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Adaptive Autoregressive Model for Reduction of Noise in SPECT
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This paper presents improved autoregressive modelling (AR) to reduce noise in SPECT images. An AR filter was applied to prefilter
projection images andpostfilter ordered subset expectationmaximisation (OSEM) reconstruction images (AR-OSEM-ARmethod).
The performance of this method was compared with filtered back projection (FBP) preceded by Butterworth filtering (BW-FBP
method) and the OSEM reconstruction method followed by Butterworth filtering (OSEM-BWmethod). A mathematical cylinder
phantomwas used for the study. It consisted of hot and cold objects.The tests were performed using three simulated SPECTdatasets.
Image quality was assessed by means of the percentage contrast resolution (CR%) and the full width at half maximum (FWHM)
of the line spread functions of the cylinders. The BW-FBP method showed the highest CR% values and the AR-OSEM-ARmethod
gave the lowest CR% values for cold stacks. In the analysis of hot stacks, the BW-FBP method had higher CR% values than the
OSEM-BW method. The BW-FBP method exhibited the lowest FWHM values for cold stacks and the AR-OSEM-AR method for
hot stacks. In conclusion, the AR-OSEM-AR method is a feasible way to remove noise from SPECT images. It has good spatial
resolution for hot objects.

1. Introduction

Numerous methods for removing noise from SPECT images
have been proposed [1, 2]. This indicates the difficulty of the
task. Noise removal can be performed before reconstruction
(prefiltering), during reconstructions or after reconstruc-
tion (postfiltering). In modern iterative methods, collima-
tor correction denoises images during reconstruction, but
the reconstructed images may still require postfiltering [3].
Earlier we introduced an adaptive autoregressive (AR) filter
to reduce noise in scintigraphic planar images or projection
images of a SPECT study [4]. In the presentwork, theARfilter
was further improved to reduce noise from the projection
images and also from three-dimensionally reconstructed
data. It is important to apply the best AR filter to the
projection data of SPECT, because a small change in the
projection data may cause a large change in the estimated
transaxial image [5]. Our method was compared with two

established methods for improving image quality in SPECT.
The methodical comparison was carried out using a three-
dimensional mathematical cylinder phantom (3D-MAC) [6],
and it was illustrated with patient data.

2. Methods

2.1. ARModel. In two-dimensional ARmodelling, each value
of an image is regressed on its neighbourhood pixel values,
called the prediction region. An AR model can be regarded
as a low-pass filter that divides the image into two additive
components, a predictable image and a prediction error
image. An AR process𝑋(𝑛
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2
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prediction error, that is, the difference between the predicted
value and the current value in this pixel. The predictable
image𝑋pred is the image obtained by applying the AR model
to the original image𝑋orig.The prediction error image𝑋err =
𝑋orig − 𝑋pred.

In a typical scintigraphic image, there are large local spa-
tial variations in the count number of the image. Therefore,
the same model cannot be applied to the entire image, but
the model must be adapted to the variations. In this adaptive
method, the image area is divided into smaller blocks and
the AR model is then fitted into each block separately by
using MATLAB subroutines. Recently, a block-wise denois-
ing method has been introduced also for three-dimensional
ultrasound images [7]. In the AR model, a prediction region
of four orthogonal neighbours of the predicted pixel with a
block size of 5 × 5 pixels was used [4]. Seventy-five percent
overlap of the image blocks in combinationwith one iteration
of the filtering procedure was used. The two error term
images were summed up and subjected to AR filtering, and
the resulting image was then added to the iteratively filtered
image (Figure 1). In the present study, we tested the effect of
using another AR model for the summed error term images
than for the original image. We used the same transaxial
slice of the Zubal phantom [8] and the same simulation
conditions as in our previous work [4], and image quality was
assessed by means of the mean squared error (MSE) of the
image. It is of note that the Poisson-noise-corrupted slice of
the phantom actually represented an artificial scintigraphic
planar image or a projection image of a SPECT study. The
AR model with the lowest MSE was then used to prefilter
the SPECT projection images and also to postfilter iteratively
reconstructed data. The filter was applied to each set of
orthogonal plane images separately. The software was based
on MATLAB subroutines (The MathWorks, Inc.).

2.2. Phantom. Data were simulated using a 3D-MAC phan-
tom [6]. The phantom measured 200mm in both diameter
and length. It comprised three imbedded objects: two hot
objects and a cold one. Each object consisted of five stacked
cylinders. The cylinders had diameters of 4, 10, 20, 40, and
60mm and a length of 30mm. The smallest cylinder was
not utilised in the present study because its dimensions were
beyond the resolution of the simulated SPECT system used.
Relative activities were 1, 0, 2, and 4 for the background,
a cold stack, and two hot stacks, respectively. The tests
were performed using three SPECT datasets with different
image statistics. Total counts of the projection images were
approximately 50000 (low level), 100000 (intermediate level),
and 150000 (high level) per projection. A built-in MATLAB
function was used to add Poisson noise to ideal projection
images of the 3D-MAC. The mean counts of a pixel in the
projection images were 12, 24, and 37, respectively, and the
range of pixel values was 0–52, 0–104, and 0–156, respectively.
The matrix size was 64 × 64 pixels, pixel size was 4mm,
and the number of projections was 120. There was no scatter
or attenuation component and perfect depth-independent
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Figure 1: Flowchart of the autoregressive denoising process. ARF:
autoregressive filtering;𝑋orig: original noise-corrupted image;𝑋pred1
and 𝑋pred2: predictable images; 𝑋err 1, 𝑋err 2, 𝑋err: prediction error
images; 𝑋err𝑆: sum of two prediction error images; 𝑋final: final
image.

Table 1: Effect of changing the block size of the summed error term
image with a prediction region of 3 × 3 pixels. For the predictable
image a prediction region of four orthogonal neighbours with a
block size of 5 × 5 pixels was used.

Total counts Block size Mean squared error
28705 5 × 5 0.87
28705 6 × 6 0.86
28705 7 × 7 0.86
54469 5 × 5 2.12
54469 6 × 6 2.10
54469 7 × 7 2.14
108938 5 × 5 6.61
108938 6 × 6 6.56
108938 7 × 7 7.04

resolution was assumed in the simulated data. Thus, the only
factor degrading image quality in the projection images was
the Poisson noise.

2.3. Reconstruction Methods. Transaxial slices were recon-
structed using either the filtered back projection method
(FBP) [9] or an iterative ordered subset expectation maximi-
sation (OSEM) algorithm [10]. The reconstruction methods
were implemented on the Hermes SPECT (G) reconstruction
software (version 3.8) and reconstruction engine of Her-
mes HybridRecon (Hermes Medical Solutions, Stockholm,
Sweden), respectively. Three methods were compared: AR
filtering before and after ordered OSEM reconstruction (AR-
OSEM-AR), two-dimensional Butterworth filtering before
FBP reconstruction in combination with a ramp filter during
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Figure 2: Transaxial slice of the Zubal phantom. (a) Poisson-noise-corrupted transaxial slice. (b) Iteratively filtered predictable image.
(c) Filtered summed error term image. (d)The final image.The images are individually scaled to their ownmaximum. Inverse linear grey scale
is used for comparison with original phantom. The total count level is 108791 in the Poisson-noise-corrupted image, 102237 in the iteratively
filtered predictable image, and 6205 in the filtered summed error term image.

reconstruction (BW-FBP), and OSEM reconstruction fol-
lowed by three-dimensional Butterworth filtering (OSEM-
BW). The Butterworth filter was originally designed for one-
dimensional data [11]. In the OSEM method, the number
of subsets was set to 8 and the number of iterations to 10.
Postfiltering was performed using Multimodality software
(Hermes Medical Solutions, Stockholm, Sweden). Noise-free
projection images were also reconstructed using the OSEM
(Ideal-OSEM) method.

2.4. Assessment of Image Quality. To obtain a fair comparison
of the methods, the same amount of filtering was applied in
each method. This was done by drawing a circular region-
of-interest (ROI) 150mm in diameter in the uniform part
of the phantom and calculating the percentage coefficient of
variation (CoV%) in the ROI, that is, the ratio of the standard
deviation to the mean multiplied by 100.This kind of presen-
tation ensures that filtering between each method is equal.

Percentage contrast resolution (CR%) values for the
activity in each cylinder and uniform activity were calculated.
CR% can be expressed by the following formula [12]:

CR% = |𝑀 − 𝑚|
𝑀
× 100%, (2)

Table 2: Percentage coefficient of variation for different reconstruc-
tion techniques.

Method Count level RelAct CF (cycles/cm) CoV%
AR-OSEM-AR 50000 0 — 6.35
BW-FBP 50000 2 0.83 6.37
OSEM-BW 50000 4 0.84 6.36
AR-OSEM-AR 100000 0 — 4.60
BW-FBP 100000 2 0.80 4.56
OSEM-BW 100000 4 0.84 4.65
AR-OSEM-AR 150000 0 — 4.43
BW-FBP 150000 2 0.89 4.50
OSEM-BW 150000 4 0.86 4.43
AR-OSEM-AR: autoregressive filtering before and after ordered subset
expectation maximisation algorithm; BW-FBP: Butterworth prefiltering and
filtered back projection; OSEM-BW: ordered subset expectation maximi-
sation algorithm and Butterworth postfiltering; RelAct: activity relative to
background activity of 1; CF: cut-off frequency. The order of the filter was 2;
—: not definable.

where𝑀 is the count value of uniform activity and 𝑚 is the
count value in each cylinder. Activity in each cylinder was
analysed using a circular ROI with the same diameter as the
cylinder.The ROIs were drawn on noise-free transaxial slices
and were copied to each set of reconstructed data, so their
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Table 3: Percentage contrast resolution values for the different
methods.

Method RelAct 10 Ø 20 Ø 40 Ø 60 Ø
A

AR-OSEM-AR 0 18.4 56.3 74.6 84.2
BW-FBP 0 28.7 67.2 83.1 91.6
OSEM-BW 0 24.9 59.5 75.7 85.6
AR-OSEM-AR 2 9.0 86.1 84.3 103.5
BW-FBP 2 16.7 75.5 86.6 97.2
OSEM-BW 2 9.9 65.3 76.9 98.3
AR-OSEM-AR 4 136.5 253.0 270.4 296.5
BW-FBP 4 84.9 229.2 259.2 289.1
OSEM-BW 4 70.2 204.1 247.1 300.0

B
AR-OSEM-AR 0 21.5 58.0 76.1 84.8
BW-FBP 0 20.4 61.6 83.2 91.8
OSEM-BW 0 32.9 61.9 78.0 86.6
AR-OSEM-AR 2 32.8 81.0 81.9 95.7
BW-FBP 2 35.1 80.2 87.4 102.7
OSEM-BW 2 29.7 75.4 78.8 98.3
AR-OSEM-AR 4 132.8 230.2 269.8 295.7
BW-FBP 4 94.6 236.9 270.3 316.2
OSEM-BW 4 85.6 224.6 255.1 308.5

C
AR-OSEM-AR 0 24.0 55.9 75.0 85.5
BW-FBP 0 32.9 68.7 83.0 93.0
OSEM-BW 0 31.2 60.7 76.8 87.8
AR-OSEM-AR 2 41.1 76.0 86.9 94.9
BW-FBP 2 38.8 82.4 93.9 103.6
OSEM-BW 2 34.3 83.1 85.5 100.6
AR-OSEM-AR 4 119.4 237.1 266.3 297.7
BW-FBP 4 112.7 248.5 274.5 318.2
OSEM-BW 4 108.1 260.5 261.0 316.9
A: low count level; B: intermediate count level; C: high count level; AR-
OSEM-AR: autoregressive filtering before and after ordered subset expecta-
tion maximisation algorithm; BW-FBP: Butterworth prefiltering and filtered
back projection; OSEM-BW: ordered subset expectation maximisation algo-
rithm and Butterworth postfiltering; RelAct: activity relative to background
activity of 1; Ø: diameter.

position and area were equal in every image. The ROIs were
drawn using Multimodality software. The CR% values were
obtained using the average counts in the ROIs.

Spatial resolution was estimated by the full width at
half maximum (FWHM) of the line spread functions of the
cylinders. One-, two-, four- and six-pixel-thick profiles were
drawn through the 10-, 20-, 40- and 60-mm-wide cylinders,
respectively. The FWMH values were calculated using Her-
mes quality control software (version 2.0).

2.5. Patient Study. Skeletal SPECT was performed three
hours after an intravenous injection of 925MBq of
99mTechnetium-labelled methylene diphosphonate. The
images were obtained over a 360∘ arc, using 64 projections at
20 sec per projection. The images were acquired into a 128 ×
128 matrix with a pixel size of 4.8mm. Total counts of the
projection images were 41006–66830 counts per projection.

Table 4: Full width at half maximum values for the different
methods.

Method RelAct 10 Ø 20 Ø 40 Ø 60 Ø
A

AR-OSEM-AR 0 19.7 25.0 45.8 64.8
BW-FBP 0 17.9 23.2 43.5 63.8
OSEM-BW 0 19.4 23.2 43.6 62.8
AR-OSEM-AR 2 — 21.5 35.3 59.1
BW-FBP 2 — 23.2 36.6 59.6
OSEM-BW 2 — 22.2 35.8 59.1
AR-OSEM-AR 4 13.4 18.4 37.8 57.8
BW-FBP 4 15.8 20.4 37.9 57.9
OSEM-BW 4 15.2 19.9 37.7 57.9

B
AR-OSEM-AR 0 23.7 23.7 43.0 62.3
BW-FBP 0 18.6 22.4 41.2 61.4
OSEM-BW 0 18.8 23.2 41.9 61.7
AR-OSEM-AR 2 19.4 19.8 38.9 59.0
BW-FBP 2 19.0 21.0 38.5 58.9
OSEM-BW 2 17.7 19.9 38.5 59.0
AR-OSEM-AR 4 13.0 19.7 37.8 58.2
BW-FBP 4 15.4 21.0 37.7 57.9
OSEM-BW 4 14.2 20.2 37.9 58.1

C
AR-OSEM-AR 0 20.2 23.9 40.9 63.2
BW-FBP 0 18.5 21.1 40.6 61.7
OSEM-BW 0 16.8 23.2 40.3 62.3
AR-OSEM-AR 2 15.8 19.5 39.0 58.6
BW-FBP 2 16.9 20.8 38.6 58.7
OSEM-BW 2 16.5 20.3 39.1 58.6
AR-OSEM-AR 4 12.5 19.0 37.6 58.2
BW-FBP 4 14.0 19.6 36.8 58.0
OSEM-BW 4 13.8 19.3 37.4 57.9
A: low count level; B: intermediate count level; C: high count level; AR-
OSEM-AR: autoregressive filtering before and after ordered subset expecta-
tion maximisation algorithm; BW-FBP: Butterworth prefiltering and filtered
back projection; OSEM-BW: ordered subset expectation maximisation algo-
rithm and Butterworth postfiltering; RelAct: activity relative to background
activity of 1; Ø: diameter.

2.6. Statistical Methods. The data were analysed using Win-
STAT for Excel (version 2007.1; R. Fitch Software, Staufen,
Germany). Pair-wise comparisons were performed with the
nonparametric Wilcoxon’s rank-sum test. Comparisons were
made between the AR-OSEM-AR and BW-FBPmethods, the
AR-OSEM-AR and OSEM-BW methods, and the BW-FBP
and OSEM-BW methods. Data from the cold stacks and the
pooled hot stacks were analysed separately. For each cylinder,
the paired difference between the values of a variable was
computed. The values of the differences were sorted to get a
rank order. Finally, the mean rank of negative differences was
compared with that of positive differences. Wilcoxon’s rank-
sum test determines to what extent the difference in mean
rank is significant. A 𝑃 value of less than 0.05 was considered
significant.
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Figure 3: Transaxial slices of the phantom at the level of cylinders with a diameter of 20mm. (a) Images reconstructed from noise-free
projection images using ordered subset expectation maximisation reconstruction. (b) Autoregressive filtering before and after ordered subset
expectationmaximisation reconstruction. (c) Filtered back projection reconstructionmethod preceded by Butterworth filtering. (d) Ordered
subset expectation maximisation reconstruction followed by Butterworth filtering. Intermediate count level. The images are individually
scaled to their own maximum.

3. Results

TheMSE of the images improved when a different AR model
was used for the summed error term image rather than for
the original image. A prediction region of four orthogonal
neighbours with a block size of 5 × 5 pixels for the original
image and a prediction region of 3 × 3 and a block size of
6 × 6 for the summed error term image produced the lowest
MSE, although the differences were small (Table 1). Part of
the counts at the edges of the image could be returned to the
filtered image to reduce blurring of the image (Figure 2).

Butterworth filtering was chosen so that the methods had
the same amount of statistical fluctuation in the uniform part
of the phantom, as confirmed by the CoV% values (Table 2).
For the cold stacks, the BW-FBPmethod showed higher CR%
values than the AR-OSEM-AR and OSEM-BW methods
(Table 3). The 𝑃 values were 0.003 and 0.04, respectively.
The BW-FBP method had the highest CR% values for all

other cold cylinders except the two smallest cylinders at
the intermediate count level. The OSEM-BW method, in
turn, displayed better performance than the AR-OSEM-AR
method (𝑃 = 0.002). When the hot stacks were assessed,
there were no statistically significant differences between
the AR-OSEM-AR and BW-FBP methods nor between the
AR-OSEM-AR and OSEM-BW methods, but the BW-FBP
method showed higher CR% values than the OSEM-BW
method (𝑃 = 0.001).

In the analysis of spatial resolution, without excep-
tion, the BW-FBP and OSEM-BW methods exhibited lower
FWHM values for the cold stacks than the AR-OSEM-AR
method (𝑃 = 0.002 for both comparisons), but there was
no statistical difference between the BW-FBP and OSEM-
BW methods (Table 4). For the hot stacks, the AR-OSEM-
AR method showed lower FWHM values than the BW-FBP
and OSEM-BW methods. The 𝑃 values were 0.01 and 0.04,
respectively.
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Figure 4: Reformatted coronal slices of the phantom. (a) Images reconstructed fromnoise-free projection images using ordered subset expec-
tation maximisation reconstruction. (b) Autoregressive filtering before and after ordered subset expectation maximisation reconstruction.
(c) Filtered back projection reconstruction method preceded by Butterworth. (d) Ordered subset expectation maximisation reconstruction
followed by Butterworth filtering. Stacks with the highest activity. Intermediate count level. The images are individually scaled to their own
maximum.

Furthermore, the OSEM-BWmethod had lower FWHM
values than the BW-FBPmethod (𝑃 = 0.008). It is of note that
the AR-OSEM-ARmethod showed better resolution than the
other two methods in the analysis of the two smallest hot
stacks, with two exceptions in the analysis of cylinders with
two times the background activity and a diameter of 10mm
(Table 4).

Visually, the differences between the images produced by
the three methods were small (Figures 3, 4, and 5). When
comparing the skeletal SPECT data, the BW-FBP method
showed lower image quality than the two other methods
because of streak artefacts (Figure 6).

4. Discussion

This paper presented an improved two-dimensional adap-
tive AR filter and introduced a three-dimensional adaptive
AR model for reduction of noise in SPECT images. We

demonstrated that the quality of scintigraphic images can be
improved when the same AR procedure is not applied to
the original image and the summed error term image. We
have previously shown that if a prediction region of four
orthogonal neighbours of the predicted pixel with a block size
of 5 × 5 pixels is used for both the original image and the
summed error term image in the same simulation conditions,
then the mean squared errors for the three different images
with Poisson statistics are 0.85, 2.23, and 7.12 [4]; that is, this
combination exhibits lower performance than any of those
presented in Table 1.

The goal of filtering in SPECT is to suppress statistical
noise and simultaneously preserve contrast and spatial res-
olution [1]. In the present study we showed that the AR-
OSEM-AR method simultaneously provides both efficient
noise rejection and good spatial resolution for hot objects.
The methodological comparison was done using the well-
known de facto reconstruction standards, FBP and OSEM,
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Figure 5: One-pixel-thick profiles drawn through the phantom. (a) Profiles at the level of a cylinder with a diameter of 20mm. (b) Profiles at
the level of cylinders with a diameter of 40mm. Ideal OSEM: images reconstructed from noise-free projection images using ordered subset
expectation maximisation reconstruction; AR-OSEM-AR: autoregressive filtering before and after ordered subset expectation maximisation
reconstruction; BW-FBP: filtered back projection reconstruction method preceded by Butterworth filtering; OSEM-BW: ordered subset
expectation maximisation reconstruction followed by Butterworth filtering. Intermediate count level. Profiles were rescaled so that they
had the same amount of counts as the profile of the image reconstructed from noise-free projection images using ordered subset expectation
maximisation reconstruction.

and by using one of themost commonly used filters in nuclear
medicine, the Butterworth filter.

The BW-FBP method produced better performance than
the two othermethods in the analysis of the cold stacks. FBP’s
good performance with cold features has been noticed before
[5, 13]. OSEM’s built-in nonnegativity constraint explains its
poor contrast in cold regions. In the analysis of the hot stacks,
the magnitude of the differences between the three methods
proved to be small, but the AR-OSEM-ARmethod had statis-
tically the best performance. This is obviously due to the fact

that part of the counts at the edges of the error term images
could be returned back to the filtered image. Adding postfil-
tering to themethod produced efficient noise reductionwith-
out compromising contrast or spatial resolution significantly.

The FBP method consists of filtering of the projection
data and back projection of the filtered data [5, 10]. Prefilter-
ing is generally not applied in the OSEM method because
it lowers spatial resolution. Secondly, OSEM assumes that
projection pixel values are independent and the number
of counts is Poisson-distributed. Filtering might hamper
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Figure 6: Transaxial slice of skeletal SPECT. (a) Autoregressive filtering before and after ordered subset expectation maximisation
reconstruction. (b) Filtered back projection reconstruction method preceded by Butterworth filtering. (c) Ordered subset expectation
maximisation reconstruction followed by Butterworth filtering.

these assumptions. OSEM reconstructed images are usually
postfiltered because the images become noisier as the itera-
tions proceed.

The disadvantage of FBP is that it can produce radial
streak artefacts because filtered noisy projection profiles do
not cancel each other out in back projection. In the present
study, the phenomenon was seen in the clinical data. Iterative
reconstruction algorithms also provide some other advan-
tages over FBP.They permit the use of several important cor-
rections, such as scatter, attenuation, and collimator response
corrections, which can be included in the image reconstruc-
tion procedure. Incorporation of anatomical information
derived from magnetic resonance imaging or computerized
tomography is possible as well [14]. For the abovementioned
reasons, FBP has in recent years been progressively replaced
with iterative reconstruction algorithms.

The Butterworth filter is defined by two parameters: cut-
off frequency and order [2]. In the present study, order was set
to 2 because a ringing artefact is imperceptible to Butterworth
filters of order 2 but can become a significant factor in filters of
a higher order [15]. Filter orders much higher than 2 are often
seen in clinical praxis. Edge sharpness in images produced by
the BW-FBP and OSEM-BW methods can be improved by
increasing the cut-off frequency, but the improvement occurs
at the expense of increased noise.

In our opinion, a strength of theAR-OSEM-ARmethod is
its simplicity, but the lack of user-controlled variables can also
be regarded as a limitation. Sometimes, adjustable parameters
are needed. No particular filter can emerge as the best filter
for any organ system. However, filtering should be performed
locally in the spatial domain, not globally in the frequency
domain, because the correct trade-off between resolution and
smoothing will vary at different points within the image.

Because the AR-OSEM-AR method was only marginally
better than the OSEM-BW method, an additional study is
needed to find out whether image quality will be even better
if the AR method is applied to the intermediate results in
between the iterations. Secondly, the AR-OSEM-AR method
has not yet been tested with positron emission tomography
(PET) data, but the method should also be suitable for PET
data. The signal-to-noise ratio is considerably higher in PET
than in SPECT.Therefore, our model will probably provide a
good fit for PET data.

5. Conclusions

TheAR-OSEM-ARmethod is a feasible denoising method in
SPECT. It has good spatial resolution for hot features and it is
simple to use. It does not have any adjustable parameters.
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