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Abstract

Toxicity bioassays are important tools to determine biological effects of chemical agents on 
species. The questions remained on, what effects have been imposed on each of the different 
molecular site of cells by chemical exposure and how to find a pattern for chemical toxicity. 

To address the questions, HepG2 cell lines were exposed to the different concentrations of 
cisplatin for 24 hours to result cell mortality in the range of one to one hundred percent. Fourier 
Transform Infrared spectroscopy (FTIR) has been used in this study to analyze the chemical 
alterations on HepG2 cell line by cisplatin. Partial least square regression (PLS) analysis was 
then applied to the FTIR spectrum results to search for a biomarker peak and present the desire 
cellular effects of cisplatin.  The comparison of cellular FTIR spectra after exposure to different 
concentrations of cisplatin confirmed the binding of cisplatin to DNA through direct interaction 
of platinum to guanine and thymine bases of DNA. Biochemical Index Spectra (BIS) were 
defined based on the differences between of normal and cisplatin exposed cells. Information 
from the BIS was subjected to PLS analysis to trigger any particular relationship between the 
toxicity spectral response and cisplatin concentration. This approach was capable of predicting 
the concentration of cisplatin for any particular effects observed in the cellular FTIR spectrum 
(R2 = 0.968 ± 0.037).

Our work supports the promises that, FTIR can demonstrate the trace of toxicity before the 
cells dies. Finally, PLS of FTIR data directly predicts the effective concentration of chemicals 
in particular cellular components.
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Introduction

Toxicity bioassays are important tools to 
develop the biological effect of chemical agents 

on cells. Most of the cytotoxicity tests were based 
on the ability of cells to continue the biological 
activity during the test and measures the criteria 
of cell growing  or cell  death. In general, these 
tests could neither qualify toxicity effect in 
different molecules of cells (1) nor predict dose 
quantity in the pattern of cell toxicity. 
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was obtained from Pasture Institute National Cell 
Bank of Iran (Tehran, Iran). Cell line was grown 
in RPMI-1640 medium supplemented with 10% 
heat inactivated fetal bovine serum, antibiotics: 
penicillin, streptomycin (all chemicals from 
Sigma). Cells were maintained at 37 °C in 
humidified atmosphere containing 5% CO2. 

Experimental strategy
Cells were trypsinized from the original flask 

and seeded in 75 cm2 flasks with fresh medium 
to reach the logarithmic phase of growth curve. 
After that cells were washed twice with saline 
(0.9% NaCl), suspended and centrifuged at 1000 
rpm for 10 min, then resuspended in saline to 
obtain a concentration of 107cells/mL. Part of 
these cells were used for FTIR experiments 
using nine concentrations as is shown in Table 1 
and about 0.1 mL for the clonogenic assay. Total 
of attached and detached cells in each flasks 
were collected after 24 hours exposure for FTIR 
spectroscopy. All experiments were repeated 
seven  times for each concentration and all of 
these resulted data were used in mathematical 
calculations.

Clonogenic assay	
One hundred cells from the cell  suspension 

was seeded in each well of six wells cell culture 
plates with 2 mL of fresh medium. Cells in 
each well were exposed to one of different 
concentrations of cisplatin as is listed in Table 
1 for 24 hours. Media was changed with fresh 
media and incubated for 10 days. After that the 
wells were stained with crystal violet and colonies 
containing more than 50 cells were counted in 
each well. Survival curve was resulted from the 
percentage of colonies in each well exposed to 
cisplatin compare to the control wells. 

Cell preparation for spectroscopy	
The following procedure was similarly applied 
for all cell line  flasks. 10 μL of each cell 
suspension was placed on a zinc selenide sample 
carrier which was dehydrated in a vacuum cabin 
(0.8 bar) for approximately 4 min. These plates 
were then used for FTIR spectroscopy (22).

FTIR spectroscopy
For FTIR studies, thin dried films of cell 

Infrared spectroscopy, have been used to 
investigate biochemical composition of cells in 
early nineties (2). Later, FTIR research was used 
in a large number of different studies including 
the early diagnosis of malignant tissues (3, 4), 
asses of plants organs (5) and estimating stress 
in microorganisms (6). These literatures have 
presented the potential  application of FTIR 
technique for the detection of  cellular stress or 
alterations with a good sensitivity. Several cluster 
analysis  such as principal component analysis 
(PCA), artificial neural network (ANN) and 
genetic algorithms (GA) were used to analyze 
the FTIR spectra (7-9). Some authors challenged 
with  machine learning and  boosting  support 
vector regression analysis to quantify the  FTIR 
spectral data (10, 11). In some cases, the variation 
of the ratios between the areas of the peaks have 
accurate perturbation in spectral data (12).

Cisplatin is a cytotoxic agent that is used 
for treatment of many cancer types including 
testicular, ovarian, cervical, head and neck, non-
small cell lung and lymphoma (13). There are 
many theories to explain platinum cytotoxicity, 
including interstrand and intrastrand cross-links 
with nitrogenous bases of deoxyribonucleic acids 
(14-17). These interactions causes error in DNA 
synthesis and alterations in cellular transcription 
(18, 19). Interaction  of cisplatin  with proteins 
and lipids was also  believed to be responsible 
for the cytotoxicity of this cancer chemotherapy 
agent (20, 21). The effect of cisplatin on different 
molecular sites of cells provide a chance to apply 
a model to be useful for the understanding and 
even prediction of its cellular toxicity bioassay.

In the present study, cisplatin interaction with 
human hepatocarcinoma HepG2 cell line was 
investigated using FTIR-based assay. Different 
cisplatin concentrations were analyzed to study 
the binding properties of cisplatin to cells. This 
effort demonstrate biochemical change index 
which can be used for platinum cytotoxicity 
activity. We proposed a PLS method on FTIR 
spectrum data to predict effective concentration 
pattern of cisplatin toxicity in HepG2 cell line.

Experimental

Cell line
Human hepatocarcinomacell line (HepG2) 
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suspensions were used on the Zinc selenide 
window by using a WQF-510 (Rayleigh Optics, 
China) spectrometer, equipped with a KBr beam 
splitter and a DLaTGS (deuterated Lantanide 
triglycine sulphate) detector. In each spectrum, 
100 scans were collected at a resolution of 4 
cm-1 for every wave number between 400 and 
4000 cm-1. Each single  spectrum was baseline 
corrected and then normalized in order to have 
the range spanning from 0 to 1.

Data analysis
Data set
A total of 56  FTIR spectrums (7 spectra for 

each concentration as is listed in Table 1) have 
been taken in the range of 1000-3000 cm-1 and 
results were arranged in a data set for different 
analysis as are listed below.

Partial least square regression 
Partial least square regression (PLS) is 

a common prediction model in the field of 
chemo metrics method. PLS is a multiple linear 
regression model that is related to other methods 
including principal components regression (23). 
Where Y is an output object with m variables, 
and X is the input matrix with p predictor 
variables. Partial Least Squares regression is 
based on the simultaneous decomposition of X 
and Y  into latent variables (T) and associated 
loading vectors (Q). Regression is performed on 
these components, thus Y = TQ + E, where Q 
is a matrix of regression coefficients (loadings) 
for T (24). Here, X  and Y are the independent 
variables, respectively. In this work, Y includes 
concentration of cisplatin, while the X  block 
consists of y axis of FTIR data for Biochemical 
Index spectrum.

Results 

Clonogenic assay showed a lethal 
concentration fifty of 0.3 µg/mL and a sharp 
mortality effect of HepG2 cells up to 1.5 µg/mL 
of cisplatin exposure (Figure 1) which caused 
90% cell death.

FTIR spectroscopy
Spectral features of HepG2 cells in the range 

of 1800-900 cm-1 for the different concentrations 
of cisplatin are shown in Figure 2. The normalized 
FTIR spectra in this region showed alterations 

Concentration(µg/mL) Cisplatin mortality

1 0 0%

2 0.125 24%

3 0.25 40%

4 0.5 67%

5 1 88%

6 1.5 92%

7 2 95%

8 3 98%

9 4 100%

Table 1. Clonogenic assay based mortality induced by cisplatin 
at different concentrations.

Figure 1. Cisplatin mortality in HepG2 cells following a 24 hours exposure time.
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in different spectral areas. Comparison between 
spectra showed at least two areas of variation:

Ring vibrations of nitrogenous bases (C=O, 
C=N stretching), PO2 stretching vibrations 
(symmetric and asymmetric) and deoxy-ribose 
stretching of DNA are appeared in the spectral 
region 1800 –700 cm-1 (25). The vibrational 
bands of DNA at 1720, 1665, 1613 and 1499 
cm-1 are assigned to guanine (G), thymine (T), 
adenine (A) and cytosine(C) nitrogenous bases, 
respectively (26). Cellular FTIR patterns are 
changed above 1.5 µg/mL as follows; guanine 
band at 1725cm-1 shift to 1713 cm-1 and thymine 
band at 1665 cm-1 shift toward a lower wave 
number at 1657 cm-1. These shifts can be related 
to platinum binding to N7 of Guanine and O2 of 
Thymine in DNA bases (14). Bands at 1228 and 
1087 cm-1 demonstrate phosphate asymmetric 
and symmetric vibrations, respectively (27) 
(27). No major shift was observed for phosphate 
vibrations.

Βeta-sheet structure spectra of proteins at 
1639 (28) shifts to 1624 cm-1 up to 2 µg/mL. The 
observed spectral changes can be attributed to a 
coordination of the Pt cation and C–N group of 
polypeptide (29, 30). 

Interpretation of spectrum from raw 
cellular FTIR spectra is hard and misses lots of 
alterations. To solve this problem, biochemical 

index spectrum (BIS) was calculated as 
difference between the spectra of cells exposed to 
different cisplatin concentrations and those cells 
maintained in normal saline. As the concentration 
of cisplatin increased, the intensities of a positive 
peak at about 1648 cm-1and a negative peak at 
about 1490 cm-1 were decreased (Figure 3).

Data analysis
FTIR data of ˝Biochemical Index spectrum˝ 

(BIS) for different concentrations of cisplatin 
were sorted randomly into 20 different data 
sets (numbered 1 to 20) each composed of 40 
training variables and 16 testing variables. The 
20 models were analyzed with PLS analyzing to 
predict pattern for cisplatin toxicity. To choose 
an optimized number of latent variables (LVs) 
or principal components (PCs), we examined 
the mean squared prediction errors between 
the measured and the predicted responses with 
increasing numbers of LVs for each concentration 
of cisplatin. When BIS matrices were used to 
predict the effective concentration of cisplatin, 
the mean squared prediction errors decreased, 
while that was minimized with just 7 LVs for the 
PLS model (Figure 4).

In order to evaluate the performance of the 
models two statistical factors are used: the root 
mean square error (RMSE) and correlation 

Figure 2. Spectral features of HepG2 cells after 24 hours exposure to the different concentrations of cisplatin in the FTIR spectral region 
of 1800-900 cm-1.
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coefficient (R2) values which are derived in 
statistical calculation of observations in model 
output predictions, defined as:

Where wo is the observed values of cisplatine 
concentration for type t, wo is the average of 
cisplatin concentration for type t, and wp is the 
predicted value of cisplatin concentration for 
type t (30).

After selecting the optimized number of PCs 
for each model, we examined the squared Pearson 
correlation coefficient, R2, between exposed 
cisplatin and the predictions (Table 2). When 
the model is performed for the training dataset 
in present investigation, cisplatin concentration 
for each experiment in the testing dataset is 
predicted in turn using the learned rules derived 
from the dataset in model training procedure. 
Comparison of the 20 PLS models indicates a 
high correlation in all predictions for data sets of 

Figure 3. Biochemical index spectra of HepG2 cells after 24 hours exposure to the different concentrations of cisplatin in the FTIR 
spectral region of 1800-1200 cm-1.

total FTIR wave number (Seri1; 1000-3000 cm-

1) in training and testing data. Partly correlation 
was found for the range of 2000-3000 cm-1 

while there is no suitable correlation in other 
segmentation of FTIR data (R2 ranging from 0.3 
to 0.77).

Discussion

This work was based on the hypotheses 
that chemical toxicity in cells induces very 
changes in the cell biomolecules and FTIR may 
be capable of detecting these variations. The 
eight concentration of cisplatin in hepG2 cells 
induced different levels of mortality where was 
detectable through the FTIR spectra.

Binding to DNA is believed to be  the  main 
cytotoxicity action of cisplatin. Direct platinum 
binding to guanine (N7) and thymine (O2) were 
appeared in cellular DNA bands at 1.5 µg/mL 
of cisplatin exposure and from proteins were 
appeared in the spectral patterns of cells exposed 
to higher concentration of cisplatin at 2 µg/mL. 
Spectral change for proteins and nucleic acid 
bands is critical point in the ability of FTIR 
for highlighting molecular changes in cisplatin 
toxicity. It is estimated that cisplatin first interact 
with DNA and then with the proteins since DNA 
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Figure 4. Estimated mean squared prediction errors of cross-validation FTIR response using PLS analysis.

R2 for training model RMSE for training 
model

R2for testing 
model

RMSE for 
testing model

Seri1

Models trained with variables in 1000-3000 cm-1

1 0.9144 0.1888 0.9807 0.0094

2 0.9128    0.1699 0.9762 0.03

3 0.9387 0.11 0.9188 0.14

4 0.8515   0.179 0.9972 0.008

Seri2

Models  trained with variables in 3000-2500 cm-1

5 0.8325   0.375 0.9869 0.006

6 0.8644 0.26 0.9745 0.033

7 0.8409 0.24 0.8215 0.018

8 0.8014 0.2 0.9937 0.01

Seri3

Models trained with variables in 2500-2000 cm-1

9 0.8964 0.23 0.9329 0.032

10 0.9124 0.17 0.9970   0.0177 

11 0.9387 0.1143 0.9181 0.14

12 0.8518 0.1795 0.9972 0.008

Seri4

Models trained with variables in 1500-2000 cm-1

13 0.4818 1.14 0.7102 0.14

14 0.4172 1.12 0.9716 0.036

15 0.5969 0.75 0.7981 0.348

16 0.3224 0.82 0.9907 0.027

Seri5

Models trained with variables in 1000-1500 cm-1

17 0.7 0.66 0.9351 0.03

18 0.7700 1.36 0.5326 0.6

19 0.7515 0.46 0.9165 0.144

20 0.6324 0.44 0.9618 0.113

Table 2. Prediction of accuracy in the training and the testing models using PLS calculations as described in methods. 
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spectral alterations occur from 1.5 µg/mL, while 
protein spectra remain unchanged until above 2 
µg/mL. 

Biomonitoring involves the use of molecular 
markers as signaling indicators for the exposure 
of living organisms to chemicals. Therefore, 
biological monitoring through the analysis of 
cells, tissues, or body fluids of exposed species 
may lead to the identification of potentially 
hazardous exposures before when the symptoms 
appear. Exposure limits might then be 
established to minimize significant health risks 
(31). Biological monitoring in cells requires the 
prediction of chemicals effective concentration 
for cell components with a suitable organized 
bioassay. Here, we are introducing a good 
correlation between biochemical index of FTIR 
spectrum and its corresponding cisplatin cytotoxic 
concentrations. However, risk assessment is 
conventionally based on the estimation of 
administered dose or human exposure to drugs 
and chemicals  in spatial site (32). Our results 
have presented that PLS is a good model for the 
prediction of toxic concentrations of cisplatin 
on cells using alterations in FTIR spectrum in 
the range of 1000-3000 cm-1. Cisplatin ability 
to interact with the different components 
of cells further increases the possibility of 
FITR spectroscopy application as a biological 
monitoring tool. However, one limitation of this 
study is the estimation of the toxicity patterns 
with different prediction models such as artificial 
neuronal network.

Many factors may affect the outcome of 
chemical exposure and toxicity outcome. Partial 
least square regression of FTIR data offers the 
advantage of a fast and reproducible procedure, 
which can be used for direct prediction of 
effective concentration for toxic agents in a 
bioassay procedure. 

Conclusion

The interactions between chemicals and 
macromolecules in the cells are an important 
point for toxicological paradigms. Regarding 
this study, the step by step of toxicity stress in 
cell line is specified thorough FTIR spectroscopy 
analysis. HepG2 cell line was exposed with 
different concentration of cisplatine where 

hepatica cell is preferred for modeling of toxicity 
stress. In this study, all cisplatine detectable 
alteration was seen in DNA, amid and lipid 
bands of cells. Biological monitoring in cells 
requires the prediction of chemicals effective 
concentration for cell components with a suitable 
organized bioassay. Here, we are introducing a 
good correlation between biochemical index of 
FTIR spectrum and its corresponding cisplatin 
cytotoxic concentrations. In view of future, one 
of the advantages of this model is to predict 
the toxic concentration in animal exposure as 
well as the estimation of the bioaccumulation 
of chemicals in chronic exposure using PLS 
calculations on FTIR data.
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