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Integrated multiomics analysis and machine 
learning refine molecular subtypes 
and prognosis for thyroid cancer
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1 Introduction
THCA is the most common malignancy of the endocrine system, and its incidence 
has been steadily rising in recent years [1]. Approximately 90% of THCA cases are 
derived from epithelial cells and are classified into three major subtypes: papillary thy-
roid carcinoma (PTC), follicular thyroid carcinoma (FTC), and anaplastic thyroid car-
cinoma (ATC). In contrast, medullary thyroid carcinoma (MTC), which arises from 
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Abstract
Background Thyroid cancer (THCA) exhibits high molecular heterogeneity, posing 
challenges for precise prognosis and personalized therapy. Most existing models rely 
on single-omics data and limited algorithms, reducing robustness and clinical value.

Methods We integrated five omics layers from THCA patients using eleven clustering 
algorithms to identify molecular subtypes. Based on stable prognosis-related genes 
(SPRGs), we applied 99 combinations of ten machine learning methods to construct a 
robust prognostic model—Consensus Machine Learning-Driven Signature (CMLS). The 
model was validated across multiple internal and external cohorts. Immunogenomic 
characteristics and drug sensitivity were also evaluated.

Results Three molecular subtypes (CS1–CS3) with distinct clinical outcomes and 
molecular features were identified; CS2 showed the worst prognosis. A nine-gene 
CMLS was established, demonstrating strong prognostic performance across cohorts. 
Patients in the low-CMLS group had better outcomes, stronger immune infiltration, 
higher TMB/TNB, and greater predicted responsiveness to immunotherapy. Conversely, 
the high-CMLS group exhibited poor prognosis and lower immunotherapy sensitivity. 
Drug screening identified six candidate agents for high-CMLS patients.

Conclusion Our study provides a robust multiomics-based classification of THCA 
and develops a clinically relevant CMLS model for prognostic prediction and therapy 
guidance. These findings may facilitate risk stratification and inform personalized 
treatment strategies in clinical practice.
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parafollicular C-cells, accounts for less than 5% of all cases [2]. According to statistics 
from 2022, THCA affected 11,860 men and 31,940 women in the United States, under-
scoring a pronounced gender disparity in incidence [3]. While the overall mortality rate 
of THCA remains relatively low, 10–30% of patients experience recurrence or metasta-
sis, often leading to more aggressive disease progression [4].

Recent advancements in immunotherapy and targeted treatments have shown prom-
ise for managing advanced and treatment-refractory thyroid cancers [5, 6]. Nevertheless, 
clinical responses to these therapies remain highly variable, and substantial challenges 
persist in optimizing treatment strategies for high-risk patients [7, 8]. Although immu-
notherapy has demonstrated efficacy in specific subgroups, many patients fail to derive 
significant benefit, highlighting the need for more precise therapeutic approaches [9]. 
One of the key obstacles lies in the marked molecular heterogeneity of THCA, which 
complicates prognosis and therapeutic response prediction [10]. Therefore, there is a 
critical need to refine molecular subtypes and develop robust predictive models to guide 
clinical decision-making.

To address this gap, the integration of large-scale multi-omics data with machine 
learning offers a promising avenue for discovering reliable biomarkers and improving 
personalized treatment strategies [11]. By leveraging comprehensive genomic, transcrip-
tomic, and epigenomic profiles, it is possible to identify molecular signatures that can 
more accurately predict patient outcomes and responses to immunotherapy and other 
treatments [12].

In this study, we conducted an integrated multi-omics analysis of THCA, incor-
porating genomic alterations, DNA methylation, and expression profiles of mRNA, 
microRNA (miRNA), and long non-coding RNA (lncRNA). Using ten multi-omics clus-
tering algorithms, we established a consensus-based molecular subtype classification 
system. We further identified nine stable prognostic-related genes (SPRGs) and devel-
oped a Consensus Machine Learning-Driven Signature (CMLS) through the integration 
of ten machine learning algorithms. This model demonstrated robust prognostic perfor-
mance and effectively predicted therapeutic responses in both training and validation 
cohorts [13]. Our findings provide valuable insights into the molecular heterogeneity of 
THCA and present a practical framework for improving patient stratification, prognosis 
prediction, and personalized therapy selection [14].

2 Methods and materials
2.1 Dataset source and data pre-processing

Multi-omics data for THCA patients were obtained from The Cancer Genome Atlas 
(TCGA-THCA) via the TCGAbiolinks R package [15], including whole transcriptome 
expression (mRNA, lncRNA), DNA methylation, somatic mutations, and clinical infor-
mation. Mature microRNA (miRNA) expression profiles were identified using the miR-
BaseVersions.db package. DNA methylation and clinical annotations were retrieved 
from UCSC Xena (https://xena.ucsc.edu/), and mutation data were processed using the 
maftools package.

Patient inclusion criteria were as follows:

  • Confirmed THCA diagnosis.
  • Complete clinical information.

https://xena.ucsc.edu/
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  • Availability of all multi-omics profiles (mRNA, miRNA, lncRNA, methylation, and 
mutation).

  • Overall survival (OS) or progression-free survival (PFS) > 30 days.

Patients failing to meet any of these criteria were excluded. Missing expression or meth-
ylation values (< 5% missingness per feature) were imputed using K-nearest neighbors 
(KNN) imputation. Expression data were normalized using log2(TPM + 1) transforma-
tion. For methylation, β-values were used and quantile normalization was applied across 
samples. All omics matrices were scaled (z-score standardization) prior to integration.

To validate the immunotherapy predictive performance, external datasets (GSE91061, 
GSE78220, GSE135222 from GEO, and IMvigor210 from the IMvigor210CoreBiologies 
R package) were incorporated [16]. Only patients with available PFS and treatment out-
come annotations were included.

2.2 Multiomics consensus analysis

We employed the MOVICS R package [17] to conduct integrative multiomics clustering 
and feature selection. For transcriptomic data (mRNA, lncRNA, and miRNA), the top 
1,000 genes with the highest median absolute deviation (MAD) were selected to cap-
ture the most variable expression features across samples. To identify features associated 
with patient survival, univariate Cox proportional hazards regression was applied, and 
genes with significant associations (p < 0.05) were retained. For somatic mutation data, 
the top 5% most frequently mutated genes were selected using the freq method within 
MOVICS.

Prior to integration, each omics layer (mRNA, lncRNA, miRNA, DNA methylation, 
and mutation) was independently normalized via z-score transformation to account for 
differences in measurement scales. All selected features were concatenated into a unified 
matrix (samples × features), which served as input for downstream clustering.

Multiomics integration and clustering were performed using ten state-of-the-art algo-
rithms provided in MOVICS: CIMLR, ConsensusClustering, Similarity Network Fusion 
(SNF), iClusterBayes, PINSPlus, moCluster, NEMO, Integrative Non-negative Matrix 
Factorization (IntNMF), Cluster-Of-Clusters Analysis (COCA), and Latent Representa-
tion Analysis (LRA). To determine the optimal number of clusters (k), we utilized the 
getClustNum and getMOIC functions. These functions evaluate clustering quality based 
on multiple stability metrics, including the cluster prediction index (CPI) and silhouette 
width. The CPI is a resampling-based metric that quantifies the reproducibility of clus-
tering by assessing the consistency of sample assignments across multiple iterations. A 
higher CPI value indicates more stable and robust clustering. The optimal cluster num-
ber was defined as the local maximum of the CPI curve.

Finally, consensus clustering was conducted by aggregating subtype labels across the 
ten algorithms through majority voting, resulting in a robust molecular classification of 
THCA into three consensus subtypes (CS1–CS3).

2.3 Characterization of subtypes and functional annotation

To evaluate subtype-specific molecular characteristics, we performed gene set variation 
analysis (GSVA) [18] using hallmark oncogenic and immune-related pathways. Tumor 
immune and stromal infiltration scores were estimated using the ESTIMATE and IOBR 
packages, while immune checkpoint expression and tumor-infiltrating lymphocyte 
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signatures were compared across subtypes. Tumor methylation-inferred lymphocyte 
(MeTIL) scores were computed using established methods. Transcriptional regulatory 
networks were reconstructed using the RTN package, focusing on 23 cancer-related 
transcription factors and 35 chromatin-modifying regulators [19]. To evaluate subtype 
reproducibility, we selected the top 100 most distinctive genes from each cluster and 
assessed classification consistency between PAM (Partitioning Around Medoid) and 
NTP (Nearest Template Prediction) classifiers.

2.4 Development of the machine Learning-Based prognostic signature (CMLS)

Subtype-specific genes were further filtered by univariate Cox regression in the training 
cohort. A total of ten machine learning algorithms were used for prognostic signature 
construction: random survival forest (RSF), LASSO, Ridge, elastic net (Enet), CoxBoost, 
generalized boosted regression modeling (GBM), survival support vector machine (sur-
vival-SVM), supervised principal components (SuperPC), partial least squares regres-
sion for Cox (plsRcox), and stepwise Cox regression.

For each method, models with fewer than two genes were excluded. The average con-
cordance index (C-index) across five-fold cross-validation was computed for each algo-
rithm. The best-performing model (highest average C-index) was selected to define the 
Consensus Machine Learning-Driven Signature (CMLS). The final score for each patient 
was calculated as a linear combination of gene expression weighted by model-derived 
coefficients: 

CMLSi =
n∑

j=1

βj · xij

where βj is the weight of gene j and xij is its normalized expression in patient i.

2.5 Evaluation of prognostic and therapeutic value

Patients were stratified into high- and low-CMLS groups based on the optimal cutoff 
identified by the survminer package. Prognostic value was assessed using Kaplan–Meier 
survival analysis, log-rank test, and multivariate Cox regression adjusting for clinical 
covariates. To evaluate robustness, the performance of CMLS was compared against 22 
previously reported signatures using the C-index.

Immunotherapy response was predicted using multiple approaches. Tumor microen-
vironment profiles were characterized using the IOBR package with published immune-
related gene sets [20]. Tumor mutational burden (TMB), neoantigen burden (TNB), and 
M1 macrophage levels were compared across CMLS groups. Immune checkpoint block-
ade response was predicted using TIDE (http://tide.dfci.harvard.edu), SubMap  (   h t t p s : / / 
w w w . g e n e p a t t e r n . o r g     ) , and the TIP pipeline (http://biocc.hrbmu.edu.cn/TIP/).

2.6 Drug sensitivity and pathway analysis

The Oncogenic signaling pathways were explored using GSEA [21]. Drug response pre-
diction was performed using the PRISM and CTRP v2.0 pharmacogenomic datasets, 
matched to the CMLS expression profile. Drug sensitivity was quantified by area under 
the curve (AUC) values, and differential responses between CMLS groups were assessed 
using the pRRophetic and oncoPredict packages.

http://tide.dfci.harvard.edu
https://www.genepattern.org
https://www.genepattern.org
http://biocc.hrbmu.edu.cn/TIP/
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2.7 Statistical analysis

All analyses were conducted in R (version 4.3.1). Statistical comparisons between groups 
were performed using Student’s t-test or Wilcoxon rank-sum test for continuous vari-
ables, and chi-square or Fisher’s exact test for categorical variables. Survival differences 
were assessed using log-rank tests and Cox proportional hazards regression. For all anal-
yses involving multiple testing (e.g., GSVA, drug screening), false discovery rate (FDR) 
correction was applied using the Benjamini–Hochberg method. Results were considered 
statistically significant at FDR < 0.05 unless otherwise stated.

3 Results
3.1 Multiomics consensus clustering and prognostic stratification

Using an integrative approach that combined ten ensemble clustering algorithms across 
multiple omics layers—including somatic mutation profiles, epigenetic methylation, and 
transcriptomic expression data (mRNA, lncRNA, and miRNA)—we identified three 
robust molecular subtypes of thyroid cancer (designated CS1, CS2, and CS3). The opti-
mal number of clusters (k = 3) was determined based on the cluster prediction index, a 
metric reflecting cluster stability and reproducibility (Fig. 1A). These subtypes displayed 
distinct molecular landscapes (Fig. 1B–D) and were significantly associated with over-
all survival outcomes (p = 0.001, Fig. 1E). Notably, CS2 and CS3 were characterized by 
worse prognoses compared to CS1 and showed frequent somatic mutations in the BRAF 
gene, highlighting their aggressive biological behavior.

3.2 Biological and molecular characterization of cancer subtypes

To elucidate the biological underpinnings of the identified subtypes, we applied the 
IOBR package to assess tumor immune infiltration patterns. CS2 and CS3 exhibited 
significantly elevated expression of immune checkpoint genes (Fig. 2A), implying their 
potential responsiveness to immune checkpoint inhibitors (ICIs). Immune cell decon-
volution revealed that these subtypes were enriched for macrophages and dendritic cells 
(DCs), which are crucial components of the tumor immune microenvironment. Further 
pathway analysis using single-sample gene set enrichment analysis (ssGSEA) showed 
enrichment of epithelial-mesenchymal transition (EMT) pathways in CS2 and CS3, indi-
cating enhanced metastatic and invasive capabilities. Moreover, these subtypes were 
associated with a hypoxic tumor microenvironment, which may promote anti-apoptotic 
mechanisms and contribute to their survival advantage over CS1. Immune-related path-
ways also showed differential activation, reinforcing the immune heterogeneity among 
subtypes.

Additionally, hormone response analysis revealed subtype-specific sensitivity: CS1 
was primarily responsive to androgen stimulation, whereas CS2 and CS3 were more 
responsive to estrogen, suggesting a gender-related heterogeneity in thyroid cancer biol-
ogy (Fig. 2B).

We also examined 23 transcription factors and putative regulators implicated in can-
cer progression (Fig.  2C). CS1 demonstrated significant activation of androgen recep-
tor (AR) and fibroblast growth factor receptors FGFR3 and FGFR1, while CS2 and 
CS3 showed elevated activity of HIF1A and epidermal growth factor receptor (EGFR). 
Moreover, FOXM1 and FOXA1 expression was higher in CS2 relative to CS3, under-
scoring subtle regulatory differences. Patterns of regulon activity related to chromatin 



Page 6 of 16Zhang et al. Discover Oncology         (2025) 16:1186 

remodeling suggested that epigenetic mechanisms contribute to the transcriptional dis-
tinctions among subtypes.

3.3 Validation of subtype stability

To validate the reproducibility of the molecular subtypes, we selected 100 subtype-
specific genes derived from differential expression analyses as classifiers (Fig.  3A). 

Fig. 1 Multiomics characterization of thyroid cancer prognostic subtypes. A) Cluster prediction index and gap 
statistic analysis determining optimal cluster number for multiomics classification.  B) Consensus clustering heat-
map integrating results from 10 state-of-the-art multiomics clustering algorithms.  C) Consensus matrix heatmap 
demonstrating robust sample assignment into three novel prognostic subtypes.  D) Integrated multiomics heat-
map displaying coordinated patterns across mRNA, lncRNA, miRNA, DNA methylation, and somatic mutations. E) 
Kaplan-Meier curves showing significant differences in overall survival among the three cancer subtypes (CS1-3)
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Validation was performed using Nearest Template Prediction (NTP) and Partitioning 
Around Medoids (PAM) algorithms, integrated with clinical data. Both algorithms con-
firmed the prognostic stratification, with CS1 showing the best overall survival (Fig. 3B–
C). The consistency between subtype assignments by NTP and PAM was statistically 
significant (p < 0.001, Fig. 3D–E), supporting the robustness of the subtyping framework.

Fig. 2 Tumor microenvironment and molecular features of thyroid cancer subtypes. A) Immune landscape heat-
map with annotations for immune/stromal scores, DNA methylation patterns, immune checkpoint expression 
(top), and immune cell infiltration (bottom). B) Pathway activity heatmap showing differential oncogenic pathway 
activation across subtypes. C) Transcription factor regulon activity heatmap highlighting chromatin remodeling 
regulators distinguishing subtypes
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3.4 Construction of the consensus machine Learning-Driven signature (CMLS)

The TCGA-THCA cohort was randomly split into training and testing subsets at a 7:3 
ratio. Candidate genes were first filtered through NTP and then subjected to univari-
ate Cox regression, retaining those with p-values < 0.05. These genes were fed into an 
ensemble machine learning framework comprising 99 algorithmic combinations of 

Fig. 3 Validation of thyroid cancer subtypes across independent cohorts. A) Nearest template prediction heatmap 
validating subtype classification in the testing cohort. B-C) Kaplan-Meier survival curves confirming prognostic 
significance in both training (B) and testing (C) cohorts.  D-E) Heatmaps demonstrating concordance between 
consensus subtypes and PAM50 (D) or NTP (E) classification methods
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feature selection and model building methods (Fig.  4A). Models including fewer than 
two genes were excluded from further analysis. The final prognostic signature comprised 
nine hub genes that collectively yielded the highest mean concordance index (C-index) 
among all tested models (Fig.  4B–C). The derived CMLS score stratified patients into 
three risk groups, with the high-CMLS group consistently exhibiting poorer survival 
across training, testing, and the entire TCGA cohort (Fig. 4D–F).

Fig. 4 Machine learning-based prognostic model development. A) Performance heatmap of 99 machine learning 
algorithms ranked by average C-index across TCGA, training, and testing sets. B) Forest plot of univariate Cox re-
gression results for candidate hub genes. C) Variable importance plot from Random Survival Forest (RSF) algorithm 
identifying top prognostic genes. D-F) Survival curves stratified by CMLS (high vs. low) in TCGA (D), training (E), and 
testing (F) cohorts
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3.5 Immune microenvironment characteristics associated with CMLS

We investigated the immune landscape differences between high- and low-CMLS 
groups. Patients with high CMLS had significantly elevated tumor mutational burden 
(TMB) and tumor neoantigen burden (TNB) (Fig.  5A–B). However, immune cell pro-
filing revealed that high-CMLS tumors were immunologically “cold,” characterized by 
reduced infiltration of key anti-tumor immune cells, notably CD8 + T cells and M1 mac-
rophages (Fig.  5C). Quantitative analysis via the IOBR package confirmed a negative 

Fig. 5 Immunogenomic characteristics of CMLS subgroups. A-B) Box plots comparing tumor mutational burden 
(TMB, A) and neoantigen burden (TNB, B) between CMLS groups. C) Heatmap of immune cell infiltration differ-
ences between CMLS groups. D-E) Box plots (D) and correlation scatter plot (E) showing M1 macrophage associa-
tion with CMLS. F) Violin plots comparing immune exclusion scores between CMLS groups. G-I) Stratified survival 
analyses combining CMLS with TMB (G), TNB (H), and M1 macrophages (I)
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correlation between CMLS scores and M1 macrophage abundance (Fig. 5D–E). Differ-
ential expression of TGFβ family receptors between groups (Fig. 5F) suggested altered 
immunomodulatory signaling. Stratified survival analyses further indicated that CMLS, 
when combined with TMB, TNB, and M1 macrophage infiltration, effectively distin-
guished patient outcomes (Fig. 5G–I). Collectively, these data demonstrate that CMLS 
reflects the immune contexture within the tumor microenvironment, which in turn 
impacts prognosis.

3.6 Predictive power of CMLS for immunotherapy response

We assessed the clinical utility of CMLS in predicting response to immunotherapy. 
Analysis of the IMvigor210 cohort showed that patients with low CMLS exhibited sig-
nificantly improved restricted mean survival (RMS) at 3, 6, and 12 months post-treat-
ment, consistent with delayed immunotherapy effects (p < 0.05, Fig. 6A–B). Low-CMLS 
patients demonstrated superior long-term survival and were more likely to respond to 
therapy (complete or partial response), while higher CMLS scores were associated with 
progressive or stable disease (p = 0.015, Fig. 6C).

These findings were corroborated across additional immunotherapy-treated cohorts 
(GSE78220, GSE135222, GSE91061), where low-CMLS was consistently linked to bet-
ter survival and treatment outcomes (Fig. 6D–F). Interestingly, SubMap analysis using 
a melanoma immunotherapy dataset indicated that high-CMLS patients might be more 
sensitive to PD-1 blockade (nominal p < 0.01, Fig.  6G), a result that warrants cautious 
interpretation given cohort differences.

Complementary analyses via the Tumor Immune Dysfunction and Exclusion (TIDE) 
algorithm showed poorer predicted immunotherapy response in high-CMLS patients 
(Fig.  6H). Additionally, the Tracking Tumor Immune Phenotype (TIP) framework 
revealed that high-CMLS tumors had reduced recruitment of CD8 + and CD4 + T cells 
(Fig. 6I), further supporting the immunologically cold phenotype in this group.

3.7 Comparison with published prognostic signatures and therapeutic implications

To benchmark the CMLS, we compared its prognostic performance against 22 previ-
ously published gene expression-based signatures in THCA. CMLS demonstrated 
superior concordance indices in both TCGA and training cohorts, indicating improved 
predictive accuracy (Fig. 7A–B).

Differential pathway analysis revealed significant enrichment of the epithelial-mesen-
chymal transition (EMT) pathway in high-CMLS tumors, consistent with a more aggres-
sive phenotype (Fig. 7C).

Potential therapeutic vulnerabilities were explored by integrating data from the Can-
cer Therapeutics Response Portal (CTRP) and the PRISM drug sensitivity databases. 
Notably, high-CMLS patients showed decreased sensitivity to cisplatin, a chemothera-
peutic commonly used for solid tumors. Previous studies have linked the transcription 
factor ZEB1 to cisplatin resistance; our analyses suggest that targeting ZEB1 expression 
may enhance chemotherapy efficacy (Fig. 7D). Moreover, low-CMLS patients exhibited 
increased sensitivity to six chemotherapeutic agents relative to high-CMLS patients, 
indicating potential for personalized treatment strategies (Fig. 7E).
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4 Discussion
In this study, we identified three molecular subtypes of THCA with distinct clinical 
outcomes by integrating five omics dimensions using a consensus clustering frame-
work built on ten state-of-the-art algorithms. Based on these subtypes, we developed a 
robust and generalizable prognostic model—the Consensus Machine Learning-Driven 
Signature (CMLS)—from 99 combinations of machine learning algorithms. The CMLS 

Fig. 6 Immunotherapy response prediction by CMLS. A-B) Restricted mean survival (A) and long-term survival 
(B) differences between CMLS groups post-treatment. C) Box plot showing CMLS distribution across immuno-
therapy response groups. D-E) Validation of CMLS prognostic value in immunotherapy cohorts GSE78220 (D) and 
GSE135222 (E). F) CMLS distribution across response groups in GSE91061 cohort. G-H) Submap (G) and TIDE (H) 
algorithm predictions of immunotherapy response. I) Box plots comparing tumor-immune cycle activity steps 
between CMLS groups
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effectively stratified patients across multiple cohorts and showed strong predictive value. 
Furthermore, we explored the immune landscape associated with CMLS and discov-
ered its relevance to immunotherapeutic responsiveness. For high-CMLS patients with 
poorer prognosis and limited immunotherapy benefit, we proposed several candidate 
chemotherapeutic agents. Collectively, our work provides a comprehensive molecular 
stratification strategy and a clinically applicable prognostic tool to support precision 
treatment in THCA.

Fig. 7 Comparative analysis and therapeutic implications. A-B) Bar plots comparing CMLS performance against 
22 published models in training (A) and TCGA (B) cohorts. C) GSEA enrichment plot showing pathways activated 
in high-CMLS patients. D) Box plot comparing predicted cisplatin sensitivity between CMLS groups. E) Heatmap 
displaying drug sensitivity correlations and differential analysis from PRISM datasets
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The heterogeneity of THCA poses a major challenge for effective classification and 
treatment. While most prior studies focused on single-omics layers or relied on a limited 
number of clustering algorithms, our approach combined five complementary omics 
data types with ten clustering methods, yielding a robust subtype classification less sus-
ceptible to algorithm selection bias [22, 23]. This integrative strategy helps to more faith-
fully capture the multi-layered regulation of gene expression in cancer, which involves 
genetic and epigenetic mechanisms such as mutation, methylation, and histone modi-
fication [23, 24]. The three subtypes identified in our study demonstrated consistent 
reproducibility and prognostic value across validation cohorts, suggesting their potential 
to complement or improve upon traditional THCA classification systems.

To further translate these subtypes into clinically actionable information, we con-
structed the CMLS using 99 machine learning algorithm combinations. This exhaustive 
strategy was guided by the average C-index across multiple validation cohorts, effec-
tively mitigating overfitting—a common pitfall in high-dimensional survival modeling 
[25]. While random survival forest (RSF) performed well on training data, its general-
ization to testing data was suboptimal [26]. In contrast, the selected CMLS consistently 
outperformed existing prognostic signatures [27], demonstrating excellent risk stratifi-
cation ability across cohorts.

We also evaluated the immunogenomic context of CMLS-defined risk groups. 
Although patients in the high-CMLS group had higher tumor mutational burden (TMB) 
and neoantigen burden (TNB), they did not show superior immunotherapy response 
based on TIDE scores [28–31]. This suggests that immune evasion mechanisms may 
dominate despite high immunogenicity, consistent with the complexity of immune-
tumor interactions. In contrast, the low-CMLS group showed better predicted responses 
to immunotherapy, highlighting CMLS as a potential tool for identifying immunother-
apy-sensitive patients. It is worth noting that the observed discrepancy with SubMap 
analysis, which indicated high-CMLS sensitivity to PD-1 blockade based on a melanoma 
cohort, likely reflects fundamental differences in the immune microenvironments of thy-
roid cancer and melanoma. Melanoma is a highly immunogenic tumor with abundant 
tumor-infiltrating lymphocytes and well-established responsiveness to immune check-
point inhibitors [32], whereas thyroid cancer typically exhibits a more immunosuppres-
sive and heterogeneous microenvironment. Moreover, SubMap predictions are limited 
by their reliance on reference cohorts from different tumor types, underscoring the need 
for cautious interpretation. Consequently, while CMLS shows promise in thyroid cancer, 
its predictive value in other cancers, including melanoma, requires further validation in 
tumor-specific contexts.

Given the unfavorable immune profile of the high-CMLS group, we explored alterna-
tive therapeutic strategies using a pharmacogenomic screening approach [33, 34]. Six 
chemotherapeutic drugs, including docetaxel, were identified as potential candidates. 
Previous studies have shown that docetaxel, especially in combination with anti-PD-1 
therapy, can reduce tumor burden in preclinical models [35], providing a rationale for 
further investigation in high-CMLS THCA patients [36].

Our study presents several methodological innovations compared to prior work [37]. 
First, we comprehensively addressed tumor heterogeneity by integrating five types 
of omics data. Second, we minimized methodological bias by applying ten indepen-
dent clustering algorithms. Third, SPRGs derived from multiple cohorts ensured the 
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robustness and stability of the modeling genes. Fourth, by selecting the model with the 
best average C-index performance, we further reduced the likelihood of overfitting. 
Lastly, we emphasized the need for further investigation into the biological functions of 
CMLS genes to better understand their role in THCA progression [38].

5 Limitations and future directions
Despite these promising results, our study has limitations. The findings are primarily 
based on retrospective data and require validation in prospective, multicenter cohorts. 
Moreover, the specific tumorigenic mechanisms of CMLS genes remain unclear. In 
future research, we will perform in vitro and in vivo experiments to explore the func-
tional roles of these genes and validate the biological significance of our computational 
predictions (40).

6 Conclusion
In summary, we identified three reproducible molecular subtypes of THCA through 
integrative multiomics consensus clustering and developed a novel machine learning–
derived prognostic signature, CMLS. This signature effectively stratifies patient out-
comes and offers insight into immunotherapeutic responsiveness. Moreover, it provides 
guidance for alternative therapeutic strategies in high-risk patients. Our study lays a 
foundation for more precise risk assessment and personalized therapy in thyroid cancer 
by bridging multiomics integration with advanced computational modeling.
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