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Summary

 

In this study we used TEPITOPE, a new epitope prediction software, to identify sequence seg-
ments on the MAGE-3 protein with promiscuous binding to histocompatibility leukocyte an-
tigen (HLA)-DR molecules. Synthetic peptides corresponding to the identified sequences were
synthesized and used to propagate CD4

 

1

 

 T cells from the blood of a healthy donor. CD4

 

1

 

 T
cells strongly recognized MAGE-3

 

281–295

 

 and, to a lesser extent, MAGE-3

 

141–155

 

 and MAGE-
3

 

146–160

 

. Moreover, CD4

 

1

 

 T cells proliferated in the presence of recombinant MAGE-3 after
processing and presentation by autologous antigen presenting cells, demonstrating that the
MAGE-3 epitopes recognized are naturally processed. CD4

 

1

 

 T cells, mostly of the T helper 1
type, showed specific lytic activity against HLA-DR11/MAGE-3–positive melanoma cells.
Cold target inhibition experiments demonstrated indeed that the CD4

 

1

 

 T cells recognized
MAGE-3

 

281–295

 

 in association with HLA-DR11 on melanoma cells. This is the first evidence
that a tumor-specific shared antigen forms CD4

 

1

 

 T cell epitopes. Furthermore, we validated
the use of algorithms for the prediction of promiscuous CD4

 

1

 

 T cell epitopes, thus opening
the possibility of wide application to other tumor-associated antigens. These results have direct
implications for cancer immunotherapy in the design of peptide-based vaccines with tumor-
specific CD4

 

1

 

 T cell epitopes.

Key words: MAGE-3 • CD4

 

1

 

 epitopes • melanoma • tumor vaccines • adoptive 
immunotherapy

 

T

 

he importance of CD4

 

1

 

 T lymphocytes in antitumor
immunity has been clearly demonstrated in animal

 

models. CD4

 

1

 

 T cells exert helper activity for the induc-
tion and maintenance of antitumor CD8

 

1

 

 T cells (1–7), but
they may also have an effector function either by indirect
mechanism against MHC class II–negative tumors, via mac-
rophages activation (for a review, see reference 1), or by di-
rect mechanism against MHC class II–positive tumors (6, 7).

Recently, the requirement of cognate CD4

 

1

 

 T cell help
for optimal induction of antitumor CD8

 

1

 

 CTLs was dem-
onstrated (8). Vaccination with a specific viral T helper
epitope, but not with an unrelated T helper epitope, re-
sulted in protective immunity against MHC class II–nega-
tive, virus-induced tumor cells. Moreover, simultaneous

vaccination with the tumor-specific T helper and CTL
epitopes resulted in strong synergistic protection.

In humans, evidence for a role of CD4

 

1

 

 T cells in anti-
tumor immunity comes from the study of tumor-infiltrat-
ing lymphocytes, which revealed the presence of both
CD8

 

1

 

 and CD4

 

1

 

 T cells at the tumor site (9, 10), and from
detection in the sera of neoplastic patients of antibodies di-
rected against tumor antigens (for a review, see reference
11). However, in recent years research on T cell immunity
against human tumors has focused mainly on identification
of CD8

 

1

 

 HLA class I–restricted CTL responses. To date
tyrosinase, a tissue-specific antigen expressed in normal and
neoplastic cells of melanocytic lineage, is the only mela-
noma-associated antigen demonstrated as a specific target
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Cytolytic CD4

 

1

 

 T Cells Recognize MAGE-3

 

281–295

 

 on HLA-DR11

 

1

 

 Melanomas

 

for CD4

 

1

 

 melanoma-reactive T cells (12, 13) and for
which CD4

 

1

 

 T cell epitopes have been identified (14).
Characterization of the CD4

 

1

 

 T cell epitope repertoire
on other tumor-associated antigens, especially those that
are tumor-specific and shared among tumors of several his-
totypes (for a review, see reference 15), would contribute
decisively to improve the efficacy of peptide-based immu-
nization protocols in neoplastic patients.

MAGE-3 is a tumor-specific antigen encoded by a gene
expressed in a high proportion of melanomas and in several
other tumor histotypes (head and neck squamous cell carci-
nomas, bladder carcinomas, lung carcinomas and sarcomas)
and not in normal tissues, with the exception of testis
and placenta (for a review, see reference 15). CD8

 

1

 

 CTLs
from melanoma patients recognize HLA class I–restricted
MAGE-3 epitopes (15), and clinical trials with synthetic
peptides corresponding to HLA-A1 and/or -A2 MAGE-3
binding sequences are ongoing in patients affected by mela-
noma and other neoplastic diseases (15). Therefore, MAGE-3
is an excellent candidate protein to study the antitumor
CD4

 

1

 

 T cell response. This protein has an intracytoplasmic
localization (16), making its presentation on MHC class II
molecules unlikely or difficult. However, it has been
clearly shown that the MHC class II pathway can present
endogenous cellular peptides (17–19), and peptides eluted
from purified HLA-DR molecules of the melanoma cell
line FM3 contained peptides derived from processing of
cytoplasmic proteins (20).

In this study, we used a new T cell epitope prediction
software (TEPITOPE; reference 21, and our manuscript
in preparation) to identify MAGE-3 sequences with pro-
miscuous HLA-DR binding characteristics. Synthetic pep-
tides corresponding to five identified sequences were used
to propagate CD4

 

1

 

 T cells from the blood of a healthy
donor. We show that CD4

 

1

 

 T cells are MAGE-3 spe-
cific and recognize naturally processed sequence seg-
ment(s). Moreover, CD4

 

1

 

 T cells are cytolytic and recog-
nize MAGE-3

 

281–295

 

 in association with HLA-DR11 on
melanoma cells.

 

Materials and Methods

 

T Cell Epitope Prediction.

 

TEPITOPE, a new T cell epitope
prediction software, is a Windows™ application that enables the
identification of (a) class II ligands binding in a promiscuous or
allele-specific mode, and (b) the effects of polymorphic residues
on class II ligand specificity (21, and our manuscript in prepara-
tion). 25 quantitative matrix-based HLA-DR motifs, covering
the majority of class II ligand specificity, are incorporated in
TEPITOPE (22, and our manuscript in preparation) and provide
the basis for various algorithms included in the software pack-
age. Starting from any protein sequence, the algorithm permits
the prediction and parallel display of ligands for each of the 25
HLA-DR alleles. To predict MAGE-3 CD4

 

1

 

 T cell epitopes, we
loaded the protein sequence into the software looking for pro-
miscuous peptide regions. We set the TEPITOPE prediction
threshold at 5% (21) and picked peptide sequences predicted to
bind at least 50% of the HLA-DR molecules incorporated in the
software.

 

DR–Peptide Binding Assay.

 

Peptide interactions with deter-
gent-solubilized DR molecules were measured using an ELISA-
based high-flux competition assay (23). HLA-DR molecules
were isolated from the following human lymphoblastoid cell lines
(LCL): DR1 (DRB1*0101) from HOM-2, DR3 (DRB1*0301)
from WT49, DR4 (DRB1*0401) from PREISS, DR5 (DRB1*
1101) from SWEIG, DR7 (DRB1*0701) from EKR, and DR8
(DRB1*0801) from BM9. DR2 (DRB1*1501) was isolated from
the L cell transfectant L466.1. The molecules were affinity puri-
fied using the mAb 1-1C4 (24) as described (25). Peptide compe-
tition assays were conducted to measure the ability of unlabeled
peptides to compete with a biotinylated indicator peptide for
binding to purified DR molecules. The following biotinylated
indicator peptides were used: GFKA

 

7

 

 for DR1 and DR7;
GIRA

 

2

 

YA

 

4

 

 for DR2; LAYDA

 

5

 

 for DR3; UD4 for DR4 (26);
TT 830–843 for DR5; and GYRA

 

6

 

L for DR8. The biotinylated
indicator peptide and HLA-DR molecules were incubated with
10-fold dilutions (0.001–100 mM) of the unlabeled competitor
peptides (peptides corresponding to the MAGE-3 predicted se-
quences). To determine relative peptide binding affinity, the pro-
miscuous HA

 

307–319

 

 peptide from influenza hemagglutinin (27)
was included in each competition assay. The relative binding data
of the unlabeled competitor peptides were expressed as inhibitory
concentration (IC

 

50

 

), i.e., the concentration of competitor pep-
tide required to inhibit 50% of binding of the biotinylated indica-
tor peptide.

 

Peptide Synthesis.

 

Synthetic peptides corresponding to MAGE-
3

 

141–155

 

, MAGE-3

 

146–160

 

, MAGE-3

 

156–170

 

, MAGE-3

 

171–185

 

, and
MAGE-3

 

281–295

 

 sequences were manufactured on a 9050 Milli-
pore synthesizer. The purity of the peptides was evaluated by re-
verse-phase HPLC and electron spray mass spectrometry. Syn-
thetic peptides were lyophilized and then reconstituted in DMSO
at 2 mg/ml concentration and diluted in PBS as needed.

 

Cloning and Expression of rMAGE-3.

 

Full-length MAGE-3
coding sequences were inserted into expression vector pET16b
(Novagen), allowing the production of the NH

 

2

 

 terminus 10-his-
tidine tail as described (16). Production and purification of the re-
combinant fusion protein on nickel column were monitored by
SDS-PAGE and Coomassie blue staining.

 

Propagation of CD4

 

1

 

 T Cells.

 

The five synthetic peptides cor-
responding to the MAGE-3 sequences most promiscuous for
HLA-DR binding (see Table I) were pooled (hereafter MAGE-3
pool) and used to stimulate the PBMCs of a healthy donor whose
HLA type, identified by standard serologic typing, is A1, A2/
B41, B52/DR11, as described (28). In brief, 20 

 

3 

 

10

 

6

 

 PBMCs
were cultivated for 7 d in RPMI 1640 (GIBCO BRL) supple-
mented with 10% heat-inactivated human serum (Technogenet-
ics), 2 mM 

 

l

 

-glutamine, 100 U/ml penicillin, 50 

 

m

 

g/ml strepto-
mycin (Biowhittaker) (TCM) containing the MAGE-3 pool (1

 

m

 

g/ml of each peptide). The reactive lymphoblasts were isolated
on a Percoll gradient (28), further expanded in T cell growth fac-
tor (Lymphocult; Biotest Diagnostic Inc.), and restimulated at
weekly intervals with the same amount of antigen plus irradiated
(4,000 rad) autologous PBMCs as APCs.

 

Flow Cytometry.

 

Cytofluorimetric analyses were performed
on a FACStarPlus

 

®

 

 (Becton Dickinson). The following mAbs
were used: anti-CD4–PE and anti-CD8–FITC (Becton Dickin-
son), D1.12 (purified from an anti-MHC class II hybridoma su-
pernatant), and 57B (described in reference 16). FITC-rabbit
anti–mouse Ig antibody (DAKO) was used as second-step reagent
in indirect immunofluorescence stainings. Staining for intracyto-
plasmic MAGE-3 expression was performed as described (29).
Intracytoplasmic staining for cytokine expression was performed
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using the anti–INF-

 

g

 

 and anti–IL-4 mAbs, following the manu-
facturer’s instructions (Sigma).

 

Proliferation Assay.

 

CD4

 

1

 

 T cells and autologous irradiated
PBMCs were diluted in TCM to 2 

 

3 

 

10

 

5

 

/ml and 2 

 

3 

 

10

 

6

 

/ml,
respectively, and plated in triplicate in 96 round-bottomed well
plates (100 

 

m

 

l of CD4

 

1

 

 T cells and 100 

 

m

 

l of APCs). The cells
were stimulated with different concentrations of MAGE-3 pool
(0.05, 0.1, 0.5, 1, and 5 

 

m

 

g/ml), each peptide (10 

 

m

 

g/ml), and
different concentrations of rMAGE-3 protein (5, 10, and 20 

 

m

 

g/
ml). Triplicate wells with CD4

 

1

 

 T cells alone and APCs alone
were used as controls. Three wells with CD4

 

1

 

 T cells plus APCs
did not receive any stimulus in order to determine the basal
growth rate (the blank). In inhibition experiments, different con-
centrations of mAb L243 or an isotype-matched irrelevant mAb
(0.25 and 0.5 mg/ml) were added in triplicate wells of CD4

 

1

 

cells plus APCs stimulated with MAGE-3 pool (5 

 

m

 

g/ml) or
MAGE-3

 

281–295

 

 (10 

 

m

 

g/ml). After 3 d, the cultures were pulsed
for 16 h with [

 

3

 

H]TdR (1 mCi/well, 6.7 Ci/mol; Amersham
Pharmacia Biotech). The cells were collected with a Titertek
multiple harvester (Skatron, Inc.), and the thymidine incorpo-
rated was measured in a liquid scintillation counter. The percent-
age of inhibition was calculated as follows: [(cpm without mAb 

 

2

 

cpm with mAb)/(cpm without mAb)] 

 

3 

 

100.

 

Cytotoxicity Assay.

 

CD4

 

1

 

 T cells were tested for specific lytic
activity in a standard 4-h 

 

51

 

Cr-release assay as described (30). The
following targets were used: melanoma cells (SK-Mel 28,
HT144, OI TC described in reference 29, and MD TC es-
tablished in our laboratory from a cutaneous metastasis), and
LCL. The HLA-DR type of target cells, identified by molecular
or serologic typing, was SK-Mel 28 (DR*04*13), HT144
(DR*04*07), OI TC (DR*01*11), MD TC (DR*04*11), LCL
(DR11). In cold target competition assays, unlabeled target cells
(cold targets) were seeded in plates at serial ratios of hot-to-cold
target cells. Effector CD4

 

1

 

 T cells and 

 

51

 

Cr-labeled target cells
(hot targets) were then added, and cytotoxicity was assessed as de-
scribed above. Percentage inhibition was calculated as follows:
[(% specific lysis without cold target 

 

2 

 

% specific lysis with cold
target)/(% specific lysis without cold target)] 

 

3 

 

100.

 

Results and Discussion

 

10 synthetic peptides corresponding to sequence seg-
ments predicted by TEPITOPE to form promiscuous
MAGE-3 CD4

 

1

 

 T cell epitopes were synthesized, and
their binding to purified molecules of 7 widely diffuse
HLA-DR alleles was verified. Based on the results of the
competition binding assays, 5 (i.e., the sequences with the
greatest degree of promiscuity) of the 10 predicted se-
quences were chosen for further experiments (Table I).
The five synthetic peptides were pooled (MAGE-3 pool)
and used to stimulate the PBMCs of a healthy donor. T
cells were 94% CD4

 

1

 

 after 1 wk of culture (not shown),
and could be propagated in long-term culture by weekly
restimulation with the MAGE-3 pool in the presence of
autologous irradiated PBMCs. Reactivity of CD4

 

1

 

 T cells
was tested in microproliferation assays (Fig. 1): the cells re-
sponded vigorously to the MAGE-3 pool (Fig. 1 A), even
at low concentrations (100–500 ng/ml). Reactivity to the
individual peptides forming the pool was also periodically
investigated (Fig. 1 C): the CD4

 

1

 

 T cells recognized pre-
dominantly the peptide corresponding to MAGE-3

 

281–295

 

and, although to a much lower but significant extent, the
peptides corresponding to the overlapping sequences
MAGE-3

 

141–155

 

 and MAGE-3

 

146–160

 

. All three sequences
recognized by the CD41 T cells showed a high binding af-
finity to purified DR11 molecules (see Table I). Reactivity
to MAGE-3281–295 increased during the propagation of the
line (Fig. 1 C). The proliferative activity of CD41 T cells
in the presence of MAGE-3 pool (Fig. 1 D, a) or MAGE-
3281–295 (Fig. 1 D, b) was inhibited by addition in culture of
different concentrations of L243 mAb (Fig. 1 D), demon-
strating that the recognition of MAGE-3 sequences was
HLA-DR restricted. We next tested the CD41 T cells for
cross-reactivity with the native protein (Fig. 1 B). CD41 T
cells strongly recognized the rMAGE-3 protein after pro-
cessing and presentation by autologous APCs, demonstrat-
ing that the synthetic sequences recognized by the CD41 T
cells indeed formed naturally processed epitopes.

Figure 1. Proliferative activity of CD41 T cells stimulated with
MAGE-3 pool measured in 2-d microproliferation assays. The data are
representative of n 5 x experiments, and are means of triplicate determina-
tions 6 SD. (A) Responses to MAGE-3 pool (0.01, 0.5, 0.1, 0.5, 1, and 5
mg/ml; n 5 6). (B) Responses to rMAGE-3 protein (5, 10, and 20 mg/ml;
n 5 3). (C) Responses to the individual synthetic peptides forming the
MAGE-3 pool (10 mg/ml; n 5 7) at different weeks of propagation. The
blank (i.e., the basal level of proliferation of CD41 T cells in the presence
of APCs only) was subtracted and was as follows: 2 wk, 30,866 6 1,115;
4 wk, 7,106 6 2,201; and 6 wk, 21,838 6 2,767. Responses significantly
higher than the blanks are indicated as *P , 0.001 and **P , 0.025 (deter-
mined by unpaired, one-tailed Student’s t test). (D) Response to MAGE-3
pool (5 mg/ml; n 5 5) (a) and to peptide corresponding to sequence
281–295 (b), in the presence of different doses of L243 mAb (0.25 and 0.5
mg/ml). The blank was 1,251 6 444; the proliferation of CD41 T cells in
the presence of MAGE-3 pool was 28,191 6 373; and the proliferation in
the presence of sequence 281–295 was 22,504 6 141.
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Intracytoplasmic staining for IL-4 and INF-g expression,
performed after CD41 T cell activation with PMA and
ionomycin, revealed that 70% of the CD41 T cells pro-
duced INF-g while no cells produced IL-4 (data not
shown), suggesting that they belong mostly to the Th1
type.

To characterize the functional activity of the MAGE-3–
specific CD41 T cells, we tested their killing potential
against melanoma cells expressing the MAGE-3 protein
and the HLA-DR molecules (Fig. 2 B). CD41 T cells
showed cytolytic activity against OI TC and MD TC,
which express the HLA-DR11 restricting allele, whereas
they did not kill SK-Mel 28 and HT144, which express
unrelated HLA-DR alleles (Fig. 2 A). To verify whether
the cytolytic CD41 T cells recognized HLA-DR11–
restricted MAGE-3 epitopes on melanoma cells, we first
tested their lytic activity against HLA-DR111 LCL un-
pulsed, or pulsed with the synthetic peptides recognized in
microproliferation assays. LCL pulsed with MAGE-3281–295

were strongly recognized by the CD41 T cells, whereas

no killing activity against LCL unpulsed or pulsed with
MAGE-3141–155 and MAGE-3146–160 was detectable (Fig. 3
A). Second, we performed cold target inhibition experi-
ments which showed that the lytic activity of CD41 T cells
against OI TC was inhibited by the addition of LCL pulsed
with MAGE-3281–295 (Fig. 3 B), demonstrating that this se-
quence is indeed presented by HLA-DR11 on the OI TC
melanoma cells. These results further demonstrate that
MAGE-3281–295 is naturally processed and forms a cytotoxic
CD41 T cell epitope. Since the polyclonal CD41 T cells
proliferated in the presence of the rMAGE-3 protein, and in
addition to MAGE-3281–295 they also recognized MAGE-
3141–155 and MAGE-3146–160, we cannot exclude that these
last two sequences may also yield natural epitopes, which are
recognized by CD41 T cells with functional activity differ-
ent from killing. Moreover, although CD41 T cells were
mostly Th1 and had direct effector function upon tumor
recognition, we cannot exclude that in vivo such CD41 T
cells could also exert a helper activity in the induction
phase of the immune response.

Table I. Determination of HLA-DR Binding of MAGE-3 Synthetic Peptides Corresponding to Sequences Predicted to Form
Promiscuous Epitopes

Residues Sequence

HLA-DR alleles

*0101 *0301 *0401 *0701 *0801 *1101 *1501

141–155 GNWQYFFPVIFSKAS 25 .100‡ 7 0.1 3.2 0.6 3
146–160 FFPVIFSKASSSLQL 10 7 2 0.01 1.5 1.8 0.2
156–170 SSLQLVFGIELMEVD 7 90 45 0.03 7 28 0.18
171–185 PIGHLYIFATCLGLS 0.3 2.8 0.9 0.01 1.5 0.9 0.03
281–295 TSYVKVLHHMVKISG 15 26 70 0.02 0.01 0.03 0.5

The binding data are expressed in terms of relative binding capacity (IC50 mM), calculated as concentration of competitor peptide required to inhibit
50% of the binding of an allele-specific biotinylated peptide (indicator peptide).
‡IC50 values .100 mM are outside the sensitivity limits of the binding assay.

Figure 2. Cytolytic activity of
MAGE-3–specific CD41 T cells.
The data are representative of n 5 x
experiments, and are means of
triplicate determinations 6 SD.
(A) Lytic activity against different
HLA-DR–matched and un-
matched melanoma cells (n 5 6).
HLA-DR types of CD41 T cells
and melanomas are indicated at the
bottom along with their symbols.
(B) Cytofluorimetric analysis for
HLA-DR (surface) and MAGE-3
(intracytoplasmic) expression in
melanoma cells used as targets (n 5
4). Filled histograms, stained sam-
ple; open histograms, background
staining obtained with FITC-con-
jugated second-step reagent only.
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One approach for identifying CD41 T cell epitopes on a
candidate protein is the use of overlapping synthetic pep-
tides corresponding to the complete sequence of the pro-
tein. The major drawback of this approach is the number
of peptide sequences that need to be tested, thus making
this approach too expensive and time consuming. In this
study, we used the TEPITOPE software package to com-
putationally identify promiscuous HLA-DR binding sites
starting from primary protein structures. We demonstrated
that TEPITOPE predicted sequence segments capable of
binding to multiple HLA-DR alleles. Furthermore, we

showed that one or more of the predicted HLA-DR
ligands were indeed naturally processed, thus confirming
the validity of this approach. We expect that the applica-
tion of TEPITOPE to other tumor-associated antigens will
speed up identification of the antitumor CD41 T cell
epitope repertoire in humans.

Clinical trials based on the use of melanocyte-specific
antigens (such as gp100, MART-1/Melan-A, and tyrosi-
nase, for which CD41 T cell epitopes were identified) are
in progress in melanoma patients, and although no signifi-
cant side effects were reported in a recent study that used a
gp100 peptide for the treatment of HLA-A21 patients (31),
the development of autoimmune responses against normal
tissue must be considered when using self-differentiation
antigens as vaccines. The demonstration that MAGE-3
(i.e., an antigen not expressed in normal tissues, with the
exception of testis and placenta, which are unlikely to be
targets of T cells since they do not express MHC mole-
cules), can form CD41 T cell epitopes further supports its
use for vaccination protocols in neoplastic patients using a
mixture of synthetic peptides corresponding to CD81 and
CD41 T cell epitopes.

Previous findings (13, 32, 33) reported a lytic activity of
melanoma-specific CD41 T cells. Here we give the molecu-
lar definition of an epitope able to stimulate cytolytic CD41

T cells that can be grown in vitro with ease, raising the pos-
sibility of using those CD41 T cells in protocols of adoptive
transfer in neoplastic patients whose neoplasm expresses the
MAGE-3 protein and the MHC class II molecules.

In conclusion, in this study we identified the first CD41 T
cell epitope on a tumor-specific antigen, and we verified that
the approach used here to predict promiscuous CD41 T cell
epitopes yielded natural epitopes. It will be important to
evaluate whether the identified CD41 T cell epitopes are in-
deed promiscuous, making their use for peptide-based vac-
cines less allele dependent and more widely applicable.
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