
Brain and Behavior. 2021;11:e01860.	 		 	 | 	1 of 9
https://doi.org/10.1002/brb3.1860

wileyonlinelibrary.com/journal/brb3

1  | INTRODUC TION

Resting-state functional magnetic resonance imaging (rsfMRI) 
is a common experimental paradigm utilized in both cognitive 

neuroscience and psychiatric research which measures endogenous 
fluctuations of the blood-oxygen level dependent (BOLD) signal 
under resting conditions. The co-occurrence of spatially distinct sig-
nals over time, called functional connectivity (FC), can be measured 
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Abstract
Introduction: In psychiatric research, functional connectivity (FC) derived from rest-
ing-state functional MRI (rsfMRI) is often used to investigate brain abnormalities in 
psychiatric disorders. This approach assumes implicitly that FC can recover reliable 
maps of the functional architecture of the brain and that these profiles of connectiv-
ity reflect trait differences underlying pathology. However, evidence of FC related 
to self-generated thoughts (mind-wandering) stands in contrast with these assump-
tions, as FC may reflect thought patterns rather than functional architecture.
Methods: Multi-factor	analysis	(MFA)	was	used	to	investigate	the	reported	content	
of	self-generated	thoughts	during	high-field	(7T)	rsfMRI	in	a	repeated	sample	of	22	
healthy individuals. To investigate the relationship between these experiences and 
FC, individual scores for each of these dimensions were compared with whole-brain 
connectivity	using	the	network-based	statistic	(NBS)	method.
Results: This analysis revealed three dimensions of thought content: self-referential 
thought, negative thoughts about one's surroundings, and thoughts in the form of 
imagery.	A	network	of	connections	within	the	sensorimotor	cortices	negatively	cor-
related with self-generated thoughts concerning the self was observed (p = .0081, 
.0486 FDR).
Conclusion: These results suggest a potentially confounding relationship between 
self-generated thoughts and FC, and contribute to the body of research concerning 
the functional representation of mind-wandering.
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using this method and signifies a functional relationship between 
two or more distinct areas of the brain. In psychiatric research, the 
presence and magnitude of resting FC in populations of interest 
are used to investigate dysfunctional brain development and func-
tional disorganization related to pathology (Baldassarre et al., 2016; 
Bassett	 &	 Bullmore,	 2009).	 This	 approach	 relies	 implicitly	 on	 the	
ability of FC to recover reliable maps of the functional architecture 
of the brain (Gratton et al., 2018), and that these profiles of connec-
tivity reflect trait differences underlying pathology. The interpreta-
tion of resting FC in psychiatry therefore fundamentally relies on the 
relationship between the resting FC signal with underlying brain or-
ganization. With regards to pathology, connectivity derived through 
the resting-state approach is thought to reflect an “intrinsic func-
tional architecture” which is suitable for comparison between clini-
cal populations of interest and controls (Guerra-Carrillo et al., 2014; 
Redcay et al., 2013).

There is evidence that some functional networks derived using 
rsfMRI can be recovered using electrophysiological methods (Kucyi 
et	al.,	2018;	Raccah	et	al.,	2018).	Networks	are	also	reliably	detectable	
across	various	conscious	states	and	tasks	(Rosazza	&	Minati,	2011),	
supporting the hypothesis that resting FC reveals information about 
the intrinsic organization of the brain. Despite this evidence, the 
interpretation of FC as “intrinsic” and constrained by meaningful 
brain organization is highly contested (Honey et al., 2009). FC is an 
inherently	ambiguous	measure	(Reid	et	al.,	2017,	2019)	and	can	be	
present without direct anatomical connection which likely reflects 
a purely functional relationship mediated by an indirect pathway 
(Damoiseaux	&	Greicius,	2009).

A	 further	 source	of	variability	 in	 the	FC	signal	 is	evidenced	by	
mind-wandering research. Empirical evidence of FC related to task 
state, cognitive state, or self-generated thoughts (mind-wandering) 
demonstrates that FC is a malleable signal which can be modulated 
by psychological phenomena and behavior. FC is therefore sus-
ceptible	 to	 the	 influence	of	 “task”	demands	 (Yao	et	al.,	2012),	and	
these modulations may vary across individuals (Gratton et al., 2018), 
creating a task-subject interaction on the ultimate measurement of 
FC. It is therefore possible that FC may be systematically influenced 
across pathologies by the content of self-generated thoughts; in 
populations where altered thought content is central to the disorder, 
it follows that FC may reflect these thought patterns, not intrinsic 
functional	architecture	necessarily	(Damoiseaux	&	Greicius,	2009).

The nature of these resting-state networks is integral as to the 
interpretability of functional connectivity in psychiatry. If they are 
truly indicative of functional organization, they should be stable 
across observations and robust to passing thoughts while measure-
ment occurs. Conversely, if changes to FC are observable within 
individuals as a function of thought content, this would stand as evi-
dence that FC is not fully reliable as a measure of functional architec-
ture and reveal a possible confound for rsfMRI studies which include 
groups with categorically different patterns of thought. Therefore, it 
is imperative to investigate the variance of self-generated thoughts 
both across and within individuals, and the relationship of these 
thoughts with FC.

2  | MATERIAL S AND METHODS

Ultrahigh	field	resting-state	fMRI,	T1	structural	images,	and	a	posts-
can questionnaire regarding self-generated thoughts are made pub-
licly available by the Max Planck Institute (Gorgolewski et al., 2015); 
scan parameters are reproduced below. Twenty-two (22) neuro-
typical, native German-speaking participants were scanned on two 
separate occasions, spaced 1 week apart. Each session included two 
1.5 mm isotropic functional scans covering the whole brain and one 
submillimeter scan of the prefrontal cortex (not utilized in this analy-
sis). Structural T1 images and Field Map Images, for estimating B0 
inhomogeneities, were also acquired. Physiological and phenotypic 
data included: measures of mood, sustained attention, blood pres-
sure, respiration, pulse, and the content of self-generated thoughts 
via	 a	 shortened	version	of	 the	New	York	Cognitive	Questionnaire	
(NYCQ,	 see	Table	 S1;	 (Gorgolewski	 et	 al.,	 2014).	 The	 final	 dataset	
consisted of the 4 full-brain fMRI scans of 19 different individuals 
(10 women); only participants with all 4 usable scans were included 
in the analysis due to the permutation methods of the repeated 
measures GLM in the fMRI analysis.

2.1 | Behavioral statistical analysis

To investigate the content and stability of self-generated thoughts 
in	this	sample,	multiple	factor	analysis	(MFA),	a	variant	of	principal	
components	analysis	(PCA),	was	used	analyze	the	variance	structure	
of	the	behavioral	responses.	Like	PCA,	MFA	aims	to	calculate	new	
variables, called principal components, which exist as linear combina-
tions	of	 the	original	 variables	 (Abdi	&	Williams,	2010).	These	new	
variables are interpreted as the thought content which was experi-
enced within the scanner across this sample.

These new variables are best described by their factor loadings. 
Factor loadings describe how the original variables “load” onto these 
new factors, and thus represent which of the variables from the orig-
inal dataset make up this new component. Each retained component 
therefore represents combinations of original variables which co-
vary together and likely describe a unique dimension of experience 
within the scanner. Each observation also has a factor score for each 
new component, which provides information regarding which obser-
vations are most associated with the individual factors, or the degree 
to which the component is represented at that observation. Both the 
factor scores and factor loadings of included components can be used 
to provide a consolidated description of the original dataset, with 
the added bonus of values for each component at each observation 
from which further analysis may be conducted.

Multi-factor	analysis	provides	an	extension	to	PCA	which	allows	
for the analysis of repeated-measures data structured in a multi-
block	format	(Abdi	et	al.,	2013).	The	assumption	of	independent	ob-
servations	 for	 traditional	PCA	 is	not	met	 for	 this	study	due	to	the	
repeated measures facet of the dataset. To account for this, the ob-
servations at each time point were first analyzed independently as 
separate data “blocks” so that they may be normalized by their first 
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eigenvalue and contribute equally, in terms of their variance, to the 
grand data structure. Furthermore, the data were normalized via a 
“nested” method: In this specific dataset, the inertia of each “day” 
(block	1&2,	block	3&4)	and	 “time-point”	 (block	1&3,	block	2&4)	 is	
also	 added	 as	 normalization	 factors.	 After	 this	 normalization	 pro-
cess, the analysis procedure and output are analogous to standard 
PCA	and	can	be	interpreted	accordingly.

Interpretation of factor loadings	 is	 a	 controversial	 point	 in	PCA	
analysis. It is not always clear how many of the original variables to 
include as factor loadings for the new calculated component, and 
therefore it is quite easy to over-interpret the distribution of load-
ings.	A	benefit	of	multi-block	MFA	 is	 the	ability	 to	assess	stability	
of	factor	loadings	across	“blocks”	or,	in	this	case,	time	points	(Abdi	
et	al.,	2013).	A	bootstrapping	approach	was	utilized	to	reliably	assess	
the content of self-generated thoughts in this sample by generating 
confidence intervals for each factor loading. Factor loadings for the 
12	NYCQ	variables	across	all	4-time	points	were	transformed	 into	
factor contributions by normalizing the squared factor loading by the 
associated eigenvalue, revealing the proportion of variance explained 
by each factor at each time point. These contributions therefore sum 
to 1, and the additive property of these contributions was used to 
create confidence intervals from which the reliability of these load-
ings	may	be	assessed	(Abdi	et	al.,	2013).

The null distribution of bootstrapped contributions for each of 
the original 12 items of the questionnaire was used to assess the 
strength and stability of these loadings. Because these contributions 
are additive, the expected value of any given contribution summed 
over the 4-time points is 1/12 = 0.083. Confidence intervals were 
calculated by observing the values which bounded 95% of the null 
distribution. Contributions with a confidence interval that does not 
include the expected value of 0.083 were considered to reliably con-
tribute to the given component. In this way, a factor loading must be 
consistently influential across four-time points to be considered a 
reliable contributor to that component.

2.2 | MRI acquisition

Image acquisition parameters reproduced from the data 
source, Gorgolewski et al., (2015): To obtain T1 images, a 3D 
MP2RAGE29	sequence	was	used:	3D-acquisition	with	field	of	view	
224 × 224 × 168 mm3	(H-F;	A-P;	R-L),	imaging	matrix	320	× 320 × 240, 
0.7 	mm3 isotropic voxel size, Time of Repetition (TR) = 5.0 s, Time 
of Echo (TE) = 2.45 ms, Time of Inversion (TI) 1/2 =	0.9	s/2.75	s,	Flip	
Angle	(FA)	1/2	= 5°/3°, Bandwidth (BW) = 250 Hz/Px, Partial Fourier 
6/8,	and	GRAPPA	acceleration	with	 iPAT	factor	of	2	(24	reference	
lines). Functional scans were obtained with using a 2D sequence: 
axial orientation, field of view 192 × 192 mm2	 (R-L;	A-P),	 imaging	
matrix 128 ×	 128,	 70	 slices	with	 1.5	mm	 thickness,	 1.5	mm3 iso-
tropic voxel size, TR = 3.0 s, TE =	17	ms,	FA	=	70°,	BW	= 1,116 Hz/
Px,	Partial	Fourier	6/8,	GRAPPA	acceleration	with	iPAT	factor	of	3	
(36 reference lines), and 300 repetitions resulting in 15 min of scan-
ning time. For estimating B0 inhomogeneities, a 2D gradient echo 

sequence was used. It was acquired in axial orientation with field 
of view 192 × 192 mm2	(R-L;	A-P),	imaging	matrix	64	× 64, 35 slices 
with 3.0 mm thickness, 3.0 mm3 isotropic voxel size, TR = 1.5 s, 
TE1/2 =	6.00	ms/7.02	ms	(which	gives	delta	TE	=	1.02	ms),	FA	=	72°,	
and BW = 256 Hz/Px.

2.3 | MRI preprocessing

The skull of anatomical T1 images was removed using an automatic 
skull	 stripping	process	 available	 through	AFNI	 (Cox,	 1996).	 To	 im-
prove performance of automatic skull stripping, a lower resolution 
image was intensity-normalized and stripped using this automated 
process. The results of this procedure were masked and applied to 
the higher resolution/contrast image.

Standard	signal	correction	was	applied	via	AFNI’s	preprocessing	
wrapper, afni_proc.py (Cox, 1996), which performs despiking, phys-
iological regression, t-shifting (aligning a single 3d image in time), 
spatial	 alignment	 to	 a	 standard	 template	 (Montreal	 Neurological	
Institute,	 MNI),	 spatial	 blurring	 (6	 mm),	 bandpass	 filtering	 (0.01–
0.1 hz), and motion correction. Spatial distortion correction of EPI 
images due to B0 inhomogeneities was calculated and applied with 
FSL’s	 FUGUE	 (Jenkinson,	 Beckmann,	 Behrens,	Woolrich,	 &	 Smith,	
2012). Physiological regression of heart rate and respiration was cal-
culated with RETROICOR (Glover et al., 2000) and applied through 
the preprocessing wrapper.

An	 alignment	 procedure	 was	 applied	 to	 the	 resting-state	
data which seeks to minimize total spatial transformations and 
reduce	 interpolation	 errors	 (Mahmoudzadeh	 &	 Kashou,	 2013).	
Alignments	 were	 calculated	 in	 reverse	 (anatomical	 to	 EPI),	 in-
versed, and combined with other alignments (anatomical to 
shared space) to result in a single transformation which brings 
the final EPI time course into alignment with the standard spatial 
template. Furthermore, this transformation has been combined 
with motion correction within each subject, so that each TR of 
the time course is aligned to the minimum outlier; this alignment 
is combined with the overall alignment of the EPI to standard 
space, resulting in minimum total rotations and therefore mini-
mum interpolation error.

2.4 | Data-driven connectivity analysis

To create the connectivity matrix for each participant at each 
time point, whole-brain time series data were spatially binned into 
470	 functional	 gray-matter	 regions,	 as	 defined	 by	 the	 Harvard-
Oxford	atlas	parcellated	into	470	regions	(Baek	et	al.,	2017;	Patel	&	
Bullmore,	2016).	These	470	time	series	were	correlated	pairwise,	so	
that a connectivity value (Pearson R) exists for each potential con-
nection across the entire brain.

A	 data-driven	 approach	was	 utilized	 to	 determine	 significant	
functional networks based on the connectivity matrix, related 
to the content of self-generated thoughts via the network-based 
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statistics	method	(NBS;	Zalesky	et	al.,	2010).	As	opposed	to	a	more	
traditional	seed-based	connectivity	analysis,	NBS	does	not	require	
an a-priori region as the seed from which whole-brain correlations 
are	 calculated.	 Instead,	 NBS	 utilizes	 a	 whole-brain	 connectivity	
matrix to create representations of connectivity for each fMRI 
scan.

Network-based	 statistic	 utilizes	 a	 permutation-based	 gen-
eral	 linear	 model	 (GLM)	 for	 significance	 testing	 (Freedman	 &	
Lane, 1983). This method creates a null distribution of networks, 
the sizes of which are recorded. The empirically observed graphi-
cal	networks’	sizes	are	then	tested	against	this	null	distribution	for	
significance; networks significantly larger than chance are retained. 
Nuisance	predictors	are	first	regressed	out	against	these	networks,	
and the residuals of this regression are permuted against other 
networks to create the null distribution of networks which con-
sist of connections that survive a primary threshold. This method 
of permutation is beneficial because some of the variance of the 
networks across observations might be explained by the nuisance 
predictors	(Anderson	&	Robinson,	2001).	Furthermore,	this	method	
allows for more elegant control of family-wise error rate, a common 
problem	in	mass-univariate	testing	of	whole-brain	signals	(Zalesky	
et al., 2010).

Factor scores,	 calculated	 via	 MFA	 in	 the	 behavioral	 analysis,	
serve	 as	 predictors	 in	 the	 GLM.	MFA	 reveals	 two	 sets	 of	 factor 
scores: a “compromise factor score,” a factor score for each individ-
ual, and a “partial factor score,” a factor score for each individual 
at each time point. The compromise factor scores are the bary-
center	 of	 all	 of	 the	 partial	 factor	 scores	 (Abdi	 et	 al.,	 2013),	 and	
thus are the mean of all the factor scores for each table. These 
different factor scores can be used to compute between-subject 

and within-subject changes in connectivity. The partial factor 
scores were therefore used in this analysis, and each individual 
subject's FC was added as nuisance predictors in the design ma-
trix. Permutation was constrained within each subject's four scans 
to reveal intra-subject changes in FC related to that individual's 
changing thought content.

3  | RESULTS

3.1 | Behavioral analysis

Examination of the scree plot (Figure 1.) reveals an elbow at the 3rd 
principal component. The first 3 components explain a total of 54.5% 
of the variance of the entire behavioral dataset. The factor loadings 
and contributions of these three factors were therefore investigated, 
as well as the corresponding factor scores were used as predictors 
in the whole-brain connectivity analysis. Bootstrap analysis of fac-
tor loadings revealed significant loadings (Lower Bound Bootstrap 
Confidence Interval > 8.3% variance explained per component; 
Figure 2) for the first (PC1), second (PC2), and third (PC3) compo-
nents. Loadings for the first component were thoughts surround-
ing the self (Lower Bound = 9.96%), future (Lower Bound = 11.68%) 
and were specific (Lower Bound = 8.94%). Loadings for the sec-
ond component were thoughts carrying negative valence (Lower 
Bound =	17.02%);	while	not	significant	after	Bonferroni	correction,	
thoughts concerning an individual's surroundings were also strongly 
associated with this factor (Lower bound =	 7.76%).	 Loadings	 for	
the third component were thoughts in the form of images (Lower 
Bound = 22.23%).

F I G U R E  1   Dashed line indicates point 
of “elbow” at the last retained principal 
component. cumulative variance explained 
by these three components = 54.5%
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3.2 | Functional representations of mind-wandering

A	positive	correlation	(p = .0081, .0486 FDR; Cohen's d = 0.58, ini-
tial threshold =	 4.7)	was	 observed	 between	 intrasubject	 network	
connectivity and partial factor scores for PC1 via the permutation-
based	GLM.	 As	 the	 factor loadings were negative for this compo-
nent, this finding suggests that network connectivity was negatively 

associated with thought content described by PC1: “self,” “future,” 
and “specific.” Brain regions therefore negatively correlated with 
PC1 include precentral gyrus, postcentral gyrus, superior parietal 
lobule, and superior frontal gyrus (Figure 3; see Tables 1 and 2 for 
MNI	coordinates	and	full	list	of	network	connections).	No	significant	
relationships were observed between whole-brain connectivity and 
PC2 or PC3.

F I G U R E  2   95% confidence interval (Bonferonni Corrected), determined using a bootstrap approach, resampling with replacement factor 
loadings for each time point to create a confidence interval for the mean factor loading. Factor loadings with CI which did not include the 
expected value of equal contribution, 8.3%, are considered significant loadings for that given factor

F I G U R E  3   Significant network 
connections negatively related to “Self,” 
“Future,” and “Specific” thought content. 
Nodes	visualized	using	BrainNet	Viewer	
(Xia et al., 2013)
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4  | DISCUSSION

Multi-factor analysis provides a powerful method for analyzing the 
variance structure of repeated-measures data. The creation of par-
tial factor scores allows for repeated measures estimation of data-
driven components, and thus, can organically and reliably measures 
the thought content of individuals at rest independent of individual 

TA B L E  1  Node	regions	of	Network	1

Atlas label Hemisphere

MNI Coordinates

X Y Z

Postcentral gyrus 
02

L −14.58 −39.62 65.78

Postcentral gyrus 
05

L 	−7.87 −39.27	 	74.46

Precentral Gyrus 
15

L −5.52 −19.86 71.55

Superior Parietal 
Lobule 08

L −27.92 −34.42 53.87

Superior Parietal 
Lobule 09

L −15.42 −34.39 75.06

Superior Parietal 
Lobule 14

L −17.66 −51.44 65.96

Juxtapositional 
Lobule Cortex 
(Supplementary 
Motor Cortex) 
01

R 6.69 −4.86 52.19

Postcentral gyrus 
02

R 15.39 −39.74 65.79

Postcentral gyrus 
04

R 26.43 −34.79 65.5

Postcentral gyrus 
05

R 8.6 −39.46 74.54

Postcentral gyrus 
15

R 16.36 −34.54 74.8

Precentral Gyrus 
02

R 25.84 −20.87 53.1

Precentral Gyrus 
04

R 11.02 −27.78 60.74

Precentral Gyrus 
06

R 15 −23.75 73.83

Precentral Gyrus 
07

R 5.18 −22.09 53.4

Precentral Gyrus 
12

R 25.82 −19.77 65.74

Precentral Gyrus 
13

R 36.76 −14.45 62.96

Superior Frontal 
Gyrus 02

R 19.68 −5.47 68.98

Superior Parietal 
Lobule 04

R 18.76 −51.26 65.97

Note: Atlas	regions	and	MNI	Coordinates	for	all	unique	atlas	regions	
contained within the significant network negatively related to PC1: 
“Self,” “Future,” and “Specific” thought content.

TA B L E  2  List	of	network	connections,	Network	1

Direct Atlas Region Connections

R Precentral Gyrus 02 R Precentral 
Gyrus 13

R Superior Frontal Gyrus 02 R Postcentral 
gyrus 05

R Precentral Gyrus 06 R Postcentral 
gyrus 05

R Postcentral gyrus 02 R Postcentral 
gyrus 05

R Superior Frontal Gyrus 02 R Postcentral 
gyrus 15

R Postcentral gyrus 05 R Postcentral 
gyrus 15

R Precentral Gyrus 02 R Superior 
Parietal Lobule 
04

R Postcentral gyrus 04 R Superior 
Parietal Lobule 
04

R Precentral Gyrus 02 R Juxtapositional 
Lobule Cortex 
(Supplementary 
Motor Cortex) 
01

R Precentral Gyrus 04 R Juxtapositional 
Lobule Cortex 
(Supplementary 
Motor Cortex) 
01

R	Precentral	Gyrus	07 R Juxtapositional 
Lobule Cortex 
(Supplementary 
Motor Cortex) 
01

R Postcentral gyrus 02 R Juxtapositional 
Lobule Cortex 
(Supplementary 
Motor Cortex) 
01

R Postcentral gyrus 02 L Precentral Gyrus 
15

R Postcentral gyrus 05 L Precentral Gyrus 
15

R Postcentral gyrus 15 L Precentral Gyrus 
15

R Postcentral gyrus 05 L Postcentral 
gyrus 02

R Postcentral gyrus 05 L Postcentral 
gyrus 05

R Precentral Gyrus 02 L Superior Parietal 
Lobule 08

R Postcentral gyrus 05 L Superior Parietal 
Lobule 09

L Precentral Gyrus 15 L Superior Parietal 
Lobule 09

(Continues)
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variation. The first principal component was most closely associated 
with “default-mode” like thought content: specific thoughts about 
the	self	and	future	planning.	As	the	first	component,	this	dimension	
accounted for the most variance of the behavioral data. This find-
ing	is	quite	interesting,	as	rsfMRI’s	most	robust	functional	network	
is often associated with similar self-referential thought content, al-
though it is unlikely that this functional network is simply a mischar-
acterization of the most common topic of self-generated thought, as 
evidence	points	to	the	DMN	being	an	intrinsic	quality	of	the	brain	
and not just a function of fMRI (Kucyi et al., 2018), and mostly deter-
mined by anatomy (Teipel et al., 2010). While the current study was 
not able to demonstrate connectivity positively correlated with self-
referential	thoughts,	these	“DMN-like”	thoughts	were	anticorrelated	
with connectivity in sensorimotor cortices and adjacent functional 
areas.	A	similar	relationship	has	been	demonstrated	previously	be-
tween self-referential thoughts and the somatosensory cortices in an 
investigation	of	non-DMN	sites	of	self-referential	thought	by	Davey	
et al. (2016). Specifically, these authors demonstrated that the intra- 
and superior parietal cortex, right somatosensory cortex (as well as 
ventral posterior insular-cortex, mid superior temporal cortex, pos-
terior parahippocampal-cortex, right posterolateral thalamus, and a 
small area of dorsal superior prefrontal cortex) showed greater ac-
tivation for rest-alone compared with the self-referential condition. 
These results indicate these areas were active during rest, but were 
not involved in self-referential processes, coinciding with the results 
of the current study. However, the self-referential condition utilized 
Davey et al. (2016) was elicited via a prompt, while thought content 
was measured in the current study without provocation.

The results of the current study further demonstrate that whole-
brain FC networks are significantly related to the content of organic 
and unconstrained self-generated thought. Research in patient pop-
ulations has explored the dynamic of individual variation on resting 
FC, for example, the effects of state and trait rumination on resting 
FC	in	depression	(Rosenbaum	et	al.,	2017).	While	“state”	rumination	
was measured in a manor analogous to mind-wandering in this in-
vestigation (with a postscan questionnaire), “trait” rumination was 

determined using a clinical questionnaire. The results of the current 
study suggest that to adequately measure the effect state and trait 
rumination, subjects could simply repeat the resting-state paradigm 
on different days and respond to an identical postscan question-
naire. Trait rumination, therefore, could be measured across these 
time points as opposed to estimation by a static clinical variable.

5  | CONCLUSION

Continued research into both the stability and variability of FC net-
works and the functional representation of the content of mind-
wandering is necessary to untangle the influence of thought content, 
pathology, and FC. These issues are immediately relevant, as rsfMRI 
continues to be a standard paradigm in clinical research and is gain-
ing	popularity	 as	 a	potential	 tool	 for	 clinical	 practice	 (O'Connor	&	
Zeffiro,	2019).

6  | STUDY LIMITATIONS

The intrasubject experimental design utilized in this study allows for 
control of known influences on BOLD and FC, such as age and sex. 
As	well,	this	design	eliminates	possible	confounds	from	task-subject	
(thought-subject) interactions outlined by Gratton et al. (2018). 
However, the current study was limited to 22 healthy individuals by 
the availability of the data present in this unique experimental de-
sign. Despite a large number of independent observations (88 total 
scans), the number of individuals included in this study is a notable 
limitation. The results of this study are further limited by the fact 
that these effects were only investigated in a single group of neuro-
typical adults. The intra-subject variability of mind-wandering and 
related FC may in fact differ across neuropsychiatric groups, and this 
is an effect which future research should quantify.

Functional neuroimaging is fundamentally confounded by a mul-
titude of factors related to the measurement of BOLD such as: res-
piration, heart rate, and motion artifacts. These factors have been 
addressed to the best of our ability through canonical preprocessing 
steps such as motion correction and image (TR) censoring, regres-
sion of heart rate, and regression of respiration. While the necessity 
of these steps is well documented (Power et al., 2015, 2020), inter-
pretation of BOLD fMRI and FC are further limited by the inclusion 
of preprocessing as the influence of these steps on neuroimaging 
results is not fully documented. We acknowledge the potential con-
sequences of preprocessing choices in this research and suggest 
careful interpretation of the results presented here given these 
limitations.
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