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Abstract: Mast cell disease is an epigenetically and genetically determined disease entity with very
diverse clinical manifestations in potentially every system and tissue due to inap pro priate release
of variable subsets of mast cell mediators together with accumulation of either morphologically
normal or altered mast cells. Easy bruising, excessive bleeding, and aberrancies of erythropoiesis
can frequently be observed in patients with mast cell disease. A thorough history, including a
family history, will guide the appropriate work-up, and laboratory evaluations may provide clues to
diagnosis. In recent years, our understanding of the involvement of coagulation and anticoagulant
pathways, the fibrinolytic system, and erythropoiesis in the pathophysiology of mast cell disease has
increased considerably. This review summarizes current knowledge of the impact of the disturbed
hemostatic and erythropoietic balance in patients with mast cell disease and describes options of
treatment.
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1. Introduction

Mast cells (MCs) are hematopoietic tissue immune cells that act both as effector and
regulatory cells (e.g., [1]) in adaptive and innate immunity (e.g., [2]). This versatility is
reflected in the myriad of immunologic and non-immune activation stimuli (e.g., by G
protein-coupled receptors) resulting in the secretion of a large number (>1000) of pre-stored
mediators (e.g., histamine, tryptase) and numerous de novo-synthesized lipid mediators
(e.g., eicosanoids), chemokines, and cytokines [3].

Primary MC disease comprises a group of historically defined different disease enti-
ties (consisting of several variants; Table 1): systemic mastocytosis (SM), MC activation
syndrome (MCAS), cutaneous mastocytosis (CM), MC sarcoma and hereditary alpha-
tryptasemia (HAT). SM, CM, and MC sarcoma are rare. The prevalence of MCAS, at
least in Germany, is about 17% [4] and about 20% in the U.S. [5], and that of HAT was
found to be 4–6% of the general population [6], hence both being common disorders. Two
genome-wide association studies (GWAS; [7,8]) on patients with SM revealed different
non-overlapping results with regard to the multiple mutations in a variety of genes. A
recent GWAS on MCAS patients detected also a large number of SNPs without overlapping
with the GWAS results in SM patients (Hänisch 2021, personal communication; manuscript
in preparation). A next generation sequencing study also revealed a myriad of germline
mutations in a large number of genes [9]. In addition, in qPCR studies on >35 genes in SM
as well as MCAS patients, a multitude of somatic mutations have been detected ([9]; further
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references therein). In synopsis, these data suggest a new view of the development and
categorization of primary MC disease in that it is one polygenic multifactorial disease entity
characterized by epigenetic and presumably consequently genetic alterations (somatic and
germline mutations) in a variety of genes. The combinatorial calculated number of possible
combinations of the genetic alterations suggests that each patient affected by a primary
MC disease has a unique mutational pattern or profile driving a unique pattern of aberrant
MC mediator production and release. This inappropriate release (both constitutively and
reactively) of variable subsets of MC mediators, together with accumulation of either mor-
phologically ordinary mast cells due to impaired apoptosis (MCAS and well-differentiated
SM) [1] or morphologically altered and immunohistochemically identifiable mutated mast
cells (SM and MC leukemia), can affect single or multiple systems (though multisystem
presentations are far more common), usually manifesting with symptoms in a subacute
or chronic waxing/waning or recurrent manner ([10], further references therein). Due to
both the widespread distribution of MCs in the organism and the great heterogeneity of
aberrant mediator expression patterns, symptoms can involve virtually all organs and
tissues; thus, the clinical presentation of primary mast cell disease is very diverse (Table 1
in [1]). Opposite effects can appear in different patients (e.g., polycythemia [11] versus red
cell aplasia [12]), or at different times in an individual patient (e.g., alternating diarrhea and
constipation (e.g., [13]), or even in different sites at the same time in an individual patient
(e.g., co-existing osteoporosis and osteosclerosis (e.g., [14,15])). Severity of symptoms, too,
in one tissue/organ/system can vary substantially from one patient to the next, at different
times in an individual patient, or even in different systems at the same time in an individual
patient.

Table 1. Classification of primary mast cell disease.

Primary Mast Cell Disease

Systemic Mastocytosis
(SM)

Mast Cell Activation
Syndrome (MCAS)

Cutaneous Mastocytosis
(CM)

Mast Cell
Sarcoma

Hereditary
Hypertryptasemia

Clinical variants

• Indolent SM
• Well-differentiated

SM
• Smoldering SM
• Aggressive SM
• SM with an associated

hematological
neoplasm

• Mast cell leukemia

• Irritable bowel
syndrome phenotype

• Fibromyalgia
phenotype

• Cardiac phenotype
• CNS-phenotype
• Idiopathic

anaphylaxis
phenotype

• Mixed phenotype
• Others

• Maculopapular CM =
urticaria pigmentosa

• Diffuse CM
• Solitary cutaneous

mastocytoma

In the present review we summarize the impact of primary MC disease on blood
coagulation and erythropoiesis.

2. Impact on Hemostasis and Thrombosis

MC activation may affect hemostasis by vascular (e.g., endothelial cells) and cellular
components (e.g., platelets, monocytes and neutrophils) as well as clotting and fibrinolytic
factors (Figure 1; [16]). The array of substances released by activated MCs which may
influence hemostasis includes histamine, heparin, vasoactive intestinal polypeptide (VIP),
prostanoids, the proteases tryptase and chymase, tissue-type plasminogen activator (tPA),
factor VIII, etc. Since high concentrations in circulation and other tissues of these mediators
can be achieved by their release from MCs, both clinically significant bleeding and throm-
bosis can occur in MC disease ([17]; further references therein). Platelet activation may



Int. J. Mol. Sci. 2021, 22, 8960 3 of 14

trigger MC activation, and hence stimulate MC mediator release, contributing to distortion
of hemostasis [18].

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 15 
 

 

plasminogen activator (tPA), factor VIII, etc. Since high concentrations in circulation and 
other tissues of these mediators can be achieved by their release from MCs, both clinically 
significant bleeding and thrombosis can occur in MC disease ([17]; further references 
therein). Platelet activation may trigger MC activation, and hence stimulate MC mediator 
release, contributing to distortion of hemostasis [18].  

 
Figure 1. The involvement of mast cell mediators in the coagulation and kallikrein–kinin system. The figure illustrates the 
effects that mast cells mediators released upon activation during anaphylaxis exert in the kallikrein–kinin, coagulation, 
and fibrinolytic systems. Solid lines represent activated pathways. Dashed lines are inhibitory pathways. Kinin-forming 
system factors are represented in blue; the fibrinolytic system is represented in red; the common coagulation pathway in 
dark purple; the extrinsic coagulation pathway in medium purple; the intrinsic coagulation pathway in light purple. 
PolyP, polyphosphates; TF, tissue factor; PK, prekallikrein; KK, Kallikrein; BK, bradykinin; HK, high molecular-weight 
kininogen; tPA, tissue plasminogen activator; uPA, urokinase plasminogen activator; FDP, fibrin degradation products; 
PAF, platelet-activating factor. (Legend and figure adapted from [16]). 

2.1. Mast Cells as Parts of Bleeding Diatheses 
Clinical signs of a bleeding diathesis, such as hematoma formation, bruising, 

prolonged bleeding after biopsies, gingival bleeding, epistaxis, gastrointestinal 
hemorrhage, conjunctival hemorrhage, menorrhagia or hemorrhagic ulcer disease occur 
in about 50% of patients with MC disease ([7,19]; further references therein) and can 
contribute to deterioration in quality of life. Thus, bleeding diathesis represents a 
frequent and clinically relevant problem in MC disease, although severe or fatal bleeding 
seems to be rare [20–23]. The presence of hemorrhagic disorders in patients with MC 
disease is mainly explained by the anticoagulant activity of MC degranulation products 
like heparin, histamine and tryptase [24] and by hyperfibrinolysis [17]. In human tissues, 
MCs are the main source of heparin [25,26]. Increased release of heparin from MCs can 
reach circulating concentrations similar to heparin levels achieved during thrombo-

Figure 1. The involvement of mast cell mediators in the coagulation and kallikrein–kinin system. The figure illustrates the
effects that mast cells mediators released upon activation during anaphylaxis exert in the kallikrein–kinin, coagulation,
and fibrinolytic systems. Solid lines represent activated pathways. Dashed lines are inhibitory pathways. Kinin-forming
system factors are represented in blue; the fibrinolytic system is represented in red; the common coagulation pathway
in dark purple; the extrinsic coagulation pathway in medium purple; the intrinsic coagulation pathway in light purple.
PolyP, polyphosphates; TF, tissue factor; PK, prekallikrein; KK, Kallikrein; BK, bradykinin; HK, high molecular-weight
kininogen; tPA, tissue plasminogen activator; uPA, urokinase plasminogen activator; FDP, fibrin degradation products; PAF,
platelet-activating factor. (Legend and figure adapted from [16]).

2.1. Mast Cells as Parts of Bleeding Diatheses

Clinical signs of a bleeding diathesis, such as hematoma formation, bruising, pro-
longed bleeding after biopsies, gingival bleeding, epistaxis, gastrointestinal hemorrhage,
conjunctival hemorrhage, menorrhagia or hemorrhagic ulcer disease occur in about 50%
of patients with MC disease ([7,19]; further references therein) and can contribute to de-
terioration in quality of life. Thus, bleeding diathesis represents a frequent and clinically
relevant problem in MC disease, although severe or fatal bleeding seems to be rare [20–23].
The presence of hemorrhagic disorders in patients with MC disease is mainly explained
by the anticoagulant activity of MC degranulation products like heparin, histamine and
tryptase [24] and by hyperfibrinolysis [17]. In human tissues, MCs are the main source of
heparin [25,26]. Increased release of heparin from MCs can reach circulating concentra-
tions similar to heparin levels achieved during thrombo prophylaxis by subcuta-neously
applied heparin [17,27] and, thereby, could contribute to the bleeding diathesis. As MC
activation can be quite a focal (i.e., non-systemic) process or event, and since many of the
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MC mediators (including many with pro- or anti-coagulant activity) are very thermolabile
and have very short half-lives in vivo, detecting laboratory evidence of aberrant coagu-
lation resulting from MC activation sometimes can be quite difficult even with clinically
remarkable presentations, e.g., extensive bruising with little to no abnormalities in routine
coagulation system testing, including von Willebrand factor testing. Careful attention to
specimen handling (especially continuous chilling), and repeat testing, are required not un-
commonly. The anticoagulant effect of heparin consists of binding to antithrombin leading
to inactivation of thrombin and factor Xa. Under these conditions, thrombin generation,
as measured by formation of thrombin–antithrombin complex and prothrombin fragment
F1 + 2 levels, is inhibited. In addition, in systemic MC disease, acquired von Willebrand
syndrome (AVWS) has been described [28,29]. However, the validity of explanation that
heparin binding to von Willebrand factor (VWF) causes VWF dysfunction as the cause of
AVWS has not been demonstrated convincingly: heparin use for anticoagulation has not yet
been related to VWF dysfunction and AVWS. Thus, another, yet unidentified mechanism
must impair platelet adhesion and aggregation ([28,29]; further references therein) to cause
AVWS.

In MC disease, endothelial cell activation is triggered by bradykinin, which is released
by proteolytic cleavage of high molecular weight kininogen by kallikrein ([30]; Figure 1).
Additionally, bradykinin is a potent stimulator of tissue-type plasminogen activator release
from endothelial cells. Endothelial cells and MCs represent an important source of tissue-
type plasminogen activator (tPA) [31], indicating that MC activation plays an important role
in endogenous fibrinolysis. Thus, it could be hypothesized that these profibrinolytic effects
of MC activation physiologically may be preventive for venous thrombosis [32], which
is supported by a MC-deficient mouse model [33]. The release of tPA from endothelial
cells might also lead to an early destabilization of hemostatic clots by fibrinolysis. Studies
to date suggest that the main causes of bleeding diatheses in primary MC disease likely
include pathological hyperfibrinolysis in MCAD with elevation of tPA levels released
in significant amounts also from MCs and endothelial cells as well without concomitant
release of plasminogen activator inhibitor type 1 (PAI) [31], decrease of PAI activity and
significantly increased plasminogen activation indicated by increased plasmin–antiplasmin
(PAP) complexes [17], and increased expression of urokinase-type plasminogen activator
(uPA; encoded by the gene PLAU; [34]).

The important MC mediator histamine can influence hemostasis by upregulating
thrombomodulin activity in endothelial cells and thereby promoting the activation of the
protein C/S (PC/S) system by thrombomodulin-bound thrombin [35]. The PC/S system
is a major anticoagulant that is required for the downregulation of blood coagulation.
Moreover, histamine also stimulates endothelial cells to release VWF [36] and tPA [37].
Another MC mediator, prostaglandin D2, is known to inhibit platelet aggregation via
activation of platelet adenylate cyclase ([38]; for review, see [39]).

MC tryptase could have opposite effects on hemostasis as both an anticoagulant and
a procoagulant (see below). The antithrombotic function is mainly due to the ability of
tryptase to proteolytically degrade fibrinogen, predominantly by cleavage of the C-terminal
α-chains before thrombin can convert fibrinogen to fibrin and subsequently impair fib-
rin polymerization ([24,40]; further references therein). Tryptase also acts directly on the
fibrinolytic pathway by activating the uPA resulting in the direct, i.e., fibrin-independent
conversion of plasminogen into plasmin. Therefore, uPA promotes the proteolytic degrada-
tion of fibrinogen and other clotting factors.

Finally, thrombocytopenia caused by hypersplenism ([41]; further references therein)
and vitamin K deficiency due to MC mediator-induced malabsorption might enhance
bleeding.

In this context, it can be speculated whether the intracerebral bleeding which occurs
in about 0.6% of patients with Long Covid syndrome [42] might be linked to dysfunctional
MCs in patients with MC disease [43]. Meanwhile it has been revealed that COVID-19
disease is predominantly a vascular disease, leading to leaky blood vessels [44] which
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outlasts the acute infection. In the presence of certain non-identified intracellular distortions
in dysfunctional MCs, a MC mediator-related bleeding may appear by diapedesis. We
are currently treating a patient with SM, in whom 6 months after a moderate COVID-19
disease, the first brain bleeding appeared by diapedesis. Two other such bleedings followed
at intervals of about 4 months (unpublished observations). Interestingly, the three bleeding
events were preceded hours to a few days by bleeding into the sclera or the vitreous body
of the eye. All bleeding responded well to treatment with 4 × 500 to 3 × 1000 mg of
tranexamic acid (TXA, depending on the intensity of the central nervous symptoms).

In all patients suspected of having a MC disease, a MC disease-specific examination
of the coagulation system, where necessary expanded to include investigations for possible
simultaneous genetic thrombophilia-promoting mutations such as factor V Leiden and
prothrombin mutation G20210A (since primary MC disease is an epigenetic disorder, genet-
ically determined comorbidities could also result from this epigenetic disturbance), should
be carried out for diagnostic reasons [27] and before surgeries to plan the perioperative
procedures [45].

2.1.1. Laboratory Diagnostics

Since MCs represent the main source of endogenous heparin [46], it is important to
try to determine endogenous heparin and its release by MCs when feasible. However,
determination of heparin levels by chromogenic anti-Factor Xa (anti Xa) assay is challenging
for several pre-analytic reasons. In contrast to drug-derived heparin, endogenous heparin
from MC release is less stable, as platelet activation neutralizes endogenous heparin by
the release of platelet factor 4, leading to lower or non-measurable anti-Factor Xa levels.
Therefore, tubes containing citrate, theophylline, adenosine, and dipyridamole (CTAD)
should be used for heparin stabilization to avoid the neutralization of heparin in the pre-
analytic phase after blood sampling [47]. The rapid degradation and neutralization of
heparin by platelet activation at ambient temperature can be minimized additionally by
handling the blood specimen on ice or in a refrigerated environment (approx. +4 ◦C) and by
centrifugation within 15–30 min after phlebotomy. On the other hand, falsely high anti-Xa
levels might be measured if CTAD tubes were contaminated with heparin during their
manufacturing process. Thus, newly applied batches of CTAD tubes should be tested for
measurable heparin (anti Xa) levels before using them to avoid the detection of artificially
high heparin levels.

At first, baseline heparin (anti-Xa) levels should be sampled. For proving MC-
mediated release of heparin, as a provocation test venous occlusion of the upper arm
for 10 minutes (venous occlusion test, VOT) can be performed, using a blood pressure cuff
inflated 10 mm Hg above diastolic pressure. This standardized mild non-pharmacological
test might be able to stimulate MC activation and degranulation by hypoxia and increased
compartment pressure [17,27,48,49]. The measured anti-Xa levels can reach similar amounts
achieved during thromboprophylaxis by subcutaneously applied heparin but are often
beyond it. In rare cases, mostly attributed to MC leukemia, very high heparin levels might
be determined and may be responsible for severe bleeding. MCAS-diagnosing clinicians
should be aware that low or non-measurable anti-Xa levels do not exclude a MC disease
because of the above-mentioned challenges. Elevated heparin levels (baseline and after
VOT) can be observed in 59% in patients with MCAS and SM [27]. Therefore, evidence of
increased plasma heparin increases the likelihood of the presence of a MC disease but is
not in itself definitive diagnostic proof. Additionally, as for all MC mediators, there is no
correlation between anti-Xa levels and severity or number of MC-associated symptoms,
but anti-Xa levels are more sensitive than other mediators for detecting MCAS [27].

Hyperfibrinolysis in MCAS patients with bleeding diatheses can be identified by
increased levels of tPA and of plasmin–antiplasmin complexes (PAP) [17] using the above
mentioned VOT. Activation of hemostasis may be reflected by increased levels of D-dimer.
Apart from D-dimer, profibrinolytic parameters such as PAP, tPA, and PAI, as well, are
not routinely measured parameters. Thus, their determination is limited to specialized
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laboratories. Since mild bleeding tendencies can reinforce each other additively, other
hemorrhagic disorders, e.g., Von Willebrand’s disease, should be excluded. A frequent
finding in investigation of coagulation deficiency is deficiency of one or more of the vitamin
K-dependent clotting factors, which is usually attributed to diet and malabsorption. How-
ever, vitamin K deficiency is rarely causally related to bleeding in MC disease. The impact
of rather ‘crude’ coagulation tests such as the group tests of ‘clotting time’, ‘thrombin time’,
thromboelastography (a rather more the whole blood coagulation recording mechanical
system than sensitive platelet function detecting system) in MC disease is low (or “poor”).
Additionally, clotting factor XIII here in general is not relevantly altered. In addition,
plasminogen, a component with high plasmatic concentration is poorly influenced by MCs
but plasmin activation is indicated by the generation of PAP complexes and correlates
well with the release of tPA. PAI 1 may also be altered by tPA resulting in decline of level
due to formation of tPA–PAI complexes. D-dimer levels depend on the presence of fibrin.
They appear to be highly variable according to individual patients and do not directly
correlate to MC disease activity. Platelet dysfunction may also occur in some patients with
MC disease and concomitant disease such as Ehlers Danlos syndrome but appear to be
intrinsically related to MC disease itself.

2.1.2. Treatment Options in Mast Cell Mediator-Induced Bleeding

In the absence of placebo-controlled trials, hemostatic treatment of mild bleeding in
MC disease patients is based only on clinical evidence. Before and after surgeries, MC
activity should be reduced as much as possible by medications and other maneuvers
(e.g., avoidance of triggers, such as temperature shock from a cold operating room or
infusion of refrigerated fluids) ideally determined at an earlier, non-emergent point to be
ideal for this task. Of note, though systemic medications may be sufficient, sometimes
topical medications may be needed, or at least more helpful, for controlling bleeding in
topically accessible sites (e.g., a nasal spray of an H1 blocker or cromolyn for epistaxis,
or a vaginal douche or suppository of such drugs for menorrhagia [50]). Routine proce-
dures for arresting surgical bleeding rarely are effective when that bleeding is induced by
MC mediators [20], so alternative approaches often are needed. Unless contraindicated,
tranexamic acid (TXA) 1 g should be administered intravenously shortly before the first
incision, and, depending on the intra- and postoperative bleeding situation, TXA infusion
should be continued for, at least, 12–24 h (total dosage 2–3 g/24 h). In the case of severe
thrombocytopenia, transfusion of platelet concentrates should be considered.

Antifibrinolytic drugs such as TXA or epsilon aminocaproic acid (EACA) often are
effective due to several mechanisms:

(I) One of the major bleeding signs in patients with MC disease is mucocutaneous
bleeding from local hyperfibrinolysis in well-vascularized tissues, e.g., endometrium,
bladder, gums, or regions of the ear, nose and throat.

(II) Antifibrinolytics target endogenous fibrinolysis, which is involved in increased
pathologically irritable MC activation. The synthetic lysine-analogue TXA and also EACA
competitively block the binding of plasminogen to fibrin via its lysine-binding sites and,
therefore, inhibit the tPA-mediated activation of plasminogen to plasmin [51]. The binding
of TXA to plasminogen is 6–10 times more potent than that of EACA [52].

(III) Given the link between MC-mediated inflammatory response and increased
fibrinolysis, TXA feasibly attenuates the inflammatory response. This possible anti-
inflammatory effect of TXA has been demonstrated in randomized controlled trials in
cardiac surgery, measuring biomarkers (IL-6, fibrin degradation products, plasminogen
activator inhibitor) and cardiac markers (CK, troponin I), respectively [53,54].

(IV) Finally, TXA may inhibit the complement system, as has been observed in patients
with hereditary angioneurotic edema [55], e.g., by normalization of plasma kinin activation.
In this context, it is of note that TXA is approved for allergic conditions like urticarial
swelling in Japan [56].
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Depending on the clinical circumstances, TXA can be administrated topically, orally, or
intravenously. The risk of arterial or venous thromboembolism using TXA remains unclear
but appears to be low with the dosages usually applied. TXA should be administrated with
caution in patients with renal impairment to treat bleeding of the urinary tract because
the ureter does not provide tPA release intraluminally. Thus, in the case of urinary tract
bleeding, the fibrinolysis of clots might be irreversibly blocked by TXA leading to ureter
and/or urethral obstruction.

In MC disease patients with vitamin K deficiency, vitamin K could be applied orally in
high doses (5–10 mg p.o.) or intravenously in case of disturbed absorption. Thus, vitamin
K substitution should be considered in (malnourished) patients with severe bleeding
symptoms and/or patients undergoing surgery with a high bleeding risk.

In case of very high plasma heparin levels and clinically overt bleeding, the applica-
tion of protamine chloride to neutralize heparin should be considered. Protamine chloride
is derived from salmon melt and is used to reverse anticoagulation with unfractionated
heparin (UFH) and—less effectively—low-molecular-weight-heparin (LMWH). However,
adverse reactions to protamine, such as hypotension, might be related to the release of
inflammatory mediators, including histamine, by MCs. Therefore, protamine use should be
limited to MC disease patients with life-threatening bleeding in presence of measurable en-
dogenous heparin. In these situations, heparin could be neutralized by protamine titration
to the patient’s heparin levels. In rare cases of adverse protamine effects, administration
of recombinant activated factor VII (rFVIIa) might be used as an alternative in case of
life-threatening bleeding. Apart from the possibility of bleeding, in patients with MC
disease, LMWH, UFH or fondaparinux as thromboprophylaxis should not be avoided
when thromboprophylaxis is required because of internal or surgical treatment.

2.2. Mast Cells as Parts of Increased Thrombophilia

In parallel with inducing a bleeding diathesis, MCs are thought to contribute to
venous thrombo embolism and atherosclerosis [57,58] through release of granular con-
stituents including histamine, prostanoids [59], heparin (by its activation of factor XII
(FXII)), cytokines, the proteases tryptase and chymase (via activation of protease-activated
receptors and clotting factors such as fibrinogen, FXII, and XIII), platelet activating factor
(PAF, which activates platelets and leads to fibrin formation via Factor XII activation),
secretion of VWF, Factor VIII [60] (which is also present in MCs [61,62]), soluble P-selectin,
and increased intercellular adhesion molecule-1 (ICAM-1) expression. FXII activation by
heparin and/or anionic polyphosphates initiates the intrinsic pathway of coagulation.
The MC proteases tryptase and chymase bind electrostatically with exceptionally high
affinity to heparin, increasing their stability and, hence, protecting them from inhibition by
physiological inhibitors, thus promoting their catalytic properties. Both proteases degrade
the alpha-, beta- and gamma-chains of fibrinogen, and these degradation products prolong
thrombin-induced clotting time of human plasma [63]. Thus, these proteases may initially
act prothrombotic and then, later on, antithrombotic. Beyond these mediator effects, too,
activated MCs expose the inorganic polymer polyphosphate (polyP) on their surfaces,
which initiates procoagulant and proinflammatory reactions [64,65]. MCs also release
extracellular traps, and the presence of MC-derived traps has been reported in coronary
thrombi [66,67]. Similar to neutrophil extracellular traps, MC extracellular traps might
stimulate thrombosis. Whether altered availability of its molecular constituents predis-
poses the above-described fibrinolytic repair system toward thrombophilia remains to be
determined. Interestingly, findings indicate that MC-released histamine may either cause
or inhibit thrombosis, depending on whether it acts on resting endothelial cells or on cells
pre-activated by other inflammatory stimuli [68]. It also fits with Brown et al. (2013) [68]
that MCs, by producing t-PA in a resting state and by expressing PAI-1 when activated
by C5a complement, switched from a profibrinolytic to a prothrombotic phenotype [69].
Of course, for thrombophilic events in MC disease, possible underlying distribution of
thrombophilic risk factors in the general population should be kept in mind, too.



Int. J. Mol. Sci. 2021, 22, 8960 8 of 14

Therapeutic Procedures in Patients with Mast Cell Disease and Thrombophilia

For reducing the risk of thrombosis and bleeding in patients with primary MC disease
in their everyday lives, MC activation should be reduced as much as possible by the profile
of medication found best in the individual patient. Given the extreme combinatorial epige-
netic and genetic complexity of primary MC disease, resulting in extreme interindividual
heterogeneity in aberrant constitutive and reactive mediator release and thus extreme
heterogeneity in clinical presentation, it is unsurprising that the optimal treatment profile
is unique to the individual patient, and it also is unsurprising that a very large array of
treatments has been found helpful in various MC disease patients [70]. Of note, the H1
histamine receptor antagonist rupatadine may theoretically be the best choice of such
antagonists for MC disease patients with thrombotic tendencies because it also inhibits
PAF.

3. Impact on Erythropoiesis

Abnormalities in quantity or function of any of the molecules (many of which can be
found in the large repertoire of mast cell mediators) directly or indirectly affecting any of
the many steps in the erythropoietic (and red cell degradation/recycling) processes have
potential for driving not only abnormal quantities (high or low) of circulating erythrocytes
but also abnormal erythrocytic qualities. (Table 2).

Table 2. Impacts of mast cell disease on quantities and qualities of erythrocytes.

Affected
Erythrocytic
Parameter

Type/Direction of Aberrancy Subtype/Mechanism/Comments

Quantity

Erythrocytosis/polycythemia

Polycythemia driven by chronic aberrant mast cell expression of erythropoietic mediators
(e.g., erythropoietin, activin A, etc.) is not uncommon; rarely, male MCAS patients may drive
polycythemia through androgen use to treat chronic fatigue; erythropoietin-secreting tumors
induced by mast cell activation are rare.

Polycythemia vera is rare, but mast cell disease of any type does confer increased risk for any
type of acute and chronic hematologic malignancies.

Erythropenia/anemia

Anemia of chronic inflammation is common.

Anemia of iron deficiency driven by insufficient iron intake (due to dietary and medication
intolerances) or insufficient iron absorption (due to disease-driven or iatrogenic gastric acid
insufficiency and/or duodenal inflammation) or bleeding (see below) is common.

Anemia of copper deficiency due to disease-driven or iatrogenic gastric acid insufficiency is
uncommon.

Chronic kidney disease (and related anemia) is common, but the proportion of such disease
driven by mast cell disease (dominantly MCAS) has not yet been identified.

Gastrointestinal tract bleeding (due to mast cell activation-driven ulcer disease or vascular
malformations, occasionally even tumors) is not uncommon.

Genitourinary tract bleeding (principally menorrhagia due to aberrant heparin release and
fibrinolysis from dysfunctional endometrial mast cells) is very common in MCAS.

Anemia due to marrow compromise by high tumor load is common in the rare disease of
systemic mastocytosis.

Sequestration (e.g., hepatosplenomegaly) is rare.

Quality

Macrocytic

Mild macrocytosis is common in MCAS and systemic mastocytosis, likely from premature
release from marrow of maturing erythrocytes due to aberrant mast cell mediator expression;
hemolysis, sequestration, massive splenomegaly, cobalamin or folate deficiency, or
hematologic malignancy are seen rarely or uncommonly.

Microcytic Mild to moderate microcytosis is common in MCAS, most likely from iron deficiency, rarely
also from copper deficiency.

Dyspoietic Ineffective erythropoiesis (as in myelodysplastic syndrome) is uncommon.

Hemolytic Hemolysis (autoimmune or non-immune, congenital or acquired, acute or chronic) is rare.

As one could accurately say about the development of any cell population in eukary-
otic organisms, normal erythropoiesis is the result of an exquisitely choreographed ballet of
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a great many distinct molecules, in the case of erythropoiesis resulting in production of not
only normal structured individual erythrocytes (with normal membranes encasing normal
amounts of normally structured hemoglobin) but also normal numbers of such erythrocytes
(roughly 2.4 million per second, or about 200 billion per day), which then are released from
the marrow into circulation at rates appropriate to the prevailing physiologic circumstances
in the body—and later (on average a bit more than three months after emergence from the
marrow) are normally decomposed (with subsequent recycling of component molecules).

Given the huge menagerie of mediators produced and released by the MC, and with
most MC mediators naturally driving a wide range of direct and indirect, local and remote
effects, the range of symptoms which potentially can be produced by chronic aberrant
MC activation is vast. Yet, three general themes become apparent on study of the matter:
inflammation, allergic-type phenomena, and dystrophisms (aberrancies in growth and
development in potentially any tissue)—and though various MC disease patients may have
highly varying extents of allergic and dystrophic issues, chronic multisystem inflammation
clearly is the “universal constant” of MC disease. Depending on degree and chronicity,
inflammation usually drives relative or even absolute anemia (the latter seen in about
two-thirds of MCAS patients [10]). However, as judged by their erythrocyte counts and
hemoglobin and hematocrit levels vis-à-vis the clinically obvious extent of their inflamma-
tion, many MCAS patients enjoy surprisingly robust erythropoiesis, producing a relative
or even absolute polycythemia (the latter in about 8% of MCAS patients [10], usually
mild and non-progressive, easily distinguishing it from untreated polycythemia vera),
suggesting expression by their dysfunctional MCs of either mediators directly or indirectly
antagonizing the arrays of mediators normally expressed in inflammation and/or medi-
ators directly or indirectly stimulating erythropoiesis. Clinicians evaluating MC disease
patients should recognize that a “normal” red cell count and hemoglobin and hematocrit
levels in the setting of chronic significant inflammation are not normal and represent a
pro-erythropoietic manifestation of the disease. Low-dose imatinib (typically, 200 mg daily)
has been found helpful in polycythemic MCAS patients (e.g., [11]). Polycythemia in MCAS,
however, of course is not necessarily due to MC disease (i.e., a diagnosis of MC disease
does not render the patient immune from developing other problems), and other causes
(e.g., familial polycythemias, polycythemia vera, hypoxemia of any cause, erythropoietin-
secreting tumors (e.g., liver and kidney tumors, hemangioblastomas), occult erythropoietin
administration, excessive overt or occult/inadvertent testosterone use (e.g., flaxseed oil))
need to be excluded, usually a fairly straightforward process based on sufficiently detailed
history, physical examination, and a modicum of testing.

Although palpable splenomegaly is not uncommon in systemic mastocytosis, it is un-
common to find splenomegaly detectable by either palpation or imaging in MCAS patients
(even in spite of 19% of MCAS patients reporting chronic intermittent left upper quad-
rant tenderness, likely reflecting MC activation-driven splenitis). As such, sequestration is
rarely a mechanism of anemia in MCAS. Hemolysis, too, appears to be uncommonly driven
by MC disease, though of course MC disease does not prevent other hemolytic ailments
from emerging independently of a patient’s MC disease. MC disease seems to have some
propensity to spur the humoral immune system to errantly/inappropriately produce a
wide variety of antibodies (unreported observations, author LBA), and as such antibodies
usually are randomly targeted, most probably are not detectable by assays for specific
antibodies, and many of the detected antibodies clearly (by aberrant titer patterns over
time and absence of associated clinical disease) are not “on-target” antibodies reflecting
the true presence of infectious or autoimmune diseases—but occasionally such an errantly
produced antibody has sufficient specificity to drive a clinically apparent autoimmunity,
such as an autoimmune hemolytic anemia, an anti-phospholipid antibody syndrome (driv-
ing thrombosis or bleeding), or autoimmune rheumatologic, endocrinologic, or neurologic
diseases. Standard treatments for such diseases are needed, but concomitant control of the
MC activation may yield even better outcomes (as is sometimes seen in the setting of SM
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with associated hematologic neoplasms (SM-AHN) and in MCAS-associated cancers, too
(e.g., [71])).

Although inflammation-driven anemia (usually normocytic and normochromic) is
expected and common in MC disease, other (MC activation-driven and non-MC activation-
driven) causes of anemia can also be present and should be suspected and further evaluated
when red cell indices seem inappropriate for an inflammation-driven anemia vis-à-vis
the extent of clinically apparent inflammation. With regard to microcytic anemias (seen
in 24% of MCAS patients [10]), iron deficiency is common and, usually, identified easily
on testing. All routine differential diagnostic thinking as to the causes of a detected iron
deficiency need to be considered, and it needs to be recognized, too, that the chronic multi-
system inflammation of MC disease often includes duodenitis which can lead to selective
micronutrient malabsorption syndromes including iron malabsorption and even copper
malabsorption. Abnormalities in iron indices in MC disease patients can be misleading.
Abnormal (more often low than high) levels of iron, iron saturation, and/or ferritin (some-
times even contradictory levels) are seen not uncommonly in MC disease, but diagnosis (let
alone treatment) of iron deficiency should be approached cautiously if classic microcytic
hypochromic anemia itself is not present. In other words, given that the marrow is the
body’s largest iron consumer by far, absence of microcytosis, hypochromia, and anemia
despite iron parameters suggestive of iron deficiency is actually more suggestive of a
situation in which, despite the obvious presence of abnormalities of various sorts in the
body’s management of its iron absorption, storage, and transport, the marrow nevertheless
is continuing to access all the iron needed to manufacture all the hemoglobin needed to
adequately stock the 200 billion normally sized erythrocytes normally produced each day.
Treatment of iron deficiency also needs to be approached cautiously in MC disease patients
from the perspective that many such patients adversely react (likely precisely because of
their dysfunctional MCs) to such treatments, both oral and parenteral, and MC activation-
targeted pretreatment (e.g., H1 ± H2 histamine receptor antagonists) not uncommonly
is needed prior to parenteral iron treatments. In addition, intravenously applied iron is
stored in the reticuloendothelial system for long periods of time. Ergo, if iron is activating
a MC disease patient’s dysfunctional MCs, this activation will persist for a long period.
MC disease patients often react to medication product excipients, so a patient’s failure to
tolerate one iron oral or parenteral iron supplement does not ensure intolerance of other
supplements mixed with different excipients. Organic oral iron polypeptide formulations
sometimes are better tolerated than inorganic iron salts (e.g., sulfates, gluconates). Occa-
sionally, appropriately matched transfusion of packed washed leukocyte-poor red cells is
the only way to tolerably address iron deficiency (one unit of packed red cells contains all
the iron the body needs for a year at normal consumption rates). In this context, however,
although transfusion therapies usually are well tolerated in MC disease patients, one must
also consider that transfusion therapies may elicit immunological effects which are able to
activate MCs, thereby aggravating MC disease.

Moreover, therapy-refractory anemia may be induced by MC disease-induced kidney
disorders ([72,73]; further references therein), a microenvironment in the bone marrow
disturbed by pathological MCs ([74]; further references therein), or myelofibrosis due to
certain MC mediators (e.g., [75]). Recently, too, it has been reported that erythro cytes
damaged oxidatively by inflammatory processes demonstrated erythro phagocytosis by
activated MCs [76].

Sometimes, specific proximate causes of anemia or polycythemia can be identified,
but then the typical roots of those proximate causes cannot be found (or, less commonly, are
initially mistakenly thought to be present), in which case the possibility that MC activation
may be the underlying issue needs to be considered. For example, idiopathic pure red cell
aplasia (PRCA) has been reported in association with MCAD ([12,77]; further references
therein) and was found in at least one case [12] to be refractory to standard treatments
for PRCA but then responded well to MCAS-targeted treatments including H1 and H2
histamine receptor antagonists as well as low-dose imatinib at one point and oral cromolyn
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at another point, this last response intriguingly suggesting (given the near-complete ab-
sence of absorption of oral cromolyn, and given the drug’s short half-life) that mediators
inappropriately released specifically from proximal luminal gastrointestinal tract MCs were
(directly or indirectly) intensively inhibiting erythropoiesis. In another unreported example
highlighting the diversity of MC mediators and their effects, author LBA identified an
MCAS patient also suffering both sickle cell anemia and dialysis-dependent end-stage
kidney disease resulting in unusually severe anemia occasioning transfusion dependence
despite high-intensity erythropoietin treatment—and in whom treatment with montelukast
for chronic mild asthma quickly resolved the excess anemia and the transfusion depen-
dence. Additionally, in yet another example [11] emphasizing the potentially polar opposite
effects of aberrant mast cell mediator expression on erythropoiesis in different patients,
idiopathic polycythemia was misdiagnosed as polycythemia vera and failed to respond
to therapeutic phlebotomy, but then, when MCAS was found in the patient, responded
quickly and well (both in symptoms and polycythemia) to low-dose imatinib.

Macrocytosis (typically mild and stable) is common in MCAS (about 29% of such
patients [10]), and though specific causes (e.g., cobalamin or folate deficiency, hemolysis,
etc.) must be sought, they are found only rarely. Rather, most macrocytosis in MCAS seems
more likely due to premature release of reticulocytes, though the specific aberrant mediator
expression patterns driving such marrow behavior are unclear.

Since MCAS is common, most aberrant erythropoiesis in primary MC disease (or
MC disease in general) is due to aberrant MC activation. However, a tiny fraction of the
total MC disease population suffers substantial MC neoplasia, and though aberrant MC
activation in some fashion, to some extent, is “part and parcel” of every neoplastic MC
disorder, it must be remembered, too, that high marrow tumor burdens observed in some
types of MC disease (e.g., SM) of course can further contribute to anemia from simply
physically compromising the amount of space in the marrow available for erythropoiesis.
In such cases, therapies which are able to reduce MC numbers in the bone marrow (e.g.,
some kinase inhibitors, interferon α, or certain cytotoxic agents) are indicated.

4. Conclusions

Disturbances of hemostasis and erythropoiesis often occur in primary MC disease and
may or may not be consequential to the MC disease. Specific cause(s) of any given such
disturbance should be sought and specifically treated, which may require MC-specific or
non-MC-specific interventions. Prophylactic interventions may be warranted in certain
(e.g., peri-operative) circumstances.
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