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Background: Machine learning has shown potential in accurately predicting outcomes after orthopedic
surgery, thereby allowing for improved patient selection, risk stratification, and preoperative planning.
This study sought to develop machine learning models to predict nonhome discharge after total shoulder
arthroplasty (TSA).
Methods: The American College of Surgeons National Surgical Quality Improvement Program database
was queried for patients who underwent elective TSA from 2012 to 2018. Boosted decision tree and
artificial neural networks (ANN) machine learning models were developed to predict non-home
discharge and 30-day postoperative complications. Model performance was measured using the area
under the receiver operating characteristic curve (AUC) and overall accuracy (%). Multivariate binary
logistic regression analyses were used to identify variables that were significantly associated with the
predicted outcomes.
Results: There were 21,544 elective TSA cases identified in the National Surgical Quality Improvement
Program registry from 2012 to 2018 that met inclusion criteria. Multivariate logistic regression identified
several variables associated with increased risk of nonhome discharge including female sex (odds ratio
[OR] ¼ 2.83; 95% confidence interval [CI] ¼ 2.53-3.17; P < .001), age older than 70 years (OR ¼ 3.19; 95%
CI ¼ 2.86-3.57; P < .001), American Society of Anesthesiologists classification 3 or greater (OR ¼ 2.70;
95% CI ¼ 2.41-2.03; P < .001), prolonged operative time (OR ¼ 1.38; 95% CI ¼ 1.20-1.58; P < .001), as well
as history of diabetes (OR ¼ 1.56; 95% CI ¼ 1.38-1.75; P < .001), chronic obstructive pulmonary disease
(OR ¼ 1.71; 95% CI ¼ 1.46-2.01; P < .001), congestive heart failure (OR ¼ 2.65; 95% CI ¼ 1.72-4.01;
P < .001), hypertension (OR ¼ 1.35; 95% CI ¼ 1.20-1.52; P ¼ .004), dialysis (OR ¼ 3.58; 95% CI ¼ 2.01-6.39;
P ¼ .002), wound infection (OR ¼ 5.67; 95% CI ¼ 3.46-9.29; P < .001), steroid use (OR ¼ 1.43; 95%
CI ¼ 1.18-1.74; P ¼ .010), and bleeding disorder (OR ¼ 1.84; 95% CI ¼ 1.45-2.34; P < .001). The boosted
decision tree model for predicting nonhome discharge had an AUC of 0.788 and an overall accuracy of
90.3%. The ANN model for predicting nonhome discharge had an AUC of 0.851 and an overall accuracy of
89.9%. For predicting the occurrence of 1 or more postoperative complications, the boosted decision tree
model had an AUC of 0.795 and an overall accuracy of 95.5%. The ANN model yielded an AUC of 0.788 and
an overall accuracy of 92.5%.
Conclusions: Both the boosted decision tree and ANN models performed well in predicting nonhome
discharge with similar overall accuracy, but the ANN had higher discriminative ability. Based on the
findings of this study, machine learning has the potential to accurately predict nonhome discharge after
elective TSA. Surgeons can use such tools to guide patient expectations and to improve preoperative
discharge planning, with the ultimate goal of decreasing hospital length of stay and improving cost-
efficiency.

© 2021 The Author(s). Published by Elsevier Inc. on behalf of American Shoulder and Elbow Surgeons.
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The demand for total shoulder arthroplasty (TSA) continues to
rise throughout the United States, driven in large part by an aging
population and expanding indications for reverse TSA.12 Concur-
rently, efforts to curtail rising healthcare expenditures have
intensified, with an emphasis on reducing inpatient costs associ-
ated with surgical procedures.14,20,21,25,28-30 Recent advancements
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in regional anesthesia, minimally invasive surgical techniques,
early mobilizationwith physical therapy, and multimodal analgesia
have successfully reduced average length of stay (LOS) without
compromising patient outcomes for many procedures,7-9,15,17 but
the recent shift toward bundled payment models further incentives
surgeons and hospitals to reduce costs associated with post-
operative care while limiting complications, readmissions, and
reoperations.

Although themajority of patients with TSA are discharged home
postoperatively, some patients require continued medical care or
additional rehabilitation at postacute care facilities (eg, skilled
nursing facilities, inpatient rehabilitation centers). Discharge to
such facilities is frequently delayed leading to prolonged hospital
LOS, which results in greater costs and has been associated with
increased patient morbidity and mortality.5,11,24,37 In a study of
more than 1000 prospectively followed up hospital admissions,
Andrews et al2 found that patients with longer hospital stays had
more adverse events on average after controlling for comorbidities;
the likelihood of adverse events increased by nearly 6% for each
additional day in the hospital. Accordingly, expediting the
discharge process to postacute facilities has the potential to limit
costs while decreasing patient morbidity and mortality. One tactic
is to identify patients likely to require nonhome discharge, so that
the necessary arrangements can be made preoperatively.

Machine learning (ML) is a form of artificial intelligence in
which algorithms and statistical models automatically learn and
improve by identifying patterns and complex relationships in large
data sets, with the ultimate goal of making decisions using minimal
human intervention.3,13 Within orthopedic surgery, artificial intel-
ligence /ML has proven beneficial in surgical risk stratification and
preoperative optimization, outcome prediction, diagnostics, cost-
efficiency analysis, and risk-adjusted insurance reimbursement
models.10,27,36 Among patients who underwent spine surgery, ML
has successfully been used to accurately predict nonhome
discharge.19,33,34 Sivasundaram et al recently developed a statistical
nomogram based on preoperative patient characteristics to predict
discharge disposition after TSA, but no study has used ML for this
purpose. As such, the aim of this study was to develop ML models
based on data from a large national surgical registry to predict
nonhome discharge after TSA.

Materials and methods

Data source

This retrospective study used population-level data from the
American College of Surgeons National Surgical Quality Improve-
ment Program (NSQIP) registry. The NSQIP data set contains dei-
dentified information, including patient demographics, medical
comorbidities, perioperative data, and 30-day postoperative out-
comes for surgical patients in both inpatient and outpatient set-
tings atmore than 700medical centers across the United States.1 All
patients who underwent TSA between 2012 and 2018 were iden-
tified using Current Procedural Terminology code 23472. These
patients were then filtered to only include elective surgeries. Pa-
tients who underwent concomitant procedures (additional Current
Procedural Terminology codes) or met criteria for sepsis/shock/
systemic inflammatory response syndrome in the 48 hours before
surgery were excluded. We included outpatient TSAs as part of a
complete data set of elective TSAs, which may include outpatient
TSA patients requiring nonhome discharge, especially if caused by
unforeseen circumstances during or after surgery.

Preoperative patient demographic data including age, sex, race,
body mass index (body mass index [BMI], calculated from the
recorded height andweight), American Society of Anesthesiologists
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(ASA) classification, history of smoking, diabetes, chronic obstruc-
tive pulmonary disease (COPD), congestive heart failure, dyspnea at
rest or with moderate exertion, steroid use, hypertension requiring
medication, renal failure, dialysis requirement, disseminated can-
cer, use of steroids for a chronic condition, bleeding disorder, and
need for a preoperative transfusionwithin 72 hours of surgerywere
abstracted. Perioperative data included anesthesia type (general,
spinal, IV sedation, regional, other), surgery setting (inpatient vs.
outpatient), and operative time (prolonged operative time defined
as >120 minutes). The postoperative outcomes of interest were
LOS, discharge destination, and occurrence of any complication
within the first 30 days after surgery. Discharge destination was
simplified to home discharge vs. nonhome discharge (eg, rehabili-
tation facility, skilled nursing facility, hospice, acute care facility).
Postoperative complications assessed included surgical site infec-
tion, anemia requiring transfusion, deep vein thrombosis/pulmo-
nary embolism, urinary tract infection, acute renal failure, sepsis,
intubation-related complication, pneumonia, myocardial infarc-
tion, cerebrovascular event, cardiac arrest, and unplanned return to
the operating room. Patients with missing datawere excluded from
analysis.

Statistical analysis

Descriptive statistics were calculated for all continuous vari-
ables and comparisons were made using unpaired Student’s t-tests
and one-way analysis of variance testing. A binary logistic regres-
sion model was used to calculate odds ratios (ORs) of nonhome
discharge based on patient characteristics including age (>70
vs. < 70 years), race (white vs. non-white), BMI (>30 vs.<30), ASA
classification (>2 vs. �2), anesthesia type (regional vs. general),
diabetes, smoking history and other baseline patient characteris-
tics. Results of the logistic regressions were reported as OR with
95% confidence intervals (CIs). Patients with missing data were
excluded from the study. All statistical analysis was conducted on
Stata, version 16.1 (Stata Corp., College Station, TX, USA). Statistical
significance was defined as P < .05. Institutional review board
approval was not required for this study.

Development of ML models

The data abstracted from the NSQIP registry were used to
develop 2 types of ML models: a boosted decision tree model and
an artificial neural networks (ANN) model. All model development
and analysis were performed using the TensorFlow Python open-
source coding platform (Google Brain, Alphabet Inc., Mountain
View, CA, USA). Patients were randomly divided into a training set
cohort (80%) and a testing set cohort (20%). We ensured that the
testing data set (20%) was large enough to yield statistically
meaningful results and was representative of the data set as a
whole.

With less training data, there is greater variance of the model’s
parameter estimates, and with less testing data, the model’s per-
formance statistic will have greater variance. Therefore, the 80/20
data split ensures that both variance values are as low as possible,
and many computer scientists refer to the Pareto principle for the
80/20 split. The overall data were large enough to ensure that the
model did notmatch the training data so closely that it fails tomake
predictions on new data (testing set), which is also known as
overfitting.

Patient data in the training set were used to develop and refine
the ML models. For each incorrect prediction, the model self-
calibrated through a process of reiterative algorithm refinement
until optimal accuracy was achieved. Patient data in the testing set
were used to evaluate model accuracy and performance.



Table I
Summary of patient demographics and medical comorbidities.

Predictive factors Home discharge Nonhome discharge P value All TSA

Women (%) 52.9% 77.4% <.001 55.3%
Average Age (yr) 68.4 75.4 <.001 69.1
BMI 31.1 31.5 .005 31.1
Diabetes (%) 16.7% 24.6% <.001 17.5%
Smoke (%) 11.1% 8.0% <.001 10.8%
Dyspnea (%) 5.9% 13.5% <.001 6.6%
COPD (%) 6.1% 12.1% <.001 6.7%
CHF (%) 0.4% 1.9% <.001 0.5%
Hypertension (%) 65.6% 78.0% <.001 66.8%
Renal failure (%) 0.0% 0.0% .353 0.0%
Dialysis (%) 0.3% 1.0% <.001 0.4%
Cancer (%) 0.21% 0.33% .231 0.2%
Wound infection (%) 0.2% 1.7% <.001 0.4%
Steroid use (%) 4.6% 7.3% <.001 4.9%
Weight loss (%) 0.17% 0.33% .097 0.2%
Bleeding disorder (%) 2.3% 5.0% <.001 2.5%
Transfusion (%) 0.1% 0.3% .012 0.1%
Wound class > 1 (%) 0.8% 0.5% .163 0.8%
ASA class > 2 (%) 53.1% 78.2% <.001 55.6%

ASA, American Society of Anesthesiologists; BMI, body mass index; CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; TSA, total shoulder
arthroplasty.
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Categorical nonbinary variables (eg, race, ASA classification, anes-
thesia type) were incorporated into the models using 1-hot
encoding. Continuous variables, such as age and BMI, were con-
verted into logarithmic variables to normalize the data and mini-
mize bias. Imbalanced data were managed using oversampling of
the underrepresented variable.

The sensitivity and specificity were calculated for each model
and used to develop a receiver operating characteristic curve. The
area under the receiver operating characteristic curve (AUC) was
then calculated as a measure of the model’s discriminative ability,
as has been carried out previously.6,32 In this context, AUC values
can range from 0.50 to 1, with a greater AUC signifying greater
predictive capacity. A model with an AUC of 1.0 is a perfect
discriminator, 0.90 to 0.99 is considered excellent, 0.80 to 0.89 is
good, 0.70 to 0.79 is fair, and 0.51 to 0.69 is poor.22 Overall model
accuracy (%) was calculated by adding the number of true positives
(correct predictions of outcome occurrence) and true negatives
(correct prediction of outcome nonoccurrence) and dividing by the
total sample size.
Results

The NSQIP registry contained 21,544 patients who underwent
elective TSA between 2012 and 2018 and met all inclusion criteria
(Table I). The mean age was 69.1 years (standard deviation 9.5
years), and 55.3% of patients were women. The majority of patients
underwent TSA in the inpatient setting (92.3%). In terms of the
primary form of anesthesia, 96.8% of patients received general
anesthesia, 1.7% received regional anesthesia, and 0.9% received IV
sedation (monitored anesthesia care). Operative time averaged
109.9 minutes (standard deviation 44.4 minutes), and mean hos-
pital LOS was 1.7 days (standard deviation 2.2 days). Regarding
discharge destination, 9.7% of patients underwent nonhome
discharge. Overall, 4.5% of patients experienced 1 or more com-
plications in the 30 days immediately after the surgery. Read-
mission and reoperation data were available for 16,757 patients
(77.8% of total patients). Within this subset of patients, the 30-day
readmission rate was 3.6%, with 2.5% of patients being readmitted
for a TSA-related cause (defined using Current Procedural Termi-
nology codes related to index procedure) and 1.3% of patients
required reoperation related to TSA (Table II).
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Direct comparison of patients who were discharged home vs.
nonhome discharge patients revealed significant differences in
terms of mean age (68.4 vs. 75.4 years, respectively; P < .001), sex
(52.9% vs. 77.4% women, respectively; P < .001), average BMI (31.1
vs. 31.5, respectively; P ¼ .005), and surgery setting (91.7% vs. 97.7%
inpatient, respectively; P < .001) (Table I). Mean operative time was
109.9 vs. 110.0 minutes (P ¼ .925), mean LOS was 1.6 vs. 3.5 days
(P < .001), and the 30-day complication rate was 3.6% vs. 12.1%
(P < .001) for home discharge and nonhome discharge patients,
respectively (Table II). The overall readmission rate was 3.2% vs.
6.8% (P < .001), the TSA-related readmission rate was 2.3% vs. 4.5%
(P < .001), and the reoperation rate was 1.2% vs. 1.8% (P ¼ .024) for
home discharge and nonhome discharge patients, respectively
(Table II).

Multivariate binary logistic regression revealed that several
variables were associated with greater odds of nonhome discharge
including female sex (OR ¼ 2.83; 95% CI ¼ 2.53 to 3.17; P < .001),
age older than 70 years (OR¼ 3.19; 95% CI¼ 2.86 to 3.57; P < .001),
ASA classification 3 and greater (OR ¼ 2.70; 95% CI ¼ 2.41 to 3.03;
P < .001), inpatient TSA (OR¼ 3.50; 95% CI¼ 2.58 to 4.73; P < .001),
prolonged operative time (OR ¼ 1.38; 95% CI ¼ 1.20 to 1.58;
P < .001), as well as history of diabetes (OR¼ 1.56; 95% CI ¼ 1.38 to
1.75; P < .001), COPD (OR ¼ 1.71; 95% CI ¼ 1.46 to 2.01; P < .001),
congestive heart failure (OR ¼ 2.65; 95% CI ¼ 1.72 to 4.01;
P < .001), hypertension (OR¼ 1.35; 95% CI¼ 1.20 to 1.52; P¼ .004),
dialysis (OR ¼ 3.58; 95% CI ¼ 2.01 to 6.39; P ¼ .002), wound
infection (OR ¼ 5.67; 95% CI ¼ 3.46 to 9.29; P < .001), steroid use
(OR ¼ 1.43; 95% CI ¼ 1.18 to 1.74; P ¼ .010), and bleeding disorder
(OR ¼ 1.84; 95% CI ¼ 1.45 to 2.34; P < .001) (Table III). Similarly,
variables associated with increased odds of experiencing a post-
operative complication were female sex (OR ¼ 1.38; 95% CI ¼ 1.20
to 1.59; P < .001), age older than 70 years (OR ¼ 1.61; 95% CI ¼ 1.39
to 1.86; P < .001), ASA classification 3 and greater (OR ¼ 2.40; 95%
CI ¼ 2.04 to 2.81; P < .001), prolonged operative time (OR ¼ 2.36;
95% CI ¼ 2.01 to 2.77; P < .001), as well as history of diabetes
(OR ¼ 1.45; 95% CI ¼ 1.22 to 1.71; P < .001), smoking (OR ¼ 1.25;
95% CI ¼ 1.01 to 1.56; P ¼ .042), COPD (OR ¼ 1.86; 95% CI ¼ 1.50 to
2.31; P < .001), congestive heart failure (OR ¼ 2.39; 95% CI ¼ 1.38
to 4.12; P ¼ .002), dialysis (OR ¼ 3.01; 95% CI ¼ 1.51 to 6.00;
P ¼ .002), cancer (OR ¼ 4.03; 95% CI ¼ 1.82 to 8.93; P ¼ .001), and
bleeding disorder (OR ¼ 2.42; 95% CI ¼ 1.80 to 3.24; P < .001)
(Table IV).



Table II
Summary of perioperative and postoperative outcomes.

Outcomes Home discharge Nonhome discharge P value All TSA

Inpatient TSA (%) 91.7% 97.7% <.001 92.3%
Avg. operative time (min) 109.9 110.0 .925 109.9
Average LOS (d) 1.6 3.5 <.001 1.8
Any complication (%) 3.6% 12.1% <.001 4.5%
Reoperations (%) 1.2% 1.8% .024 1.3%
Readmissions (%) 3.2% 6.8% <.001 3.6%
TSA-related readmissions (%) 2.3% 4.5% <.001 2.5%

LOS, length of stay; TSA, total shoulder arthroplasty.

Table III
Factors associated with greater odds of non-home discharge, on multivariate logistic
regression analysis.

Variable Odds ratio P value [95% confidence
interval]

Preoperative factors
Sex (female) 2.831 <.001 2.529 3.170
Race (white) 1.160 .166 0.940 1.431
Age > 70 yr 3.193 <.001 2.858 3.567
BMI > 30 (obese) 1.016 .756 0.919 1.123
Diabetes 1.556 <.001 1.383 1.751
Smoking 0.968 .728 0.804 1.165
COPD 1.709 <.001 1.455 2.006
CHF 2.653 <.001 1.718 4.097
HTN 1.348 .004 1.197 1.517
Dialysis 3.580 .002 2.007 6.385
Cancer 1.438 .434 0.579 3.569
Wound infection 5.669 <.001 3.459 9.290
Steroid use 1.429 .010 1.177 1.735
Bleeding disorder 1.839 <.001 1.449 2.335
ASA class > 2 2.703 <.001 2.412 3.029

Perioperative factors
Inpatient TSA 3.496 <.001 2.584 4.729
Op. time > 150 min 1.378 <.001 1.200 1.583
Nongeneral anesthesia 1.125 .411 0.850 1.488

ASA, American Society of Anesthesiologists; BMI, body mass index; CHF, congestive
heart failure; COPD, chronic obstructive pulmonary disease; HTN, hypertension;
TSA, total shoulder arthroplasty.
Bolded: statistically significant values.

Table IV
Factors associated with greater odds of 30-day complication (any), on multivariate
logistic regression analysis.

Variable Odds ratio P value [95% Confidence
interval]

Preoperative factors
Sex (female) 1.381 <.001 1.198 1.593
Race (white) 1.024 .869 0.777 1.349
Age > 70 yr 1.606 <.001 1.387 1.861
BMI > 30 (obese) 0.860 .037 0.746 0.991
Diabetes 1.448 <.001 1.224 1.712
Smoking 1.254 .042 1.008 1.560
COPD 1.863 <.001 1.504 2.306
CHF 2.387 .002 1.382 4.122
HTN 1.040 .629 0.888 1.218
Dialysis 3.006 .002 1.506 6.001
Cancer 4.030 .001 1.818 8.934
Wound infection 1.435 .386 0.634 3.248
Steroid use 1.220 .165 0.922 1.614
Bleeding disorder 2.416 <.001 1.804 3.235
ASA class > 2 2.397 <.001 2.044 2.811

Perioperative factors
Inpatient TSA 1.333 .051 0.999 1.779
Op. time > 150 min 2.359 <.001 2.008 2.773
Non-general anesthesia 0.840 .443 0.539 1.311

ASA, American Society of Anesthesiologists; BMI, body mass index; CHF, congestive
heart failure; COPD, chronic obstructive pulmonary disease; HTN, hypertension;
TSA, total shoulder arthroplasty.
Bolded: statistically significant values.
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To develop the ML models, the data were randomly divided into
a training cohort of 17,235 patients and a testing cohort of 4309
patients. On testing the boosted decision tree model for predicting
nonhome discharge, the AUC was 0.788 and the overall accuracy
was 90.3% (Fig. 1A). The ANN model for predicting nonhome
discharge had an AUC of 0.851 and an overall accuracy of 89.9%
(Fig. 1B). In terms of predicting the occurrence of 1 or more post-
operative complications, the boosted decision tree model had an
AUC of 0.795 and an overall accuracy of 95.5% (Fig. 2A). The ANN
model yielded an AUC of 0.788 and an overall accuracy of 92.5%
(Fig. 2B).
Discussion

This is the first study to successfully develop ML models for
predicting nonhome discharge after elective TSA. The predictive
capacity, as measured by AUC on the receiver operating charac-
teristic curve, was fair for the boosted decision tree model (AUC of
0.788) and good for the ANN model (0.851). Both models were
similar in terms of overall accuracy (90.3% for the boosted decision
tree model vs. 89.9% for the ANNmodel). With regard to predicting
the occurrence of 30-day postoperative complications, bothmodels
performed in the fair range (AUC of 0.795 for the boosted decision
treemodel vs. 0.788 for the ANNmodel) with an overall accuracy of
95.5% for the boosted decision tree model and 92.5% for the ANN
model.

Overall, 9.7% of patients were discharged to a postacute care
facility after elective TSA, which is comparable with the nonhome
discharge rate observed by Sivasundaram et al40 (11.5%). Several
patient factors were associated with increased risk of nonhome
discharge including female sex, age older than 70 years, ASA clas-
sification 3 or greater, and history of diabetes, hypertension, wound
infection, steroid use, or a bleeding disorder. Similar associations
have been reported in previous studies of TSA and total knee
arthroplasty, including a systematic review by Berman et al in
which female sex, older age, obesity, and reverse TSA were asso-
ciated with nonhome discharge.39,40

Hospital discharge after any surgical procedure is a complex
process that depends on coordination between numerous parties
including the patient, the surgeon, the social worker, the care
coordinator, the physical therapist, the nurse, and the hospital
administrator. Countless factors can delay discharge including
disagreement between any of the involved parties regarding the
appropriate level of postacute care needed, patient preference for a
specific facility, facility bed availability, and insurance approval.
Whatever the reason, a delay in discharge results in a prolonged
hospital stay, which not only leads to increased costs but has been
associated with greater patient morbidity and mortality.5,11,24,37

Interestingly, Menendez et al31 found that prolonged hospitaliza-
tions after TSA were most commonly attributed to issues with in-
surance approval and lack of social support, often ending in
patients being discharged to skilled nursing facilities. As such, the



Figure 1 Area under the ROC curve of boosted decision tree (A) and artificial neural network (B) models of nonhome discharge. ROC, receiver operating characteristic.

Figure 2 Area under the ROC curve of boosted decision tree (A) and artificial neural network (B) models of any 30-day complication. ROC, receiver operating characteristic.
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ability to identify patients likely to require nonhome discharge
after TSA affords surgeons the opportunity to make the necessary
preparations beforehand, which can ultimately reduce hospital
LOS, limit costs, and improve patient outcomes.

With the recent popularization of bundled payment models,
healthcare facilities and providers are incentivized now more than
ever to discharge patients in a safe and timely manner. As post-
operative care is included under most bundled payment models,
prolonged hospitalization directly diminishes reimbursement for
facilities and providers. In this manner, models that can accurately
identify patients at increased risk of nonhome discharge may allow
for significant cost savings in that discharge planning can begin
preoperatively, thereby reducing hospital LOS. For instance,
Barsoum et al4 demonstrated that use of a statistical model for
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predicting discharge to a postacute care facility after total joint
arthroplasty resulted in a 0.9 day decrease in total hospital LOS.

It was somewhat expected that the ANN model had slightly
better discriminative ability than the boosted decision tree
model in predicting nonhome discharge. While both model
types can be constructed based on variables with nonlinear re-
lationships, neural networks consist of multiple “neural layers”
that can process large amounts of data and share information
using weighted connections that are optimized during the
training process.23,35 As a result, neural networks can achieve
predictive performance, which provides an advantage in accu-
rately modeling complex nonlinear relationships in high-volume
data sets. Boosted decision tree models use a set of learned rules
to make predictions but lack generalization to nonlinear

mailto:Image of Figure 2|tif
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interactions between variables or random events.26 In this study,
nonhome discharge was a more difficult outcome to predict
because discharge destination can be influenced by a variety of
variables not included in the NSQIP registry, such as ability to
complete activities of daily living.

While ML has the potential to reduce healthcare costs and
improve patient outcomes, serious ethical concerns have been
raised. First, ML models could be used by insurance companies and
providers to restrict access to care for patients at increased risk of
costly postoperative complications and adverse events. Second, ML
models developed from large national data sets may be inherently
biased owing to historically inequitable healthcare data between
racial and socioeconomic groups.16,18 Given the well-documented
systemic racial and socioeconomic disparities that exist in the US
healthcare system,16 administrators must be aware of these po-
tential biases and generalizability when implementing ML tech-
nology in clinical practice. Third, the privacy risks associated with
managing the large amounts of sensitive data necessary to build ML
models remain a persistent challenge.

This study has several limitations that merit further discussion.
Most notably, the ML tools developed in this study require external
validation before definitive conclusions can be made regarding
their efficacy and utility in the clinical setting. In addition, there are
inherent limitations to using large registries, such as NSQIP,
including coding errors, missing data, and inaccurate information.
Future research should attempt to replicate this study’s findings
using other data sets, especially as the number of TSA procedures
performed each year continues to rise. In addition, although ASA
classification, which accounts for multiple patient factors, was
included in our analysis, the effect of combined comorbidities (ie,
age and COPD history) on outcomes should be investigated in
future studies. Finally, the models developed in this study over-
simplified the hospital discharge process, only considering only
home vs nonhome. In reality, numerous types of postacute care
facilities exist, with significant variability in terms of acceptance
requirements, insurance approval, and cost.38

Conclusions

In the midst of a transition to high-value, cost-conscious health
care, ML has the potential to improve outcomes and reduce costs by
identifying patients likely to experience adverse outcomes
following surgical procedures. This information can be used to
enhance patient selection, risk stratification, counseling, optimi-
zation, and preoperative planning. The models developed in this
study demonstrate an application of ML in which data from a na-
tional registry was used to predict nonhome discharge after elec-
tive TSA. Based on the predictions of these models, surgeons can
better identify candidates for outpatient surgery and improve
preoperative discharge planning for patients requiring inpatient
surgery, thereby reducing hospital length of stay, associated costs,
and patient morbidity and mortality.
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