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Expounding the heterogeneity for ovarian cancer (OC) with the cognition in developmental biology might be helpful to search for
robust prognostic markers and effective treatments. In the present study, we employed single-cell RNA-seq with ovarian cancers,
normal ovary, and embryo tissue to explore their heterogeneity. Then the differentiation process of clusters was explored; the
pivotal cluster and markers were identified. Furthermore, the consensus clustering algorithm was used to explore the different
clinical phenotypes in OC. At last, a prognostic model was construct and used to assess the prognosis for OCs. As a result, eight
diverse clusters were identified, and the similarity existed in some clusters between embryo and tumours based on their gene
expression. Meaningfully, a subtype of malignant epithelial cluster, PEG10+ EME, was associated with poor survival and was an
intermediate stage of embryo to tumour. PEG10 was a CSC marker and might influence CSC self-renewal and promote cisplatin
resistance via NOTCH pathway. Utilising specific gene profiles of PEG10+ EME based on public data sets, four phenotypes with
different survival and clinical response to anti-PD-1/PD-L1 immunotherapy were identified. These insights allowed for the
investigation of single-cell transcriptome of OCs and embryo, which advanced our current understanding of OC pathogenesis and
resulted in promising therapeutic strategies.
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INTRODUCTION
Incidences of ovarian cancer (OC), one of the most fatal and
aggressive tumours of the female reproductive system, have
increased in recent years [1]. OC patients often face poor
prognoses, presumably because of genetic heterogeneity limiting
reproducible prognostic classifications.
At present, studies have explored the mechanism of carcino-

genesis and developed effective diagnostic methods focussed on
the gene expression patterns between OCs and normal samples
using bulk transcription [2, 3]. The gene expression profiles have
been reported to correlate with overall survival [4–6] and response
to platinum therapy [7, 8]. However, extensive heterogeneity
exists in OC cells, which is a key mechanism for overall survival
(OS) and progression of cancers [9, 10]. Actionable diagnostic
markers and therapeutic targets identified based on bulk profiling
technologies disregarding intra-tumoural heterogeneity have
been controversial and not suitable for all patients. The emerging
single-cell technology has provided powerful tools for exploring
genetic and functional heterogeneity, thus helping to solve the
problem. This technology has been increasingly used in more
regions [11–18] and has provided novel mechanisms in our
understanding of both carcinogenesis and in revealing strategies
for treatment. However, few studies have explored OC at the
single-cell level. One recent single-cell RNA-sequencing (scRNA-
seq) study [19] investigated tumour heterogeneity at cellular

resolution with OC samples. Another study examined how
fallopian tube epithelium cells of origin could enable accurate
prediction of cancer behaviour [14]. These studies provide novel
insights to explore the carcinogenesis of OC, and their findings
have enhanced our understanding of OC.
In the 1970s, Pierce et al. [20] presented a theory that cancer is a

problem of developmental biology, and the embryo may control
the process. With the increased cognition in developmental
biology, researchers have discovered the similarity of biological
behaviours between early embryo development and tumorigen-
esis, as well as the important interaction between tumours and
embryos [20–23]. Studies have demonstrated that the similarity
exists between embryo development and tumorigenesis at the
level of gene and protein expression and their important
biological behaviours [22–26]. It was necessary to explore the
heterogeneity of OCs and embryos and the underlying clues that
are crucial for OC diagnostic/therapeutic strategies. To our
knowledge, this is the first study to define in detail a single-cell
atlas of the OCs and embryo. Understanding OC progression in
the perspective of developmental biology could help for deeply
comprehending the mechanism of carcinogenesis, which might
provide new insights for anticancer therapy.
In our study, we employed 10× single-cell sequencing to study

the heterogeneity of OCs and embryo and explored pivotally
prognostic phenotypes or markers in regulating OC progression.
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We found the that embryo was similar with OCs in several clusters
because of similar gene expression patterns. Moreover, we
identified PEG10+ embryonic malignant epithelial (EME) cell as a
carcinoembryonic cluster, which was associated with poor
survival. Significantly, paternally expressed gene 10 (PEG10) might
influence cancer stem cell (CSC) self-renewal and promote
cisplatin resistance via NOTCH pathway. We further explored the
clinical application of novel genes of PEG10+ EME with public data
sets. Thus, our findings provide unprecedented insights for
understanding OC progression and establish four distinct immune
phenotypes with different OS.

RESULTS
Single-cell expression atlas of OC tumours and embryo tissue
To explore the cellular diversity in OC and embryo tissue, two
OC samples and one normal ovary were taken from two
patients, and ninth-week embryo tissue was obtained from an
aborted foetus that a previously pregnant woman donated (Fig.
1A). After removing low-quality cells, we acquired single-cell
transcriptomes in a total of 16,027 cells from OC samples, 7655
cells from the control ovary, and 3628 cells from embryonic
tissue. After removing batch effects among multiple samples, we
identified eight main clusters (Fig. 1B, C). Based on the
expression of well-known markers (Fig. 1E, F), which were
strongly and specifically marked regarding each major cell
population, we annotated the cells as epithelial clusters (C0 and
C1), mesenchyme cluster (C2), macrophage cluster (C3),
differentiation cluster (C4), T cell cluster (C5), endothelium
cluster (C6), and B cell cluster (C7).
As is known, OC majorly originates from epithelium. Among the

eight diverse clusters identified in the present study, two different
types of epithelial cells (C0 and C1) encouraged us to investigate
their malignant status and seek the potential epithelial cells
associated with carcinogenesis. We found that C0 consisted of
more proportions of tumour cells and embryo cells. In contrast, C1
illustrated a more normal cell population (Fig. 1C, D). The peculiar
marker for clinical identification of the OCs, such as PAX8, was only
existent in the C0 (Fig. 1F). In addition, we compared discrepant
genes between C0 and C1, identifying 1505 upregulated and 783
downregulated genes in C0 (Fig. 1G). Functions of C0 were
focussed on some carcinogenesis terms, such as cell adhesion, cell
migration, and epithelial cell differentiation (Fig. 1H). Next, we
focussed on the transcriptional correlations between the eight
clusters. This revealed that C0 showed the most interaction with
other cell types (Fig. 1I).
Using pySCENIC pipeline, we identified the regulons for each

cluster. The most specific regulons associated with C0 were ZIC5,
ZIC2, POU3F1, PGAM2, and LHX1 (Fig. S1A), which associated with
carcinogenesis or embryo development. Strikingly, 378 regulons
were organised into 10 major modules (Fig. S1B). For each
module, we identified several representative regulators and cell
types with their average activity scores (Fig. S1B, C). Significantly,
we found that C0 was the most frequent cluster in these modules.
This demonstrated that C0 was the pivotally malignant epithelial
cluster and exploring this cluster might deepen our understanding
of OC progression.

Comparison of OCs and embryo
Studies have stated that similarity existed between embryo
development and tumorigenesis based on bulk data or epige-
netics data [23–26]. In the present study, we investigated the
similarity between tumours and embryonic tissue at single-cell
levels. A heatmap indicated that clusters in tumours were similar
to those in embryo tissue (Fig. 2A), which was validated using the
evolutionary tree (Fig. 2B).
In addition, we discovered that several regulons were activated

in the embryo and tumours but deactivated in the normal ovary

(Fig. 2C). They were enriched in the functions of embryo
development, such as regulation of transcription and stem cell
differentiation (Fig. 2D). This suggested that embryo development
was similar to tumorigenesis. However, some genes were
discrepant and dynamic between tumours and embryo tissue
that decided their different destiny. In this study, we also explored
several differentially expressed genes (DEGs) as well as several
pathways between the four samples (Fig. 2E). These results
increased our understanding of cancer progression.

A distinct carcinoembryonic subgroup identified in epithelial
cluster
To identify the heterogeneity of epithelial cells in OC, we
reclustered the malignant epithelial cells and identified nine
distinct subgroups based on UMAP analysis (Fig. 3A). We noticed
that both S3 and S0 cells expressed several malignant genes for
identification in the OCs (Figs. 3B and S2A). A higher gene set
variation analysis (GSVA) score for S3 explicated poor OS in the OC
Gene Expression Omnibus (GEO) data sets (Fig. 3C). Functions of
S3 were associated with ribosomes and the hypoxia-inducible
factor 1 (HIF-1) signalling pathway (Figs. 3D and S2B). The
pseudotime graph demonstrated that a differentiation process
existed from embryo to tumour (Figs. 3E and S2C), and the
heatmap illustrated the dynamic gene expression and related
pathways from embryo to tumour (Fig. S2D). Significantly, S3 was
the intermediate state of the embryo-to-tumour process (Figs. 3E
and S2C). This demonstrated that S3 played an important role in
the transformation from embryo to tumour. In our study, PEG10
was a marker gene of S3, which was mainly expressed in embryo
and malignant tumour (Figs. 3B, G and S3B). With the develop-
ment of embryo, the expression of PEG10 was lessened but
ascended in the tumour (Fig. 3F), thus highlighting its important
role in the early period of embryo to tumour. Thus, we named S3
as PEG10+ EME cells.
To explore the molecular interaction networks between PEG10+

EME and other cell types, CellPhoneDB was used to analyse the
seven major cell types and nine cell subclusters of C0. The
heatmap indicated that S3 was related to immunity and
carcinogenesis (Fig. 3H). The immune molecules—CXCR4, CCL28,
SLC7A1, and CXCL12—secreted by S3 cells interact with receptors
expressed on C2–C7. In addition, S3 cells also secreted carcino-
genesis molecules—FGFR2, MIF, TGFB1, PDGFC, and NOTCH2—
that interacted with JAG1, VEGFA, EGFR, PDGFRA, and TGFB1,
which were expressed in C1–C7. Similar ligand–receptor pairs
were also found between S2, S7, S8 (which majorly consist of
embryonic cells), and C1–C7. This strengthened the assertion that
tumorigenesis was similar with embryo development.

PEG10 deficiency inhibiting stem cell self-renewal and
promoting cisplatin-resistance
PEG10 is an imprinted gene, which is essential for placental
development and plays critical role in mouse embryonic stem cells
(ESCs) and trophoblast stem cells (TSCs) [27]. Studies point out
that PEG10 promotes carcinogenesis of cancers [28–30]. In the
present study, we demonstrated that PEG10 was higher in OC
samples (Figs. 4A and S3A). Moreover, patients with higher PEG10
exhibited poor OS (Fig. 4B, C) and progression-free survival (PFS)
(Fig. S3C, D). Upon stratification of the samples according to
specific clinical features, significant differences in OS (Fig. S3E) and
PFS (Fig. S3F) were observed between the low and high PEG10
groups, demonstrating that PEG10 was heterogeneous in different
subgroups. SOX2, NANOG, and OCT4 are classical stem markers.
Next, we explored the stem characteristic of PEG10. In our study,
SOX2 highly expressed in embryonic cells, and PEG10 highly
expressed in embryonic and malignant tumour cells (Figs. 3G and
S3B). In the scatter plot, PEG10 was positive correlated with SOX2
(Fig. S3G, H). As validation, the mRNA expression of SOX2, NANOG,
and POU5F was lower in siPEG10 cells (Fig. 4D). At the protein
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levels, SOX2, NANOG, and OCT4 were also lower in siPEG10 cells
(Fig. 4K). Moreover, downregulation of PEG10 inhibited multiple
OC cell line proliferation, such as CAOV8, A2780, and SKOV3 (Fig.
4E). Thus, sufficient evidence demonstrated that PEG10 deficiency
had a profound impact on stem cell self-renewal by inhibiting
genes involved in pluripotency.

CSCs are closely related with chemotherapy and radiation
therapy resistance. In our study, we found that PEG10 was higher
in the cisplatin resistance (Fig. 4F) and relapse group (Fig. 4G).
GO_RESPONSE_TO_CISPLATIN was more enriched in PEG10-high
group using the GSVA algorithm (Fig. 5H). Then Cell Counting Kit-8
(CCK-8) assay and flow cytometry were performed to discuss the

Fig. 1 Integrated analysis of OCs and embryonic single-cell transcriptomes. A Workflow illustrating collection and processing of single-cell
transcriptome of OCs, control ovary, and embryo. B, C OCs and embryo cell clusters from 10× Genomics scRNA-seq analysis visualised by
UMAP. D The proportion of diverse cell types across different samples. E Heatmap displaying the expression patterns of specific markers in
each cell type. F Violin plots exhibiting the expression of representative markers across diverse cell types. G Scatter plots showing the gene
expression patterns of type C0 (x axis) and C1 (y axis). H GSEA analysis of C0 displaying its’ malignant characteristics. I Relationship of C0 and
other cell types.
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Fig. 2 Comparison of diverse clusters and samples. A Heatmap showing conserved cell types in OCs, normal ovary, and embryo.
B Evolutionary tree illustrating the similarity between samples. C Heatmap of 18 differential regulons by SCENIC for different samples.
D Functional analysis of the 18 regulons. E Heatmap illustrating diverse genes and relative pathways in four samples.
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Fig. 3 Differential gene expression profiles of diverse clusters of C0. A UMAP representation of nine subgroups generated from C0.
B Dotplot illustrating the representative genes across diverse cell types. C Kaplan–Meier curves for patients with high- and low-GSVA score
(based on top 100 markers of S3) in GEO OC meta data sets (Log-rank p= 0.0099). D Functional analysis of each subtype is illustrated with
KEGG. E Pseudotime of nine subtypes and four samples in C0 inferred by Monocle2. Each point corresponds to a single cell. Clusters or
samples information are shown. F Expression of PEG10 was mapped to the single-cell trajectory plot. Colour from grey to red indicates relative
expression levels from low to high. G Violin plots illustrating the mRNA levels of PEG10 and SOX2 in samples based on cells in S3. H Heatmap
of selected ligand–receptor interactions between diverse cell types and subtypes of C0. Point size indicates p value (CellPhoneDB). Colour
indicates the mean expression level of ligand and receptor (Mol1/2).
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effect of PEG10 on the sensitivity of OC cell lines to cisplatin.
SKOV3, A2780, and A2780/cisR cells were transferred with siPEG10
and siCon for 48 h, then the cells were treated with increasing
concentrations of cisplatin for 24 h and their inhibition rate was
measured by CCK8. As expected, SKOV3 cells transferred with
siPEG10 were more sensitive to cisplatin toxicity. Same trend
could be found in cisplatin-sensitive and cisplatin-resistant cells,
such as A2780 and A2780/cisR (Fig. 4I). Furthermore, down-
regulation of PEG10 significantly strengthen cisplatin-induced
apoptosis (Fig. 4J). These proved that PEG10 deficiency indeed
increased cellular sensitivity to chemotherapy.
Further, to determine the molecular mechanism of PEG10 in

stem cell self-renewal, GSVA proved that high-PEG10 group was
enriched in REACTOME_SIGNALING_BY_NOTCH (Fig. S3I). Convin-
cingly, PEG10 was also positive with markers of NOTCH pathway in
cancers (Fig. S3J). Then, reverse transcription–quantitative poly-
merase chain reaction (RT-qPCR) and western blot were

conducted to validate the result. Interesting, protein levels of
NOTCH and HES were lower in the siPEG10 group (Fig. 4K); mRNA
levels of NOTCH1, NOTCH2, and JAG1 were lower in the siPEG10
group compared to the siCon group (Fig. 4L). Thus, we inferred
that PEG10 influenced CSC self-renewal via NOTCH pathway.

Identification of four phenotypes with different survival
utilising a gene panel of 49 markers from PEG10+ EME
To elaborate novel subgroups that correlated with survival or
treatment response, we first identified 49 of the 901 genes from
PEG10+ EME with statistical significance utilising the univariable
Cox proportional hazards regression analysis based on The Cancer
Genome Atlas (TCGA) OC data set (Fig. S4A, B). Then, unsupervised
clustering methods (pam) were used, and OC patients were
divided into two clusters according to the 49 prognostic genes’
expression (Fig. S4C). Patients in Cluster2 presented poorer
survival (Fig. 5A, B) and showed more mutated genes (Fig. 5D,

Fig. 4 PEG10 deficiency inhibits tumour cell proliferation and promotes cisplatin resistance by targeting stem cell self-renewal.
A Representative protein expression levels of PEG10 were high in OCs based on the Human Protein Atlas database. B Patients with higher
PEG10 illustrated poor OS based on Kaplan–Meier plotter data set. The cut-off of PEG10 was 1038 to dichotomise OC patients. C Forest plot
showing PEG10 is associated with poor OS in most OC data sets. D Barplots demonstrating mRNA expression of SOX2, NANOG, and POU5F
were lower in siPEG10 cells. E Downregulation of PEG10 inhibited OC cell proliferation. F, G Boxplot illustrating higher PEG10 in cisplatin
resistant (F) and relapse (G) group based on GEO data sets. H GSVA of GO_RESPONSE_TO_CISPLATIN in the high- and low-PEG10 group. I
Cisplatin sensitivity in siCon and siPEG10 OC cells. J Apoptotic cells by flow cytometry in control and siPEG10 OC cells untreated or treated
with cisplatin. K Protein levels of PEG10, SOX2, NANOG, OCT4, NOTCH, and HES were also lower in siPEG10 OC cells. LmRNA levels of NOTCH1,
NOTCH2, and JAG1 were lower in the siPEG10 group compared to the siCon group. *represented p < 0.05, **represented p < 0.01,
***represented p < 0.001.
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E), demonstrating the malignant status of Cluster2. GSVA analysis
demonstrated that Cluster2 was more enriched in the immune-
related terms, such as INFLAMMATORY_RESPONSE, IL6_JAK_-
STAT3_SIGNALING, etc. The other cluster was enriched in
E2F_TARGETS, DNA_REPAIR (Fig. 5C). Moreover, patients in
Cluster2 were accompanied by greater expression of immune
cells, immune checkpoints, and HLAs (Fig. 5A–D).
Immune cytolytic activity (CYT), a measurement for assessing

immune infiltration, has been defined as the geometric mean of
GZMA and PRF1 expression [31]. In the present study, CYT was
associated with multiple immune molecules (Fig. S6), and
infiltration of CYT has been shown to be related to better survival
in patients with multiple cancers (Fig. S7). This indicated that CYT
infiltration could indicate the immunologic dynamics in the
tumour microenvironment. Based on the prior cluster and the
level of CYT, we divided the OC patients into four phenotypes
(P1–P4). Patients in these phenotypes were accompanied by
different immune molecules and CYT infiltration (Figs. 5F, S8, and
S9A, B), thus these phenotypes might closely correlate with
immunotherapy such as immune vaccines and anti-programmed
cell death ligand 1 (anti-PD-L1) immunotherapy. Obviously,
patients in P1 exhibited better survival, and patients in the P4
class showed worst survival and P2 and P3 had similar survival
(Figs. 5G, H and S9C). PAX8 is the malignant clinical marker for OC;
however, PAX8 was not helpful for identification of the four
phenotypes (Fig. 5I, K). Notably, the CSC marker, PEG10, was lower
in P1 and higher in P4 (Fig. 5J, L), demonstrating the malignant
status of P4. Thus, the novel CSC marker was better than PAX8 in
identification of different immunologic phenotypes. Subsequently,
we explored patients’ clinical response to anti-PD-L1 immunother-
apy in the four phenotypes. Participants in P1 were associated

with therapeutic advantages to anti-PD-1/PD-L1 immunotherapy;
in the P4 class, patients had adverse clinical responses. Patients in
P2 and P3 had similar clinical responses to anti-PD-1/PD-L1
immunotherapy (Figs. 5M and S9D). The pseudotime of the four
phenotypes demonstrated that P1 might be the original and P4
was the terminal. Moreover, P2 and P3 had different differentia-
tion trajectories (Fig. 5N), prompting the two phenotypes to be
considered controversial.
Weighted gene co-expression network analysis (WGCNA) was

used to identify the special gene modules for each phenotype,
and it was found that distinct gene expression patterns existed
among the four phenotypes (Fig. S9E–I). Meaningfully, functional
analysis demonstrated that P1 was involved in immunologic
processes, such as activation of T cells and leucocytes (Fig. S9J); P2
was related to microtubule bundle formation (Fig. S9K); P3 was
enriched in epithelial change, such as regulation of trans-synaptic
signalling and epidermis development (Fig. S9L); and P4 was
enriched in extracellular matrix-related processes, such as extra-
cellular structure organisation (Fig. S9M). Considering our former
results—that P1 (best survival) was infiltrated with more immune
molecules, and P4 (worst survival) was infiltrated with lesser
immune molecules—we deemed P1 the immune-active pheno-
type and P4 the immune-desert phenotype. Thus, the work to
elucidate the heterogeneity phenotypes could be crucial in
developing therapeutic strategies with better efficacy.

DISCUSSION
OC has been characterised by poor OS and deficiencies in
effective treatment because of a high degree of intra-tumoural
heterogeneity. With the increased cognition in developmental

Fig. 5 Four phenotypes identified based on markers of carcinoembryonic subtype. A, B Kaplan–Meier curves for Cluster1 and Cluster2
based on TCGA OC cohort (A) and GEO OC meta data sets (B). C GSVA analysis of two clusters. D, E Waterfall chart illustration of top 40
mutated genes in the two clusters in OC. A limited number of mutations were in Cluster1 (D); more mutations existed in Cluster 2 (E).
F Heatmap representation of immune molecules in four classes in TCGA OC cohort. G, H Kaplan–Meier curves for patients with four distinct
phenotypes in TCGA OC cohort (Log-rank p= 0.0037, G) and GEO OC meta data sets (Log-rank p < 0.0001, H). I–L Boxplot illustrated the
expression of PAX8 (I, K) and PEG10 (J, L) in four phenotypes based on TCGA OC cohort and GEO OC meta data sets. M Ratio of clinical
response (CR/PR and PD/SD) to anti-PDL1 immunotherapy in four immune phenotypes based on IMvigor210 cohort. N Pseudotime of four
phenotypes in TCGA OC cohort inferred by Monocle2. Each point corresponds to one OC sample. Phenotype information is shown.
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biology, researchers have discovered the similarity of biological
behaviours between early embryo development and tumorigen-
esis [23–26, 32]. However, most of these studies conducted with
bulk data or epigenetics data have disregarded the heterogeneity
of samples. Recently developed scRNA-seq technologies have
investigated tumour heterogeneity of OCs [19] and examined how
non-cancer cells of origin could predict OC behaviour [14]. To our
knowledge, this was the first study to define in detail a single-cell
atlas of the OCs and embryo and comprehensively explain the
heterogeneity and the underlying mechanism for OC progression.
In our study, eight cell types of OCs and embryo were identified

and gene expression profiles in each cell type were elucidated
based on scRNA-seq analysis. We found that the embryo was
similar to OCs in different clusters because of similar gene
expression patterns. Some transcription factors (TFs) associated
with embryo development were activated both in embryo and
tumours. Studies have found that similarity exists between
embryo development and tumorigenesis at the gene and protein
expression levels and important biological behaviours [23–26].
Therefore, exploring the mechanisms of carcinogenesis from the
perspective of developmental biology was meaningful.
Here malignant epithelium, C0, consisted of more proportions

of tumour cells and embryo cells and showed the most interaction
with other cell types. Then, C0 was reclustered into nine subtypes,
of which, PEG10+ EME was the intermediate state of the embryo-
to-tumour progression. Functions of PEG10+ EME were related
with ribosome and the HIF-1 signalling pathway, supporting its
embryonic and carcinogenesis characteristics. PEG10 was an
imprinted gene, which played critical role in mouse ESCs and
TSCs [27]. PEG10 was strongly expressed in the placenta, ovary,
and testis. However, PEG10 dysregulation was reported in multiple
tumours, such as metastasis prostate tumours [29], hepatocellular
carcinoma [33], and endometrial cancer [34]. PEG10 was also
closely related to the poor prognosis of cancers [29, 33, 34]. In our
study, PEG10 was highly expressed in embryo and tumour and
associated with poor survival in OC. Thus, we inferred that PEG10
was a marker of CSCs. CSCs was a small population of highly
malignant cells and display many characteristics of ESCs or tissue
stem cells. CSCs were responsible for unique characteristics of
tumour onset, self-renewal, resistance to radiotherapies and
chemotherapies, evasion of immune surveillance, and accelerating
recurrence and metastasis [35]. In our study, PEG10 was positively
correlated with stem cell self-renewal genes, such as NANOG,
SOX2, and OCT4, which was validated with PCR and western blot.
Studies pointed out that PEG10 promoted carcinogenesis of
cancers [28–30]. Liu et al. [33] demonstrated that TSG101
promotes the proliferation, migration, and invasion of hepatocel-
lular carcinoma cells by regulating the PEG10. Zhang et al. [34]
found that IGF2BP1 overexpression stabilises PEG10 mRNA in an
m6A-dependent manner and promotes endometrial cancer
progression. In our study, we provided direct evidence that
PEG10 deficiency inhibited multiple OC cell proliferation and
influenced the sensitivity of OC cells to cisplatin by inhibiting CSC
self-renewal signalling. CSCs have been implicated in conventional
chemotherapy resistance [36]; CSCs were considered the initiators
of cancer rebound after successfully combatting tumours. Thus,
PEG10 would be a target for cancer treatment and help for
personalised anticancer strategies. CSCs often showed continuous
activation of highly conserved signalling pathways associated with
development and tissue homoeostasis, such as the Wnt, Notch,
and Hippo signalling pathways. These pathways were related to
CSC self-renewal [37] and have been used to explore new drugs
targeting CSCs. In the present study, PEG10 was closely correlated
with NOTCH pathway. Therefore, targeting PEG10 might inhibit
OC progression and propose a new strategy to treat OC via
targeting CSCs.
In our study, significant ligand–receptor pairs related to

immunity and carcinogenesis existed in the interactions of

PEG10+ EME and other cell types. This finding supported the
assertion that immune cells and immune molecules played
important roles in embryo development and tumorigenesis
[21, 24, 38]. Furthermore, tumour progression might result from
imbalances between tumour progression and the host’s immune
response [39]. Thus, identifying the role of distinct gene
expression patterns of PEG10+ EME in the immune cell infiltration
would contribute to enhance our understanding of antitumour
response and guide more effective therapeutic strategies.
Furthermore, we identified four distinct immune-related phe-

notypes with different survival rates, utilising a gene panel of 49
markers form PEG10+ EME. P1 was deemed the immune-active
phenotype, in which patients had best OS benefit and showed a
high level of immune molecules, whereas P4 was deemed the
immune-desert phenotype, in which patients had poorer OS and
showed a lower level of immune molecules. Thus, dysregulated
gene patterns in PEG10+ EME demonstrated a close relationship
with diverse immune phenotypes. Moreover, PEG10 was superior
than PAX8 to identifying diverse immune phenotypes. In this
work, patients with different phenotypes showed distinct
response to anti-PD-1/PD-L1 immunotherapy. In P1, patients
showed obvious therapeutic advantages to anti-PD-1/PD-L1
immunotherapy; however, patients in P4 had adverse clinical
responses. Pseudotime analysis demonstrated that P1 was the
original of four phenotypes and P4 was the terminal. Patients in P2
and P3 had different immune molecules infiltration but similar OS
and therapeutic advantages to anti-PD1/PDL1 immunotherapy.
The two novel, distinct phenotypes demonstrated different
differentiation trajectories and were thus controversial. Thus, it is
necessary to investigate the two controversial phenotypes in
individual tumours. Exploring their gene patterns would help to
determine the immune phenotypes of tumours and be informa-
tive for exploring mechanisms of immune edition [40, 41], thus
guiding more effective clinical practice.
In conclusion, we constructed a single-cell transcriptome atlas

of OCs and embryo and provided a new perspective for
understanding the progression of OCs. Significantly, we identified
a specific carcinoembryonic cluster, namely, PEG10+ EME, which
played important roles in carcinogenesis. PEG10 influenced CSC
self-renewal thus might be a therapeutic target for OCs. Moreover,
we identified four distinct phenotypes with different OS based on
neoplastic cell-specific marker genes of PEG10+ EME. Therefore, a
comprehensive assessment of gene patterns of the OCs and
embryo would help to enhance not only our current under-
standing of OC pathogenesis but also the underlying prognosis
and treatment for patients.

MATERIALS AND METHODS
OC patient and embryo samples
In this study, patients diagnosed with OC or voluntary abortion in the ninth
week were enrolled from Beijing Obstetrics and Gynecology Hospital,
Capital Medical University in China. The ovarian samples were obtained
from the Tissue Bank of Beijing, and the embryonic sample was obtained
from the China Birth Cohort. Fresh specimens were collected at the time of
surgical resection under the supervision of a qualified pathologist. All the
clinical information is listed in Table S1.

Tissue dissociation and cell purification
Tissues were transported using MACS Tissue Storage Solution (MACS, Cat.
no.130-100-008F) on ice to preserve viability. In addition, they were
washed 2–3 times with phosphate-buffered saline (PBS; Hyclone, Cat. no.
SH30256.01) and then minced on ice. We used the Tumour Dissociation Kit
(MACS, Cat. no.130-095-929) to digest the human tissues gently to
generate single-cell suspensions. The ovarian tumour and control tissues
were dissociated at 37 °C with a shaking speed of 30 rpm for about 6min.
Then we collected the dissociated cells to digest sufficiently with 0.25%
trypsin (Gibco, Cat. no.25200056) for about 2min. The embryonic tissues
were then minced and incubated with the same digestion buffer at 37 °C
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but shaken for about 10min, then incubated with trypsin for 3 min. Cell
suspensions were filtered using a 40 μm nylon cell strainer (Falcon, Cat. no.
352340), and red blood cells were removed. Single-cell suspensions were
stained with AO/PI fluorescent dyes (Logos Biosystems, Cat. no. LB F23001)
to check viability with LUNA (Logos Biosystems, Cat. no. LUNA-STEM), then
diluted with PBS containing 0.02% bovine serum albumin to about 1 × 106

cells/ml for single-cell sequencing.

scRNA-seq data pre-processing
The concentration of single-cell suspension was 1000 cells/μl. Cells were
loaded according to the standard protocol of the Chromium single-cell 3′
reagent kit to capture 5000 cells to 10,000 cells/chip position (V3
chemistry). All the remaining procedures were performed by following
the standard manufacturer’s protocol.
Library preparation was performed according to instructions in the 10×

Genomics Chromium platform. The libraries were then pooled and
sequenced on an Illumina NovaSeq 6000 System. Reads were processed
using the Cell Ranger 3.0.1 pipeline (https://support.10xgenomics.com)
with default, recommended parameters. FASTQs were generated from
Illumina sequencing. The raw sequence files were aligned to the human
reference genome (GRCh38) with the STAR algorithm [42]. Finally, a
gene–barcode matrix containing the barcoded cells and gene expression
counts was generated.
The barcode matrix was processed with Seurat v3 [43], a toolkit for

scRNA-seq data analysis. All functions were run using default parameters,
unless otherwise specified. Low-quality cells (<300 gene/cells, <3 cells/
gene, and >20% mitochondrial genes) were excluded. Then the UMI count
data were normalised with log transformation. The highly variable genes
(HGVs) were selected to amalgamate samples into a merged data set. Next,
the merged cell-by-gene matrix was scaled by dividing the centred
expression by the standard deviation.

Dimension reduction, cell clustering, and annotation
The Seurat package was applied to identify major cell types. HGVs were
generated and used to perform graph-based clustering of the principal
component (PC) analysis. PCs 1–20 were used for graph-based clustering
to identify distinct groups of cells. For sub-clustering, we applied the same
procedure of finding variable genes, reducing dimensionality, and
clustering to the restricted set of data (usually restricted to one initial
cluster). These groups were projected onto UMAP analysis run using the
previously computed PCs 1–20.
Next, differential gene expression analysis was performed using the

functions of ‘FindMarkers’ or ‘FindAllMarkers’ in Seurat with settings on
genes with the default parameters. We characterised the cell types
based on classical markers: EPCAM, PAX8, and WFDC2 (epithelium);
COL1A1 and DCN (mesenchyme); CD163 and CD68 (macrophage);
TOP2A and CDK1 (differentiation cluster); CD3D and CCL5 (T cell); VWF
and EMCN (endothelium); CD79A (B cell). The top 100 DEGs in each
cluster or subset were then used to perform biological process
enrichment analysis.

Pseudotime analysis
The package Monocle2 [44] was performed to analyse single-cell
trajectories or sample trajectories. DEGs over the pseudotime among the
different cell clusters or four immune phenotypes’ transitions were
calculated by the ‘differentialGeneTest’ function (q value <10−20 or
10−2). ‘DDRTree’ was then applied to reduce dimensions, and functions
of ‘plot_cell_trajectory’ were used for visualisation.

Gene set functional analysis
The gene set functional analysis was conducted with clusterProfiler
package [45], gsva package [46], and DAVID (https://david.ncifcrf.gov/
home.jsp) [47] with the DEGs in each cluster or subset. The enriched Kyoto
Encyclopedia of Genes and Genomes pathways and Gene Ontology terms
were derived. H.all.v7.1.symbols.gmt was downloaded from the Molecular
Signatures Database (http://www.broad.mit.edu/gsea/msigdb/).

Construction of a single-cell transcriptome network and
cellular similarity analysis
To explore the relationship between the clusters, a toolkit based on python
for scRNA-seq data analysis—Scanpy [48]—was used to construct the
single-cell transcriptome network with the function of PAGA. To explore

the similarity of samples and clusters, the R packages MetaNeighbor [49]
and ggtree [50] were utilised.

SCENIC analysis
TF activity was analysed using SCENIC (v1.0.0.3) for the cell types with raw
count matrices as the input. The regulons and TF activity (area under the
curve) for each cell were calculated with motif collection version mc9nr
according to Suo et al.’s pipeline [51]. Their pipeline included the inference
of regulons and their activity, quantifying cell-type specificity score, and
regulon module analysis.

Identification of significant ligand–receptor pairs
To analyse the cell-to-cell communication at the molecular level in our
data, we identified significant ligand–receptor pairs using CellPhoneDB
[16], a Python-based computational analysis tool. Ligand–receptor pairs
with p values <0.05 were retained to assess the relationship between the
different cell clusters.

Public data analysis
RNA-seq data and corresponding clinicopathological data of multiple
cancer patients in TCGA were obtained from UCSC Xena (https://
xenabrowser.net/datapages/). Somatic mutation status for OC (workflow
type: Mutec2) was obtained from R package TCGAbiolinks [52]. Data
retrieved from multiple GEO databases were used for integrated analysis
with R package sva [53]. The IMvigor210 trial data set was extracted from
the R package IMvigor210CoreBiologies. All public data used in our study
are supplied in Table S2.
Next, unsupervised clustering analysis was used to identify carcinoem-

bryonic patterns and classify patients for further analysis. A consensus
clustering algorithm (pam) was then applied to determine the optimal
cluster number that was associated with the highest stability and the
lowest ambiguity in the TCGA OC data sets. This procedure was performed
using the R package ConsensusClusterPlus to ensure the stability of
classification.
Marker gene sets for immune cell types were obtained from Gabriela

et al. [54] The infiltration levels of immune cell types were quantified by
ssGSEA in the R package gsva [46]. CYT was obtained with the mean of
GZMA and PRF1.
WGCNA was then performed with the TCGA OC cohort to identify the

special gene modules and distinct gene expression patterns for each
phenotype with R package WGCNA [55]. A total of 5133 genes in the top
25% of variances were screened for further analysis. In total, 308 samples
were analysed, and 11 outliers were eliminated. In the end, 297 samples
were used for the analysis, and the soft threshold was 4.

Cell culture and small interfering RNA (siRNA) transfection
In our study, OC cell lines (including SKOV3, A2780, A2780/cisR, and
CAOV8) were obtained from ATCC. SKOV3 and A2780 are cultured in RPMI-
1640 medium containing 10% foetal bovine serum (FBS) and 100 U/ml
penicillin/streptomycin at 37 °C with 5% CO2. A2780/cisR was cultured with
the same conditions but the concentration of FBS was 15%. CAOV8 is
cultured in Dulbecco’s Modified Eagle Medium supplemented with 10%
FBS and 100 U/ml penicillin/streptomycin under similar conditions. All cell
lines were transfected using lipofectamine 3000 (Invitrogen, Carlsbad, CA,
USA). siRNA against PEG10 was obtained from JTSBIO Co., Ltd. (Wuhan,
China). The sequences of siPEG10 were as follows: siRNA1, 5’-CCCAGUGC-
CAGAUCUUCAUTTAUGAAGAUCUGGCACUGGGTT-3’; siRNA2, 5’-CCAG-
CUUUCAUGAUGGAAATTUUUCCAUCAUGAAAGCUGGTT-3’, siRNA3, 5’-
GCUGGUGUUGCCUCACAUUTTAAUGUGAGGCAACACCAGCTT-3’; and the
sequence of siCon was 5’-UUCUCCGAACGUGUCACGUTTACGUGACAC-
GUUCGGAGAATT-3’. Cells were transfected with 100 nmol/l siPEG10 or
siCon and incubated for 24 h for subsequent assays.

Cell proliferation assay
Transfected OC cells were reseeded onto 96-well plates. Then, 10 μl CCK-8
solution (Dojindo, Rockville, MD, USA) was added to each well. After
incubation for 2 h, the absorbance of each well was measured at 450 nm
using a Tecan Infinite M1000 PRO (Tecan, Switzerland).

RNA extraction and RT-qPCR
Total RNA was isolated using TRIzol reagent according to the manufac-
turer’s instructions (Invitrogen, Carlsbad, CA). cDNA was reversely
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synthesised using the ReverTra Ace qPCR RT Kit (Toyobo, Shanghai, China).
The RT-qPCR was performed using the SYBR Premix EX Taq™ (Takala,
Dalian, China) in ABI 7500 Real-Time PCR system (Applied Biosystems,
Foster City, USA). The primer sequences are listed in Table S3. The
expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was
used as internal standard. The 2−ΔΔCT comparative method was used to
determine the relative gene expression.

Western blot analysis
Total protein was extracted using RIPA buffer (Thermo Fisher Scientific,
Waltham, MA, USA) and measured using BCA assay (Thermo Fisher
Scientific, Waltham, MA, USA). Thirty micrograms of protein per sample
was separated by sodium dodecyl sulfate–polyacrylamide gel electrophor-
esis, then transferred onto polyvinylidene fluoride membranes (Gene
Molecular Biotech, Inc., Shanghai, China). After blocking with 5% milk for
2 h at room temperature, the membranes were incubated overnight at 4 °C
with primary antibodies at the following dilutions: GAPDH (38 kDa, 1:1000,
CST), SOX2 (35 kDa, 1:1000, CST), OCT4 (45 kDa, 1:1000, CST), NANOG
(42 kDa, 1:1000, CST), NOTCH (120 kDa, 1:1000, CST), HES (30 kDa, 1:1000,
CST), PEG10 (100 kDa, 1:1000, Abcam). After that, the membranes were
incubated with horseradish peroxidase-conjugated rabbit IgG secondary
antibodies (1:7500, CST) for 1 h, and the expression levels were detected by
an ECL kit (Roche Diagnostics, Basel, Switzerland) via western blot imaging
system.

Apoptosis assays by flow cytometry
Transfected OC cells were cultured in 6-well plates for 24 h followed by
10 μg/ml cisplatin exposure for 24 h. Subsequently, the cells were
collected to determine apoptosis using Annexin-V-fluorescein isothio-
cyanate and propidium iodide (PI) Kit (BD Biosciences, San Jose, CA,
USA). The double stained cells were subsequently analysed with the BD
flow cytometer.
All the statistical analyses were performed using the R 3.6.1 and

Graphpad prism 8.0 softwares. The assay was repeated at least three
times and the data were presented as mean ± standard deviation (SD).
The variance was similar between the groups that were being
statistically compared. Two-tailed Student’s t test was used to assess
the differences between two groups. p < 0.05 was considered statistically
significant.
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