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Abstract

Background: Cisplatin-based chemotherapy may induce nephrotoxicity. This study presents a random forest predictive
model that identifies testicular cancer patients at risk of nephrotoxicity before treatment. Methods: Clinical data and DNA
from saliva samples were collected for 433 patients. These were genotyped on Illumina HumanOmniExpressExome-8 v1.2
(964 193 markers). Clinical and genomics-based random forest models generated a risk score for each individual to develop
nephrotoxicity defined as a 20% drop in isotopic glomerular filtration rate during chemotherapy. The area under the receiver
operating characteristic curve was the primary measure to evaluate models. Sensitivity, specificity, and positive and negative
predictive values were used to discuss model clinical utility. Results: Of 433 patients assessed in this study, 26.8% developed
nephrotoxicity after bleomycin-etoposide-cisplatin treatment. Genomic markers found to be associated with nephrotoxicity
were located at NAT1, NAT2, and the intergenic region of CNTN6 and CNTN4. These, in addition to previously associated
markers located at ERCC1, ERCC2, and SLC22A2, were found to improve predictions in a clinical feature–trained random forest
model. Using only clinical data for training the model, an area under the receiver operating characteristic curve of 0.635 (95%
confidence interval [CI] ¼ 0.629 to 0.640) was obtained. Retraining the classifier by adding genomics markers increased perfor-
mance to 0.731 (95% CI ¼ 0.726 to 0.736) and 0.692 (95% CI ¼ 0.688 to 0.696) on the holdout set. Conclusions: A clinical and
genomics-based machine learning algorithm improved the ability to identify patients at risk of nephrotoxicity compared
with using clinical variables alone. Novel genetics associations with cisplatin-induced nephrotoxicity were found for NAT1,
NAT2, CNTN6, and CNTN4 that require replication in larger studies before application to clinical practice.

Standard treatment in patients with disseminated testicular
cancer is chemotherapy consisting of bleomycin-etoposide-
cisplatin (BEP). Cisplatin is also central in the treatment of
many other solid tumors such as bladder, ovarian, and lung
cancer (1). Treatment containing cisplatin has a wide range of
side effects, one of which is nephrotoxicity (2,3).

Cisplatin is excreted by the kidneys and may induce nephro-
toxicity resulting in glomerular filtration rate (GFR) decline (4).
Maintenance of sufficient renal function during treatment with
chemotherapy is vital, and identification of patients at risk for
developing nephrotoxicity could influence the treatment of
choice if alternatives exist. Additionally, impaired renal func-
tion has been associated with increased risk of cardiovascular

disease (5), which may pose a problem in long-term cancer
survivors.

Previous studies have improved the understanding of molec-
ular mechanisms of cisplatin-induced nephrotoxicity (6), and
several candidate gene studies have identified single-
nucleotide polymorphisms (SNPs) associated with cisplatin-
induced nephrotoxicity (7–9). However, these studies were
conducted with surrogate measures of GFR (creatinine clear-
ance or estimated GFR) rather than measured GFR as outcome.

The scope of this study was 2-fold: first, to conduct a
genome-wide association study (GWAS) using a linear model
controlling for cisplatin dosage (high or normal) to identify new
genetic variants associated with cisplatin-induced
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nephrotoxicity; and second, to investigate the utility of germline
genetic markers together with clinical prognostic factors to predict
nephrotoxicity using a random forest-recursive feature elimina-
tion algorithm. Patients treated for disseminated testicular cancer
were chosen for this study because this patient group does not
normally have comorbidity, which could influence renal function.

Methods

Patients

Patients were identified in the Danish Testicular Cancer-Late
cohort (10), which includes 2572 Danish patients treated for tes-
ticular cancer from 1984 through 2007. Clinical features from
433 patients were originally extracted from hospital files as reg-
istered in the Danish Testicular Cancer database (Table 1). In
2014, all patients with measurements of renal function before
and after treatment with BEP were invited to deliver a saliva
sample for DNA analysis (Supplementary Figure 1, available on-
line). Patients provided informed consent, and the study was
approved by the regional ethical committee (H-2-2012-044) and
the National Board of Data Protection (2012-41-0751).

Treatment and Renal Measurement

All 433 patients received 3 cycles or more of BEP. The majority
received normal-dose cisplatin 20 mg/m2� 5 q3w, etoposide

100 mg/m2� 5 q3w, and bleomycin 15 IU/m2 q1w, and 25
patients received double-dose cisplatin and etoposide: cisplatin
40 mg/m2� 5 q3w, etoposide 200 mg/m2� 5 q3w, and bleomycin
15 IU/m2 q1w. Hydration remained uniform over time with 2 L
isotonic saline before cisplatin and an additional 1-2 L after.
Diuretics were administered only in special cases, and no mag-
nesium was added to hydration. There was no predefined cutoff
of renal function where patients would not receive cisplatin-
based triplets; however, to ensure toxicity was related to treat-
ment, only patients with a GFR greater than 90 mL/min/1.73m2

before chemotherapy were included.
GFR was measured by the 1-sample 51Cr-ethylenediamine-

tetra acetic acid clearance technique using 2 samples
200 minutes after tracer injection and normalized to a body sur-
face area (BSA) of 1.73 m2.

Genomic Information

Genomic DNA was collected and purified using GeneFiX Saliva
DNA Midi Kit from Isohelix (Harrietsham, UK). DNA samples
were prepared at DTU Multi-Assay Core (Lyngby, Denmark) and
genotyped at AROS Applied Biotechnology A/S (Aarhus,
Denmark) using Illumina HumanOmniExpressExome-8 v1.2
chip (964 193 markers).

Genomic data were filtered using standard quality control
steps (Supplementary Figure 2, available online). GWAS testing
for single SNP association was conducted using PLINK (11)

Table 1. Comparison of baseline characteristics between affected (GFR high-drop) and nonaffected patients a

Characteristics Affected, No. (%) Nonaffected, No. (%) Pb

No. of patients 116 (26.8) 317 (73.2)
Clinical characteristics
Age, median (IQR) 34 (27-43) 30 (26-37) .001
BEP regimen

Normal dose 92 (79.3) 295 (93.4) <.001
Double dose 24 (20.7) 21 (6.6)
Unknown — 1

GFR before treatment, median (IQR), mL/min/1.73 m2 128 (115-139) 119 (110-131) .001
GFR after treatment, median (IQR), mL/min/1.73 m2 88 (75-99) 109 (100-119) <.001
Cisplatin, median (IQR), mg/m2 400 (391-410) 400 (300-400) <.001
Treatment cycles

3 20 (17.2) 97 (30.6) <.001
4 72 (62.1) 199 (62.8)
5 or more 6 (5.2) 14 (4.4)
High dose 18 (15.5) 7 (2.2)

Histology
Seminoma 23 (19.8) 68 (21.5) .78
Nonseminoma 93 (80.2) 249 (78.5)

Prognostic group
Good 71 (61.2) 277 (87.4) <.001
Intermediate 30 (25.9) 35 (11.0)
Poor 15 (12.9) 5 (1.6)

Stage
Extragonadal 15 (12.9) 15 (4.7) .87
Stage Im 7 (6.0) 30 (9.6)
Stage Iia 22 (19.1) 80 (25.5)
Stage Iib 21 (18.1) 77 (24.5)
Stage Iic 23 (19.8) 42 (13.4)
Stage III 28 (24.1) 70 (22.3)
Unknown — 3

aBEP ¼ bleomycin-etoposide-cisplatin; GFR ¼ glomerular filtration rate; IQR ¼ interquartile range.
bP values were calculated by 2-sided Mann-Whitney U test for continuous or ordinal characteristics. For “histology,” P value was calculated by v2 test.
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(v1.9beta3), with the GFR decline after chemotherapy as the
measure of toxicity and discretized cisplatin dosage as covariate
with double-dose and normal-dose groups. The cutoff of 5 cycles
was made to differentiate between normal and historically
higher doses of cisplatin.

SNPs were annotated by ANNOVAR (v2015-06-17) (12)
against the human reference genome hg19. Gene expression
profiles were retrieved from GTExPortal (13).

We used a suggestive P value threshold of 1� 10�5 (14) and a
stringent threshold of 8.02� 10�8 [Bonferroni corrected (15)].

In addition to the GWAS hits, 4 SNPs, rs11615 and rs3212986
(ERCC1), rs13181 (ERCC2), and rs316019 (SLC22A2), found in pre-
vious literature to be associated with cisplatin-induced nephro-
toxicity (9), were added to the input feature search space in the
machine learning modeling.

Clinical Information

The clinical features used as input feature variables in the ma-
chine learning model were age at time of treatment, GFR before
treatment, cumulative cisplatin dose per square meter of BSA,
normal dose vs double-dose BEP, number of treatment cycles,
histology (seminoma vs nonseminoma), prognostic classifica-
tion as per IGCCCG (16) and stage of the disease as surrogate for
size of retroperitoneal tumor size, which was represented as 3
features in the model (details on Supplementary Methods,
available online).

Statistical Analysis and Model Development

A random forest model (17), which identified different risk sub-
groups of GFR drop, was developed using SciKit-learn (18) in
Python (v3.7.1). A GFR decline of more than 20% after chemo-
therapy was chosen as outcome to indicate a clinically signifi-
cant change and to avoid selection of cases due to random
variation. A 20% decline has been associated with, for example,
cognitive deterioration (19) and risk of cardiovascular and all-
cause mortality compared with those with stable GFR (20).

As a first stage, the predictive power of a model driven by
clinical features only was established. In a second stage, geno-
mic markers were added to the model.

From all 433 individuals, about 20% (78 individuals: 20 neph-
rotoxicity affected) of the data, with no missing values, was ran-
domly separated ahead of time to be used as a holdout set.
Therefore, for machine model training, we omitted those 78
individuals present on the holdout set and excluded individuals
with missing data in either clinical or genomic data
(Supplementary Figure 1, available online). Patients’ baseline
characteristics in each of these sets are available in
Supplementary Table 2 (available online).

Training and testing of the algorithm was performed with a
5 outer, 2 inner fold nested cross-validation (21,22)
(Supplementary Figure 3, available online).

The sample-splitting process for training and testing cohorts
was random and repeated 100 times. Area under the receiver
operating characteristic curve (ROC-AUC) was used as the pri-
mary performance measure for model optimization.

A recursive backwards feature elimination approach was
used for feature selection initiated with 10 clinical features
and then reduced (23). To identify when the algorithm should
stop removing features, a paired t test (level of statistical sig-
nificance, P< .05) was calculated for each round of feature
elimination on mean ROC-AUCs (Figure 1, A and B). A

statistically significant AUC drop (P< .05) was indicative of an
important feature being eliminated. All statistical tests were
2-sided. Details on model optimization and variable impor-
tance are described in the Supplementary Methods (available
online).

The top-ranked clinical features constituted the baseline for
adding prioritized SNPs from GWAS (17 SNPs) and the literature
(4 SNPs), and feature selection was done using recursive back-
wards feature elimination approach.

Polygenic Risk Score (PRS)-Derived Models

We also calculated PRS-derived models weighted by effect sizes
estimated by the GWAS using the R-Package PRSice (24). These
were tested in the random forest models in place of individual
SNPs. Two different approaches were used: the risks associated
with all the 21 SNPs were combined to determine a PRS, and a
PRS per gene was estimated.

Model Performances and Risk Groups

The primary reported performance was assessed with a 0.50
cutoff on the random forest model scores. In addition, to deter-
mine clinical applicability, we assessed different cutoffs on the
random forest scores with a goal of 10% false discovery or omis-
sion rate (positive or negative predictive values >90%).

For the SNPs and clinical-based models from the best round,
the split that had a representative ROC-AUC close to the mean
was used to assess different cutoffs (25) (Supplementary Figure
4, available online).

Based on this, specific cutoffs for detection of 3 risk groups
were used on the holdout set: a high-risk group for developing
nephrotoxicity; a low-risk group for developing nephrotoxicity;
and an intermediate group, which refers to individuals whose
prediction is not adequately compelling to change the clinical
decision.

Results

Study Population

Overall, 433 individuals (26.8% nephrotoxicity affected) were
assessed in this study, with a median (interquartile range
[IQR]) age of 34 (27-43) years for affected patients (N¼ 116) and
30 years (26–37) for nonaffected patients (N¼ 317). The major-
ity received 3 or 4 cycles of BEP. Before treatment, the median
(IQR) GFR (mL/min/1.73 m2) was 128 (115-139) for affected and
119 (110-131) for nonaffected, and after treatment it decreased
to 88 (75-99) for affected and 109 (100-119) for nonaffected
(Table 1).

Genome-Wide Association Study

Of 433 saliva samples received, 8 failed to yield high-quality ge-
netic data. After quality control filtering, a total of 411 patients
and 623 289 SNPs were eligible for GWAS (Supplementary
Figures 1 and 2, available online).

There was no indication of population stratification or infla-
tion in the quantile-quantile plot of observed vs expected -log10

(P values) (Supplementary Figure 5, available online). GWAS
controlling for cisplatin-based chemotherapy dosage identified
17 SNPs associated with GFR decline. Seven SNPs located
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contiguous on chromosome 14 within the intergenic region be-
tween LINC00645 and FOXG1 passed a genome-wide statistical
significance threshold of P ¼ 8.02� 10�8 (Figure 2; Table 2). Nine
additional SNPs located on chromosome 8, cytoband p22, passed
a suggestive threshold of P ¼ 1� 10�5 and were located in the in-
tron and 3�untranslated region of NAT1 or the intergenic region
between NAT1 and NAT2. SNP rs17038909 (P ¼ 6.70� 10�8), lo-
cated in the intergenic region between CNTN6 and CNTN4,
passed the genome-wide statistical significance threshold.

These 17 SNPs were included in input feature space of the
machine learning models.

Risk Prediction Model

A baseline predictive model with only clinical features was
trained using random forests. Of the initial 10 clinical features,
6 features were prioritized through recursive backwards elimi-
nation (Figure 1A): age at time of treatment, GFR before treat-
ment, cumulative cisplatin-dose per square meter of BSA,

number of treatment cycles, prognostic classification as per
IGCCCG (1)2 (16), and stage of the disease, excluding group and
histology. Univariate analysis also highlighted features selected
in the random forest model (Table 1).

SNPs and Clinical-Based Model

A selection of genomic markers was added to the baseline clini-
cal prediction model: 17 SNPs from the GWAS and 4 additional
SNPs from prior literature. Through recursive backwards elimi-

nation, 15 features were prioritized (6 clinical and 9 SNPs). The
selected SNPs were rs11615 and rs3212986 (ERCC1), rs13181
(ERCC2), rs4986993, rs15561, rs8190870 (NAT1), rs1353035 (NAT1/

NAT2), rs316019 (SLC22A2), and rs17038909 (CNTN6/CNTN4)
(Figure 1, B and C). None of the SNPs located within the inter-
genic region between LINC00645 and FOXG1 were selected.

By adding genomic markers, ROC-AUC increased from 0.635
(95% confidence interval [CI] ¼ 0.629 to 0.640) to 0.731 (95% CI ¼
0.726 to 0.736) (Figure 1D for additional performance metrics).

A B

C D

Figure 1. Feature selection using random forest-recursive feature elimination algorithm and diagnostic performances. A and B) Boxplots with different number of fea-

tures, �10 to 1 and 27 to 5, for clinical and clinical plus genomics, respectively, and respective area under the receiver operating characteristic curve (ROC-AUC)

throughout 100 different replications for data shuffling. Asterisks between boxplots represent P values (paired t test) of >.05 (*), � .05 (**), and � .01 (***). All tests were

2-sided. The red arrow represents the block chosen for further analysis. C) The features chosen the most on the 15-features clinical and SNP-based models. D)

Performances obtained (mean and 95% confidence intervals) on the clinical models (6 features) and on the clinical and SNP-based models (15 features) using 0.50 cutoff

for classification for sensitivity, specificity, positive predictive value, and negative predictive value. NPV ¼ negative predictive value; Perfs. ¼ performances; PPV ¼ posi-

tive predictive value; ROC-AUC ¼ area under the receiver operating characteristic curve; SNP ¼ single-nucleotide polymorphism.
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Additionally, 2 PRS were added independently to the base-
line clinical model but did not outperform the individual SNPs
(Supplementary Table 1, available online).

Model Robustness

As a further validation, we tested for random outcome, simu-
lated by permuting the labels 2000 times. This generated ran-
dom performance for the model based on the clinical traits in

combination with the 9 SNPs previously reported, with a ROC-
AUC mean of 0.498 (95% CI ¼ 0.497 to 0.500). Furthermore, to as-
sess if the SNP selection was meaningful, the performance of 9
random GWAS SNPs instead of the previously described 9 se-
lected SNPs was tested when combined with the selected clini-
cal traits; this process was repeated 2000 times. This performed
very similarly to clinical traits alone, with a ROC-AUC mean of
0.661 (95% CI ¼ 0.660 to 0.661) against the model scores with a
ROC-AUC mean of 0.742 (95% CI ¼ 0.741 to 0.743) (Figure 3).

Figure 2. Genome-wide association study. Manhattan plot for association of 623 289 single-nucleotide polymorphisms with glomerular filtration rate decline. Linear

model adjusted for cisplatin dosage was performed. The black dashed line represents a suggestive threshold: 1�10�5, and the red dashed line represents a stringent

Bonferroni corrected threshold: 8.02�10�8. Markers in a contiguous pattern that pass the suggestive threshold are marked with a dotted box.

A B

Figure 3. Benchmarking of the models. A) Test for random outcome simulated by permuting the labels 2000 times. B) Test for random single-nucleotide polymor-

phisms selection by combining 9 random markers, instead of the 9 selected markers, with the selected clinical traits. ROC-AUC ¼ area under the receiver operating

characteristic curve; SNP ¼ single nucleotide polymorphism.
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Replication Dataset

The holdout set (78 individuals: 20 nephrotoxicity affected) was
used for replication of the random forest models with clinical
and genetic features. A ROC-AUC of 0.692 (95% CI ¼ 0.688 to
0.696) was obtained on the final evaluation (Figure 4A).

A prediction cutoff of 0.90 and 0.30 for high risk and low risk,
respectively, of developing nephrotoxicity was chosen for fur-
ther analysis on 1 validation external set to discuss the model
clinical utility. A random forest score between 0.30 and 0.90 was
not enough to make a clinical decision. In the high-risk group,
we had a positive predictive value of 0.67 (33% false discovery
rate) and specificity of 0.99 while capturing 6% of all nephrotoxi-
city, whereas in the low-risk group we had a sensitivity of 0.92
and negative predictive value of 0.92 (8% false omission rate),
which captured 32% of all nonaffected patients (Figure 4B).

Discussion

In this study, we were able to predict patients at risk of develop-
ing nephrotoxicity after BEP chemotherapy based on clinical
and genetic features with a machine learning algorithm.
Clinical features selected on the random forests–driven baseline
clinical model were known risk factors of renal toxicity (2) and
were statistically significant in univariate analysis. The aim of
the baseline model was to mimic and codify clinical intuition,
which relies on the available clinical information at the time of
treatment.

When genomic markers were added to the baseline model,
prediction power substantially improved. We believe that geno-
mic information, although not being predictive on its own,
improves a baseline clinical model for identification of patients
at risk for nephrotoxicity.

PRS did not perform as well as independent SNPs when
added to the model, suggesting that nonlinear correlations be-
tween SNPs drove the increase in performance opposed to the
linear combination that PRS offer, as has also been suggested
elsewhere (26).

SNPs located in the LINC00645 and FOXG1 intergenic
regions, although strongly associated in the GWAS (P ¼
5� 10�8), were not selected in the machine learning model be-
cause of either limited contribution or low minor allele fre-
quencies (Table 2) that made it harder to detect in cross-
validated setups.

SNPs rs4986993, rs15561, and rs8190870 (NAT1), rs1353035
(NAT1/NAT2), and rs17038909 (CNTN6/CNTN4) were newly dis-
covered in the present GWAS to be associated with nephro-
toxicity and added performance to the machine learning
model.

NAT1 and NAT2 encode for arylamine N-acetyltransferases
that take part in metabolizing drugs and chemical compounds
in humans with a role in folate metabolism (27). These 2 genes
encode similar protein sequences [identity¼ 81.03%, Clustal-
Omega, Uniprot (28)], yet differ on expression profiles (13). NAT1
is ubiquitously expressed in the central nervous system, and
NAT2 is specifically expressed in the liver, colon, and small in-
testine (Supplementary Figure 6, available online). It has been
reported that cisplatin can impair NAT1 by blocking its transfer-
ase activity in human breast cancer cells and impair murine
Nat2 activity in cultured mouse tissues (liver and kidney) (29),
which on one hand contributes to the therapeutic effects of cis-
platin, but on the other hand may lead to accumulation of cis-
platin in the kidneys.

CNTN6 and CNTN4 encode for contacting proteins, which
mediate cell surface interactions during nervous system devel-
opment and have been suggested to be associated with neuro-
developmental disorders (30–32), though the association with
nephrotoxicity needs to be further explored. SNPs found previ-
ously to be associated with nephrotoxicity were incorporated in
this model. These SNPs were located at ERCC1, ERCC2, and
SLC22A2.

ERCC1 and ERCC2 encode for excision repair proteins, and
polymorphisms in ERCC1/2 have been reported to alter ERCC1/2
DNA repair function (33–35), which may affect nephron repair
capacity after cisplatin exposure during chemotherapy (36–39).
If not adequately repaired, cisplatin-induced DNA damage can
induce cell death (40,41).

A B

Figure 4. Final model evaluation (clinical and genomic markers) on the holdout set. A) Area under (AUC) the receiver operating characteristic curve (ROC; mean and

95% confidence interval) analysis of clinical risk factors and genetic variables for prediction of cisplatin-based nephrotoxicity in testicular cancer patients using the

holdout dataset. B) Diagnostic performances obtained with 3 prediction cutoffs and independent evaluation (random forest score) for each individual: 78 individuals

(�5 cross-validated models) (blue: affected; red: nonaffected). One validation external set was used. The 3 groups are represented: low-risk group (8% false negatives),

undetermined zone, and high-risk group (33% false positives). Perfs. ¼ performances; PPV ¼ positive predictive value; NPV ¼ negative predictive value; FN ¼ false nega-

tives; FP ¼ false positives.
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SLC22A2 encodes for organic cation transporter 2 (OCT2) pro-
tein, which is expressed in the proximal tubule epithelial cells
of the kidney and involved in the absorption and excretion of
xenobiotics and metabolites (42). OCT2 efficiently mediates cis-
platin cellular uptake, leading to high cisplatin accumulation in
renal proximal tubule cells (43) where cisplatin-induced neph-
rotoxicity typically occurs (44). OCT2 may be a key regulator in
the renal accumulation of cisplatin, affecting drug handling and
inducing nephrotoxicity (42,45).

During primary treatment of disseminated testicular cancer,
about one-third of the patients develop cisplatin-induced neph-
rotoxicity (46,47).

This clinical and genomics-based model could be used as an
early assessment for nephrotoxicity risk, assisting in identifying
patients at high and low nephrotoxicity risk and influencing
decisions on cisplatin chemotherapy cycles.

Using a 0.50 cutoff on the random forest model scores, we
were able to achieve a sensitivity of 0.65, positive predictive
value of 0.35, specificity of 0.60, and negative predictive value
of 0.83. Differential thresholding of the nephrotoxicity model
classified patients into high, low, and intermediate risk. For
the high-risk group, the model correctly classified 67% of the
patients who developed nephrotoxicity, yet only a small frac-
tion of affected individuals was captured (0.06 sensitivity). On
the other hand, for the low-risk group, the model correctly
classified 92% of the patients who did not develop nephrotoxi-
city and captured 32% of the nonaffected population
(Figure 4B).

Even though the model shows utility in the ability to predict
toxicity throughout the score range, extreme cutoffs to identify
the highest and lowest risk patients could point at the least dis-
ruptive implementation of such a model within current
practice.

A strength of this study is the large dataset with a good rep-
resentation of patients who developed nephrotoxicity after
cisplatin-based chemotherapy, using exact renal measure-
ments, and the first application, to our knowledge, of artificial
intelligence on predicting such a phenotype.

The machine learning models appeared to be robust with
stable performance across 100 random cross-validation splits of
the training data, demonstrating performance of 0.731 mean
ROC-AUC in cross-validation and 0.692 (95% CI ¼ 0.688 to 0.696)
ROC-AUC in the holdout set. Yet, as a limitation, the machine
learning setups use some of the association results from the
GWAS on the same cohort; therefore, replication on another co-
hort from an external dataset would be of substantial interest.
NAT1 and NAT2 appear as interesting genetic targets to priori-
tize for assaying in future nephrotoxicity studies and would
benefit from functional validation.

The ability to develop machine learning models for patient
stratification in different nephrotoxicity risk groups has the po-
tential to balance aggressive treatment against predicted toxic-
ity risk.

In the future, toxicity may play a larger role in guiding treat-
ment across several complex diseases, where data-driven pre-
diction models may aid in decision making. Some of the clinical
features used in this model, such as age at the time of treatment
and GFR before chemotherapy as well as some of the identified
genomics markers, could be applicable to other tumors types.
Cisplatin is one of the most compelling drugs used in cancer
treatment, and nephrotoxicity is a well-known side effect from
its use. Our model could be applicable to ovarian, bladder, and
lung cancer, where more elderly patients are at risk of nephro-
toxicity and early identification of toxicity risks (or lack thereof)
may influence treatment aggression or increase monitoring for
selected patients.

Table 2. Top GWAS hits and literature SNP hits for cisplatin-based nephrotoxicity in testicular cancer patientsa

SNP Gene CHR Position Region/Consequence Alleles (ref/alt) MAF (all) MAF (EUR) Pb

Top GWAS
rs17038909 CNTN6, CNTN4 3 1467145 Intergenic A/G G: 0.10 G: 0.08 6.70 � 10�8

rs8190845 NAT1 8 18078628 Intronic G/A A: 0.20 A: 0.15 1.79 � 10�6

rs15561 NAT1 8 18080651 3 UTR A/C A: 0.44 A: 0.28 2.29 � 10�7

rs4986993 NAT1 8 18080747 3 UTR T/G T: 0.44 T: 0.28 5.25 � 10�7

rs8190870 NAT1 8 18081272 Downstream C/T T: 0.14 T: 0.15 1.12 � 10�6

rs13270034 NAT1, NAT2 8 18082354 Intergenic G/A A: 0.08 A: 0.13 7.64 � 10�6

rs13277177 NAT1, NAT2 8 18086096 Intergenic A/G G: 0.06 G: 0.10 9.72 � 10�6

rs13277481 NAT1, NAT2 8 18086217 Intergenic A/G G: 0.08 G: 0.13 5.47 � 10�6

rs13270961 NAT1, NAT2 8 18139163 Intergenic T/C C: 0.08 C: 0.11 7.31 � 10-�6

rs1353035 NAT1, NAT2 8 18140633 Intergenic C/T C: 0.15 C: 0.17 5.35 � 10�6

rs17095485 LINC00645, FOXG1 14 28500775 Intergenic C/T T: 0.07 T: 0.06 1.13 � 10�8

rs17382424 LINC00645, FOXG1 14 28529219 Intergenic C/T T: 0.02 T: 0.06 1.29 � 10�8

rs4551947 LINC00645, FOXG1 14 28584430 Intergenic C/A A: 0.05 A: 0.06 2.26 � 10�8

rs8020589 LINC00645, FOXG1 14 28604708 Intergenic C/T T: 0.07 T: 0.06 1.44 � 10�8

rs10131751 LINC00645, FOXG1 14 28681216 Intergenic C/A A: 0.07 A: 0.07 1.45 � 10�8

rs9671720 LINC00645, FOXG1 14 28714229 Intergenic C/T T: 0.05 T: 0.04 8.81 � 10�9

rs12323487 LINC00645, FOXG1 14 28837771 Intergenic C/A/T A: 0.09 A: 0.05 1.19 � 10�8

Literature
rs316019 SLC22A2 6 160670282 Missense A/C A: 0.14 A: 0.11 0.21
rs13181 ERCC2 19 45854919 Stop gained T/A/G G: 0.24 G: 0.36 0.03
rs3212986 ERCC1 19 45912736 Stop gained C/A/G/T A: 0.30 A: 0.25 0.11
rs11615 ERCC1 19 45923653 Synonymous A/G A: 0.33 G: 0.38 0.004

aPositions refer to assembly GRCh37. alt ¼ alternative(s); CHR ¼ chromosome; EUR ¼ Europe; GWAS ¼ genome-wide association study; MAF ¼minor allele frequency;

ref ¼ reference; ; SNP ¼ single-nucleotide polymorphism; UTR ¼ untranslated region.
bA linear model was adjusted for cisplatin dosage and scored by P values representing how likely the variant association was by random chance.
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