. 3. SteC is required for SPI-2-dependent
F-actin reorganization. Swiss 3T3 cells were
infected for 8 h with wild-type, ssaV mutant,
steC mutant or steC mutant strains carrying
a functional allele.
A. Representative confocal images of cells
immunolabelled to detect Salmonella (green
in merged image). F-actin was visualized by
phalloidin-RRX staining (red in merged
image). Bars represent 5 mm.
B. Quantification of F-actin remodelling by
Salmonella strains. Results are the
means � SE of three independent
experiments, in which a total of 300 infected
cells were examined for each strain.
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To determine if SteC is a kinase, SteC, SteCK256H (in
which the putative ATP-anchoring Lys residue in subdo-
main II was replaced by His) and C-SteC (lacking the
N-terminal 200 amino acids, which show no similarity to
kinases) were expressed and highly enriched as 6-His
fusion proteins (Fig. 4B). These were incubated sepa-
rately with [g-32P]ATP and the general kinase substrate,
myelin basic protein (MBP). Proteins were then separated
by SDS-PAGE and analysed by autoradiography
(Fig. 4B). SteC-6His and C-SteC-6His both phosphory-
lated MBP and also underwent autophosphorylation, a
characteristic of many kinases (Hanks and Hunter, 1995;
Morrison and Cutler, 1997; Chong et al., 2001). Mutation
of Lys256 resulted in the complete loss of kinase activity.

These results confirm that SteC is a kinase whose enzy-
matic activity is dependent on a conserved Lys residue in
subdomain II, but not the N-terminal 200 amino acids of
the protein. As for several other SPI-2 T3SS effectors, this
region might be important for secretion, translocation and
localization of SteC (Miao and Miller, 2000).

So far as we are aware, SteC is only the fourth T3SS
effector to be identified displaying kinase activity. The
others are OspG of Shigella flexneri (Kim et al., 2005),
YopO/YpkA of the plasmid-encoded Yersinia T3SS
(Galyov et al., 1993; Barz et al., 2000), and YspK, a
recently identified effector of the chromosomally encoded
Ysp T3SS of Yersinia enterocolitica (Matsumoto and
Young, 2006). Of these kinases, OspG and YspK share

Fig. 4. SteC is a kinase.
A. Amino acid alignment of SteC with a selection of eukaryotic kinases (upper panel, adapted from Hanks and Hunter, 1995) and the following
known or predicted bacterial kinases (lower panel): NleH1-1SAKAI and NleH1-2SAKAI from E. coli O157 (Tobe et al., 2006), YspK from Yersinia
enterocolitica Biovar 1B (Matsumoto and Young, 2006), OspG from Shigella flexneri (Kim et al., 2005), YpkA from Yersinia pseudotuberculosis
(Galyov et al., 1993) and YopO from Yersinia enterocolitica (Barz et al., 2000). The percentage identity between subdomains I–III of each
kinase and SteC is shown in brackets on the far right. The highly conserved glycine-rich loop, lysine and glutamic acid residues found in
the majority of kinases are indicated in bold. SteC is most similar to human Raf-1 and conserved residues between the two proteins are
highlighted in grey.
B. In vitro kinase assay. SteC, the lysine mutant (SteCK256H) and the kinase domain of SteC (C-SteC) were expressed as 6-His fusion
proteins and incubated separately with the general kinase substrate MBP and [g-32P]ATP. Proteins were subjected to SDS-PAGE followed by
Coomassie blue staining and autoradiography.
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90% identity within subdomains I–III (data not shown).
Two additional effectors, NleH1-1SAKAI and NleH1-2SAKAI

from Escherichia coli O157, are also predicted to be
kinases on the basis of strong similarity to OspG (Tobe
et al., 2006). However, SteC and YopO/YpkA are not
members of this subclass of bacterial kinases, and SteC
has greater similarity to eukaryotic kinases, especially
Raf-1.

Intracellular F-actin meshwork formation by Salmonella
is dependent on Lys256 of SteC

To determine the importance of SteC Lys256 in F-actin
meshwork formation by Salmonella in infected cells,
Swiss 3T3 cells were infected with an steC mutant strain
expressing one of two epitope-tagged versions of SteC
(SteC-2HA or SteCK256H-2HA) from a plasmid. Infected
cells were fixed at 8 h post invasion and labelled to
detect Salmonella and F-actin (Fig. 5A), or Salmonella
and the HA epitope (Fig. 5C). Mutation of Lys256 had no
detectable effect on translocation of the protein
(Fig. 5C). Salmonella-associated F-actin was detected in
89.5% � 2.6% of cells infected with the strain express-
ing SteC-2HA, but only in 5.6% � 1.2% of cells infected

with the strain expressing SteCK256H-2HA (Fig. 5A and
B). As Lys256 is essential for kinase activity of SteC,
SPI-2 T3SS-dependent F-actin meshwork formation
almost certainly requires the kinase activity of SteC. To
determine the localization of SteC-2HA in infected Swiss
3T3 cells, cells were fixed at 8 h post invasion and
labelled to detect Salmonella, HA and F-actin. A sub-
stantial degree of colocalization between SteC-2HA and
F-actin was observed (Fig. 5D). This indicates that in
addition to its localization on or close to the SCV mem-
brane (Fig. 2C), SteC-2HA also localizes to SPI-2-
induced F-actin structures.

SteC is sufficient to cause ROCK-like
F-actin reorganization

We next investigated whether SteC activity is sufficient
to cause F-actin reorganization in host cells. Swiss 3T3
fibroblasts were transfected with vectors encoding c-myc-
epitope-tagged SteC (SteC-myc), the kinase-inactive
point mutant (SteCK256H-myc) or the kinase domain
(C-SteC-myc). Cells were transfected for 20 h in medium
containing serum, and then incubated for another 3 h in
serum-free medium before fixation, immunolabelling and

Fig. 5. Intracellular F-actin reorganization by
Salmonella is dependent on the Lys256 of
SteC.
A. Representative confocal images of Swiss
3T3 fibroblasts infected for 8 h with an steC
mutant containing plasmid-borne steC-2HA, or
steCK256H-2HA. Cells were immunolabelled
to detect Salmonella (green in merged
image). F-actin was visualized by
phalloidin-RRX staining (red in merged
image). Bars represent 5 mm.
B. Quantification of F-actin reorganization by
Salmonella strains. Results are the
means � SE of three independent
experiments, in which a total of 300 infected
cells were examined for each strain. Results
for cells infected with wild-type or steC mutant
strains are for comparison and are from
Fig. 3B.
C. Representative confocal images of infected
cells showing translocation of SteC-2HA and
SteCK256H-2HA expressed from a low-copy
plasmid. Cells were fixed and immunolabelled
to detect Salmonella (green in merged image)
and HA (red in merged image). Bars
represent 5 mm.
D. Representative confocal micrograph of an
infected cell showing translocated SteC-2HA
localizing to F-actin. Cells were fixed and
immunolabelled to detect Salmonella (blue in
merged image) and HA (green in merged
image. F-actin was visualized by
phalloidin-RRX staining (red in merged
image). Boxed insets are magnifications of
indicated region showing localization of
SteC-2HA with F-actin. Bars represent 5 mm.
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examination by confocal microscopy. Untransfected fibro-
blasts or cells expressing SteCK256H-myc contained
very few organized actin filaments except in the cortical
region (Fig. 6A). In contrast, expression of SteC-myc or
C-SteC-myc resulted in the formation of thick actin cables
connecting large clusters of highly condensed F-actin
(Fig. 6A and B). In cells expressing SteC-myc, these
structures appeared to be randomly distributed through-
out the cytoplasm, but in cells expressing C-SteC, clus-
ters and cables were mainly found at the cell periphery
(Fig. 6A and B). Therefore, SteC is sufficient to induce
substantial reorganization of the host cell actin cytoskel-
eton in the absence of other bacterial effectors and its
N-terminal 200 amino acids appear to have a role in its
regulation or localization.

Salmonella-containing vacuole-associated F-actin has
different morphologies, depending at least in part on the
host cell type. These include a meshwork of F-actin
between SCVs of a bacterial microcolony, a cage-like
structure enclosing several SCVs (Méresse et al., 2001),
or a highly condensed cluster of F-actin, frequently posi-
tioned towards the centre of a bacterial microcolony (Miao
et al., 2003), from which long cables or filaments some-
times extend (Figs 3A and 5A). This phenotype is inter-
esting in relation to the similarity displayed by SteC to
Raf-1. Raf-1 plays a central role in cell proliferation, dif-
ferentiation and survival. Raf kinases also influence actin
cytoskeleton dynamics by modulating signalling pathways
involving the Rho effector ROCK (Pritchard et al., 2004;
Ehrenreiter et al., 2005; Castellani et al., 2006). The
F-actin clusters and cables that are formed in fibroblasts
following expression of SteC are very similar in appear-
ance to those produced upon expression of active ROCK
(Fig. 6A lower panel; Amano et al., 1997). However, treat-
ment of infected cells with the ROCK inhibitor Y-27632 did
not affect SteC-dependent F-actin remodelling around
Salmonella microcolonies (data not shown). We are there-
fore currently investigating the possibility that SteC
targets other component(s) of a pathway involving ROCK
and other signalling pathways. Previous work from our
laboratory has shown that several proteins involved in
actin assembly, including Cdc42, Rac, N-WASP, Scar/
WAVE and Arp2/3 are not involved in SPI-2 T3SS-
dependent F-actin meshwork formation (Unsworth et al.,
2004).

As SteC does not appear to contribute significantly to
virulence in the murine model of systemic infection, the
broader physiological significance of the kinase activity of
SteC and its effect on the actin cytoskeleton is currently
unknown. However, homologues of steC are present
in other S. enterica serovars, including S. Paratyphi,
S. Typhi and S. Choleraesuis (Geddes et al., 2005), and it
is possible that SteC has a role in colonization of the chick
intestine (Morgan et al., 2004) and/or other hosts.

Fig. 6. SteC is sufficient to cause ROCK-like F-actin
reorganization.
A. Representative confocal images of Swiss 3T3 cells transfected
with vectors expressing myc-tagged SteC, C-SteC, SteCK256H or
active ROCK (ROCK-K). Cells were immunolabelled with anti-Myc
antibody (green in merged image) and F-actin was visualized by
phalloidin-RRX staining (red in merged image). Bars represent
10 mm.
B. Quantification of transfected cells displaying F-actin
reorganization (white bars) and also periphery F-actin
reorganization (black bars). Results are the means � SE of three
independent experiments, in which a total of 300 transfected cells
were examined for each transfection vector.
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Experimental procedures

Bacterial strains and growth conditions

Bacteria ( Table 1) were grown in Luria–Bertani (LB) medium
supplemented with carbenicillin (50 mg ml-1), kanamycin
(50 mg ml-1) or chloramphenicol (30 mg ml-1), for strains resistant
to these antibiotics (Ampr, Kmr and Cmr respectively). To induce
SPI-2 gene expression and SPI-2-dependent secretion,
bacteria were grown in MgM-MES, containing 170 mM 2-[N-
morpholinol]ethane-sulfonic acid (MES) at pH 5.0, 5 mM KCl,
7.5 mM (NH4)2SO4, 0.5 mM K2SO4, 1 mM KH2PO4, 8 mM MgCl2,
38 mM glycerol and 1% Casamino acids (Beuzón et al., 1999)
with the corresponding antibiotics when appropriate. Bacteria
were grown at 37°C overnight with aeration.

Plasmids

Plasmids used in this study are listed in Table 2.

Primers and construction of mutant strain, epitope
tagging, site-directed mutagenesis and
expression vectors

The primers used in this study are listed in Table S1. Polymerase
chain reactions (PCRs) were performed using either the Taq
polymerase (Sigma) or the Expand Long-Template PCR system
(Roche) protocols. The Quikchange II site-directed mutagenesis
kit protocol (Stratagene) was used to construct the Lys to His
point mutant. The chromosomal deletion of steC in S. Typhimu-
rium 12023 was performed by using the one-step gene-disruption
technique (Datsenko and Wanner, 2000). The influenza virus HA
epitope DNA sequence was fused to the chromosomal copy of
steC according to Uzzau et al. (2001). steC-2HA was transduced
by bacteriophage P22 into the ssaV mutant strain following
the method of Davis et al. (1980). Site-directed mutagenesis
was performed according to manufacturer’s recommendations
(Quikchange, Stratagene). Lys at residue 256 of SteC was
changed to His using primers K256H-F and K256H-R. Primers
for constructs are listed in Table S1.

Table 1. Bacterial strains used in this study.

Strain Description Reference/source

12023 Wild-type S. Typhimurium NTCC (Colindale, UK)
12023,psteC::gfp steC::gfp under control of the steC promoter in 12023 (ampr) This study
P3F4 ssrA::mTn5 (kmr) Shea et al. (1996)
Rosetta E. coli (cmr) Novagen
DssrA,psteC::gfp steC::gfp under control of the steC promoter in P3F4 (kmr, ampr) This study
DsteC DsteC::km in 12023 (kmr) This study
steC-2HA steC-2HA in 12023 (kmr) This study
DsteC,psteC pWSK29steC in DsteC (kmr, ampr) This study
DsteC,psteC-2HA pWSK29steC-2HA in DsteC (kmr, ampr) This study
DsteC,psteCK256H-2HA pWSK29steCK256H-2HA in DsteC (kmr, ampr) This study
HH119 ssaV::aphT (kmr) in 12023 Deiwick et al. (1998)
DssaV,steC-2HA steC-2HA in HH119 (kmr) This study
TOP10 E. coli Invitrogen

Table 2. Plasmids used in this study.

Plasmid Description Reference/source

pFPV25 Promoter trap vector, used to fuse promoters to the green fluorescent
protein gene, gfp

Valdivia and Falkow (1996)

pFPV25.1 rpsM::gfpmut3a promoter fusion in pFPV25 Valdivia and Falkow (1996)
psteC::gfp steC promoter and open reading frame fused to promoterless gfp This study
pSU315 Template for HA-tagging of genes containing kanamycin cassette Uzzau et al. (2001)
pWSK29 Low copy plasmid Wang and Kushner (1991)
psteC pWSK29 containing steC This study
psteC-2HA pWSK29 containing steC-2HA This study
psteCK256H-2HA pWSK29 containing steCK256H-2HA This study
pRK5myc Transfection vector containing multiple cloning site downstream of c-myc Dr E Caron
pRK5steCmyc steC tagged with N-terminal c-myc tag This study
pRK5steCK256Hmyc steCK256H tagged with N-terminal c-myc tag This study
pRK5C-steCmyc C-steC tagged with N-terminal c-myc tag This study
Myc-ROCK-K Active construct of ROCK tagged with N-terminal c-myc tag in pRK5myc Dr E Caron

Olazabal et al. (2002)
pET28b Expression vector containing an N-terminal 6-His tag Novagen
pET28bsteC-6His steC tagged with 6-His tag This study
pET28bsteCK256H-6His steCK256H tagged with 6-His tag This study
pET28bC-steC-6His C-steC tagged with 6-His tag This study
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Antibodies and reagents

Anti-Salmonella goat polyclonal antibody CSA-1 (Kirkegaard and
Perry Laboratories, Gaithersburg, MD) was used at a dilution of
1:200. Anti-HA mouse monoclonal antibody (HA.11; Covance)
was used at a dilution of 1:200 (immunofluorescence micro-
scopy) and 1:1000 (Western blot). Anti-HA rat monoclonal
antibody (Roche) was used at a dilution of 1:200 for immuno-
fluorescence. Anti-LAMP-1 mouse monoclonal antibody (H4A3;
Developmental Studies Hybridoma Bank), developed under the
auspices of the NICHD and maintained by the University of Iowa
(Department of Biological Sciences), and was used at a dilution
of 1:200. The rabbit polyclonal anti-LAMP-1 antibody 156 was
kindly provided by Dr S. Méresse (Centre d’Immunologie de
Marseille-Luminy, Marseille, France) and used at a dilution of
1:250. Rabbit polyclonal anti-SseB antibody (Beuzón et al.,
1999) was used at a dilution of 1:1000. AMCA-, Cy2-, Cy5-, or
Rhodamine red X (RRX)-conjugated donkey anti-goat, anti-rabbit
or anti-mouse antibodies (Jackson Immunoresearch Laborato-
ries) were used for immunofluorescence at a dilution of 1:400 for
Cy5 antibody and 1:200 for the others. Anti-mouse (IgG) and
anti-rabbit (IgG) horseradish peroxidase (Amersham Pharmacia
Biosciences) were used at a dilution of 1:10 000 for Western blot
analysis.

Cell culture

HeLa (93021013) and RAW 264.7 (91062702) cells were
obtained from the European Collection of Cell Cultures, Salis-
bury, UK. Swiss 3T3 murine fibroblast cells were kindly provided
by Dr E. Caron (Imperial College London, UK). Cells were grown
in DMEM (Gibco, Carlsbad, CA) supplemented with 10% FCS.
Cells were grown at 37°C in 5% CO2.

Bacterial infection of cells and immunofluorescence
microscopy and replication assays

HeLa and Swiss 3T3 cells were infected with exponential phase
S. Typhimurium as described previously (Beuzón et al., 2000).
Macrophages were infected with opsonized, stationary phase
S. Typhimurium as described previously (Beuzón et al., 2000). To
follow a synchronized population of bacteria, host cells were
washed after 15 min (HeLa and Swiss 3T3 cells) or 25 min (mac-
rophages) of exposure to S. Typhimurium and subsequently incu-
bated in medium containing gentamicin to kill extracellular
bacteria. For immunofluorescence, cells were fixed in paraform-
aldehyde, permeabilized, and incubated with antibodies as
described (Beuzón et al., 2000). Labelled cells were analysed
using a confocal laser scanning microscope (LSM510; Zeiss).
For enumeration of intracellular bacteria, macrophages were
washed three times with PBS, lysed with 0.1% Triton X-100 for
10 min and dilution series were plated onto LB agar.

Preparation of protein fractions from
bacteria grown in vitro

Bacterial cell densities were determined by measurement of the
OD600 after overnight growth. To ensure that protein from equal
numbers of cells was analysed, in all experiments protein

samples were adjusted to OD600 values such that a volume cor-
responding to 10 ml of a culture of OD600 0.6 was taken up in
100 ml of protein-denaturing buffer for gel electrophoresis. The
secreted and total bacterial cell pellet were prepared as
described before (Beuzón et al., 1999; Yu et al., 2004).

Protein purification and kinase assay

Plasmids for expression of 6-His fusion proteins (SteC-6His,
SteCK256H-6His and C-SteC-6His) were constructed in the
pET28b vector using the primers listed in Table S1 and intro-
duced into E. coli Rosetta cells (Novagen). Protein expression
was induced by using IPTG (0.1 mM) and cells were lysed using
French press. Samples were centrifuged at 18 000 g for 45 min,
and protein samples were passed through a HisTrap HP column
(GE Healthcare). Bound proteins were washed and eluted from
the column using elution buffer (25 mM Hepes buffer pH 8.0,
500 mM KCl, 5% glycerol) with increasing concentration of imi-
dazole (50–500 mM). Samples were dialysed in 40 mM Tris-HCl,
pH 7.4, overnight and used directly for kinase assays. For
assays, 10 mg of expressed protein (SteC-6His, SteCK256H-
6His or C-SteC-6His) was added to a reagent mixture containing
50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 100 mM NaCl, 1 mM
Dithiothreitol, 20 mM ATP, 2 mCi [g-32P]ATP (Amersham,
370 MBq ml-1, 3000 Ci mmol-1), 10 mg MBP (Sigma). The
mixture was incubated for 30 min at 30°C and then subjected to
SDS-PAGE followed by Coomassie blue staining and
autoradiography.

Transfection of Swiss 3T3 cells

Transfection vectors for expression of c-myc-tagged SteC,
SteCK256H and C-SteC were constructed in the pRK5myc
vector using the primers listed in Table S1. Myc-tagged active
ROCK (ROCK-K) was a gift from Dr E. Caron (Imperial College
London, UK). Swiss 3T3 fibroblast cells were seeded onto glass
coverslips (12 mm diameter) at a density of 5 ¥ 104 cells ml-1,
24 h before transfection. The jetPEI (Autogen Bioclear) protocol
for transfection was followed according to manufacturer’s recom-
mendations: 3 mg of transfection vector DNA was added to 100 ml
of sterile 150 mM NaCl. In a separate tube, 6 ml of jetPEI cations
was added to 100 ml of sterile 150 mM NaCl. The jetPEI cations
mixture was then added to the transfection vector mix and left
for 30 min at room temperature. After incubation, the mixture
was added to the cultured Swiss 3T3 cells, centrifuged at 180 g
for 5 min, and then incubated at 37°C in 5% CO2. Cells were
transfected for 20 h, after which serum-free medium was added
for another 3 h before the cells were fixed in paraformaldehyde,
permeabilized and labelled as described above.

Competitive Index assay

Female BALB/c mice (B and K Universal, Hull, UK) of 18–22 g
were used for all infection studies and were challenged either by
i.p. or by oral gavage (p.o.) with 0.2 ml of bacteria suspended in
physiological saline solution. The bacterial inocula used were
1 ¥ 105 (i.p.) or 1 ¥ 108 (p.o.) cfu of each strain. At least five mice
were inoculated per strain mixture for each experiment. Mice
were sacrificed 48 h (i.p.) or 4 days (p.o.) after inoculation. Each
CI value is the mean of three independent experiments.
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