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Abstract
The mechanosensitive channel of large conductance (MscL) is a protein that responds to

membrane tension by opening a transient pore during osmotic downshock. Due to its large

pore size and functional reconstitution into lipid membranes, MscL has been proposed as a

promising artificial nanovalve suitable for biotechnological applications. For example, site-

specific mutations and tailored chemical modifications have shown how MscL channel gat-

ing can be triggered in the absence of tension by introducing charged residues at the hydro-

phobic pore level. Recently, engineered MscL proteins responsive to stimuli like pH or light

have been reported. Inspired by experiments, we present a thorough computational study

aiming at describing, with atomistic detail, the artificial gating mechanism and the molecular

transport properties of a light-actuated bacterial MscL channel, in which a charge-induced

gating mechanism has been enabled through the selective cleavage of photo-sensitive al-

kylating agents. Properties such as structural transitions, pore dimension, ion flux and se-

lectivity have been carefully analyzed. Besides, the effects of charge on alternative sites of

the channel with respect to those already reported have been addressed. Overall, our re-

sults provide useful molecular insights into the structural events accompanying the engi-

neered MscL channel gating and the interplay of electrostatic effects, channel opening and

permeation properties. In addition, we describe how the experimentally observed ionic cur-

rent in a single-subunit charged MscL mutant is obtained through a hydrophobicity breaking

mechanism involving an asymmetric inter-subunit motion.

Introduction
Mechanosensitive channels are integral proteins located on the bacterial cytoplasmic mem-
brane, whose function is that of a natural pressure valve preventing cell lysis in case of hypoos-
motic stress.[1,2] Among the members of this protein family, the mechanosensitive channel of
large conductance (MscL) from E.coli (Eco-MscL) is the best-known protein channel.[3,4] In
response to increased membrane tension, Eco-MscL can form a large pore with a diameter of
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up to ~30 Ang. In the open state, the MscL pore has a non-selective conductance of 3 nS and it
allows the passage of large hydrated solutes and small proteins down the concentration gradi-
ent. The structure of a MscL homologue fromMycobacterium tuberculosis (Tb-MscL), re-
solved by X-ray crystallography, has shown a symmetric homo-pentamer,[5,6] in which each
subunit consists of a short N-terminal helix, two membrane spanning helices (named TM1 and
TM2) connected by a periplasmic loop and a cytoplasmic helix (Fig. 1A). The five TM1 helices
form the pore lumen that is characterized by a hydrophobic stretch of residues (I14-V21) creat-
ing a constriction at the cytoplasmic side (Fig. 1B), while the TM2 helices form contacts with
the surrounding lipid bilayer. The X-ray structure of Tb-MscL represents the closed-state con-
figuration of the protein channel with a radius of ~2 Ang along the narrowest region of the
pore and provides the framework with which extensive mutagenic and functional data have
been interpreted.

Mutagenesis experiments in Eco-MscL identified residues L19-V23 to be critical for channel
gating;[7] the corresponding residues (L17-V21) in Tb-MscL are located in the narrowest part
of the pore (Fig. 1B). The selective mutation of these residues increased the feasibility of chan-
nel opening, leading to slow/no-growth gain of function (GOF) phenotypes.[8] Further,

Fig 1. Structure of Tb-MscL and photo-sensitive compound. (A) X-ray crystallographic structure of Tb-MscL (PDB ID: 2OAR) with the transmembrane
helices TM1 and TM2 colored in yellow and blue, respectively. Locations of residues lining the inner helix (TM1) are indicated. (B) Single subunit of Tb-MscL.
(C) Structure of photo-sensitive compound that releases the charged group upon light irradiation. (D) Schematic view of the step-by-step substitution process
followed in the MD simulation protocol.

doi:10.1371/journal.pone.0120196.g001
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systematic substitutions of G22 in Eco-MscL by all other amino acids showed that hydrophilic
residues at this position resulted in channel gating at reduced tension with respect to the wild-
type, while hydrophobic residues made the channel harder to open.[9] Several studies showed
that the introduction of charged residues at the same position led to an activated channel in the
absence of any applied tension (e.g., mutating the hydrophobic pore residues to Cysteine and
attaching the charged methanethiosulfonate (MTS) reagents).[10–12] These findings, together
with the ability of MscL to form a large pore and assemble into a fully functional protein when
reconstituted into synthetic lipids, led to conceive MscL as an ideal candidate to function as a
triggered nanovalve. Indeed, recently engineered MscL channels have been designed to re-
spond to stimuli like pH or light in applications tailored to molecular sensing or drug delivery.
[13–15] The light controlled channel gating is particularly interesting as it provides a finer tem-
poral control and does not require any change in the system environment, as reported recently
by Koçer et al. [15]: in this case, a light-triggered gating has been artificially introduced by a
photo-sensitive functional group alkylated with a purposely mutated Cysteine in the pore inte-
rior (Fig. 1C). Hence, it has been shown how the application of light has induced a spontaneous
channel opening, in the absence of membrane tension, according to a designed charge-repul-
sion based trigger. On the other hand, in more recent studies by Koçer and coworkers[16,17] it
has been shown that MscL channel gating can be also triggered by just one charged group in a
single subunit, therefore following a charge-induced hydrophobic breaking mechanism. Over-
all, these experiments have demonstrated the possibility to i) easily manipulate MscL pore size,
ii) control the flux of charged compounds and iii) deliver bioactive molecules into the cell, thus
showing the versatile use of MscL as a controllable nanoscopic valve.

In light of such remarkable applications, several aspects of the charge-induced gating mech-
anism deserve further investigation, among which i) the scale of protein conformational
changes upon charge introduction, ii) the extent of the channel structural expansion and iii)
the selectivity and geometric limitations of molecular transport across the channel. Such details
demand an atomistic level understanding of the interplay between the induced electrostatic ef-
fects and the protein structural rearrangements. In this regard, molecular dynamics (MD) sim-
ulations can be profitably used to provide structural characteristics and dynamical features of
protein channels, while retaining explicitly the environmental effects mainly due to the lipid bi-
layer and the solvent. Previous computational studies have focused on the gating conformation
transitions of the wild-type MscL protein [18–21], the mutation effects in the pore hydropho-
bic region [22] and the lipid composition effects [23,24]. In the present study, we have per-
formed atomistic MD simulations to investigate the effects of charge incorporation on the
hydrophobic pore of Tb-MscL. In analogy with the experimental setup of ref. [15], five photo-
sensitive ligands, one for each protein chain, have been incorporated into a constricted site of a
Tb-MscL mutant (V21C). Then, each ligand was sequentially replaced by a charged acetate
group (Fig. 1D) and the resulting systems simulated independently. The structural features of
the engineered models have been compared with a wild-type model of Tb-MscL. Further, the
effects of charge incorporation at two alternative sites has also been examined, considering the
L17C and T25C mutants. In addition, we considered a different Tb-MscL model, in which a
charged group was attached to only one subunit, mimicking the charge-induced hydrophobic
breaking process previously reported.[16,17] The obtained results report new molecular details
on channel structural opening, ion permeation properties, asymmetric subunit motions, and
site sensitivity towards charge perturbations, therefore providing further insights into MscL
charge-induced gating.
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Materials and Methods

Model generation and simulation details
In ref. [15], light-actuation of MscL has been achieved attaching a photo-sensitive compound
(6-nitroveratryl alcohol), which splits into 6-nitrosoveratyl aldehyde and a free acid upon light
irradiation, to a G22C mutant of Eco-MscL through a Cysteine-selective alkylating reagent.
UV photolysis resulted in Cysteine-bound acetates (hereafter referred to as the charged group)
in the pore lumen (Fig. 1C) and consequent channel gating. Here, we attached the same photo-
active ligand in all subunits at residue 21, the most constricted site of the Tb-MscL. The starting
structure of the MscL channel was embedded into a homogeneous lipid bilayer of DOPC
(1,2-dioleoyl-sn-glycero-3-phosphocholine) spanning ~100 Ang along the lateral dimensions
(x,y) using the CHARMM-GUI server,[25] followed by solvation with TIP3P water, extending
up to 30 Ang from the solute in the axial dimension (z-axis) using VMD.[26] Since the con-
stricted site is extremely narrow to fit the ligands without steric conflicts, the channel was slow-
ly expanded through multiple short simulations by placing an uncharged Lennard-Jones (LJ)
atom at residue C21 centroid and increasing its LJ radius parameter. Once sufficient space was
created, the ligands were attached to C21 in all five subunits. K+ and Cl- were added to the sys-
tem, setting the ion concentration to about 1 M. The engineered model with five ligands (here-
after referred to as 5L) was then minimized to remove steric clashes, slowly heated up from 100
K to 300 K in about 1 ns simulation and then equilibrated for 10 ns in a NPT ensemble. The
production run was performed in a NVT ensemble, applying a homogeneous external electric
field (Ez) along the z-axis (Lz) perpendicular to the membrane proportional to a defined voltage
(V = 1 Volt; Ez = -V/Lz). Different engineered models were then generated by a sequential re-
placement (every 10 ns) of each ligand by the charged group (Fig. 1D). The starting models
were equilibrated for 6–8ns, followed by extended production runs in the presence of electric
field. To verify the charge effects on the pore, a model representing the wild-type (WT) protein
was simulated using a snapshot of NL model (obtained after 50 ns) as the starting configuration
and replacing the charged group in all subunits with Valine. To investigate the charge activa-
tion of a single subunit in a different MscL model, we extracted an equilibrated configuration
of the WT model and mutated residue V21 to Cysteine in a single subunit, to which the same
charged group was attached. Other simulations involving alternative sites were initiated from
the same configuration of the WT model, after mutating the corresponding residues to Cyste-
ine (namely, L17C and T25C) and attaching the corresponding charged group in all subunits.
A summary of the simulated systems is reported in Table 1.

Table 1. Summary and description of the simulations.

Models Description (chargea) Time (ns)

5L 5 Ligands at position 21 (0e) 30

4L 4 Ligands, (-1e) 30

3L 3 Ligands, (-2e) 30

2L 2 Ligands, (-3e) 30

1L 1 Ligand, (-4e) 50

NL No Ligand, (-5e) 100

WT Wild type (0e) 50

WT_1e WT with charge in a single chain (-1e) 80

17M 5 charges at position 17 (-5e) 50

25M 5 charges at position 25 (-5e) 50

aTotal charge at the functionalized site.

doi:10.1371/journal.pone.0120196.t001
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All simulations were performed enforcing periodic boundary conditions using NAMD (ver.
2.9) [27] and the CHARMM force field for the protein (v.27) and lipids (v.36) [28–30]. The li-
gand atomic charges were obtained via fitting with a quantum-mechanically derived electro-
static potential issuing from B3LYP/6-31G� calculations using the Gaussian package,[31]
according to the restrained electrostatic potential (RESP) procedure using the RED software
tools [32]. The parameters for the ligand and the acetate groups were adopted from the
CHARMM CGEN small molecule force field [33]. All covalent bonds with hydrogen atoms
were kept rigid using the SHAKE algorithm, allowing the use of a 2 fs time step for the integra-
tion of the equations of motion. A cutoff radius of 12 Ang was used for non-bonded interac-
tions, applying a smoothing function beyond a distance of 10 Ang. The long-range electrostatic
interactions were evaluated with the Particle Mesh Ewald (PME) [34] method, whereas a Lan-
gevin dynamics was used to maintain the system temperature at 300 K. During equilibration,
the pressure was kept at 1 atm using the Langevin piston method with a piston period, damp-
ing coefficient and piston temperature of 100fs, 50fs and 300K, respectively.

MD trajectory analyses
Root mean square deviations (RMSD) were computed performing a least-square fitting to a
reference structure, either the starting one or the X-ray crystallographic structure. The pore ra-
dius profile was obtained using the HOLE program.[35] The ion flux was estimated by calculat-
ing the number of ions entered from one side and exited through the opposite side of the
channel (considering the TM domain only) with an in-house code written using MDANALY-
SIS.[36] The analysis was performed omitting the first 10 ns of the MD trajectory during which
the models undergo structural rearrangements. The pore area was approximated by the area
of a regular pentagon by setting as its edge length the average distance between Cα atoms in
adjacent subunits. Water and ions around a permeating K+ were estimated from the average
number of corresponding species within a predefined cut-off radius, as a function of the z-co-
ordinate. Channel conductance was estimated from the ratio of the average current and applied
voltage.[37,38] Inter-subunit contacts were obtained considering the Cα atom distances. Tra-
jectory visualization was performed using the Caffeine software.[39] Figures and plots were
generated using UCSF-CHIMERA and MATPLOTLIB software.[40,41] Unless stated other-
wise, the axial positions in all plots are indicated with respect to the origin fixed at the Cα geo-
metric centroid of residue 21.

Free energy calculations
A computational approach similar to that reported in previous studies [42,43] was employed
to estimate the potential of mean force (PMF) governing K+ translocation through the channel
using the adaptive biasing force methodology (ABF) implemented in the NAMD package.
[44,45] In short, the adopted method (see Ref. [45] for a more detailed discussion) relies on the
selection of a predefined coordinate, which, in the present work, corresponds to the z-coordi-
nate (normal to the membrane) of a testing ion. The average force acting on the ion along such
a coordinate is estimated from a large number of instantaneous force evaluations. The average
force is collected in bins and updated during the simulation. An adaptive biasing potential,
equivalent and opposite to the average force is applied after a defined number of samples in
each bin to overcome any energy barrier that prevents ion translocation. The PMF was evaluat-
ed along the z-coordinate (channel axis), considering a region that extends up to ~10 Ang on
either side of the functionalized site. The simulations were performed in 10 separate windows
of 2 Ang length for about 11 ns. For each window, the starting coordinates were extracted from
the production runs described above. Excess ions were removed, retaining only those required
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for charge neutralization including a single K+ ion in the pore. The ions in the bulk solution
were restrained to obtain the single-ion PMF profile.

Results

Structural rearrangements of the engineered MscL channels
The Tb-MscL protein is a relatively small homopentamer channel of 151 residues (17KDa)
(Fig. 1A). In particular, each monomer has two transmembrane α-helices, namely TM1 and
TM2, where TM1, one of the most conserved motifs of the mechanosensitive channel family,
forms the inner core of the channel and is mostly hydrophobic (V15DLAVAVVIGTAF-
TALVTKFTDSIIT40). First, we have analyzed and compared the structures of different engi-
neered MscL channels issuing from the sequential replacement of the attached (neutral) photo-
sensitive ligands, i.e. 6-nitroveratryl alcohol, by negatively charged acetate groups. It should be
noted that in the original experimental work[15] only the MscL channels carrying either the
five neutral ligands (5L system) or the corresponding photoproducts (NL system) were pre-
sumably detected. Nevertheless, our purpose was to study in some detail the effect of each
charge insertion on the MscL channel properties, so as to investigate the virtual realization of
a multi-state gating mechanism (a proof-of-principle of a multi-state MscL channel activation
was provided in ref. [16], even if the gating mechanism was not controllable by light). For
such a purpose, all systems were subjected to an applied voltage (1 Volt) and a 1 M KCl salt
concentration.

The stability of the simulated MscL models was assessed by evaluating the structural devia-
tions from starting configurations. RMSD of the backbone atoms, depicted as function of simu-
lation time, have shown a plateau after about 10 ns (S1 Fig.), following an initial increase due
to structural relaxation. The distribution of RMSD values over the last 20 ns has shown an av-
erage deviation of ~2 Ang (S1 Fig. and S1 Table). The RMSD from the X-ray structure of the
whole protein were generally higher (about ~3 Ang), but considerably reduced when the TM
or C-terminal domains were separately examined (S1 Table). In summary, all models displayed
an apparent convergence towards an equilibrium conformation in a few nanoseconds and a
stable structural arrangement afterwards during the simulations. Moreover, the flexibility of
the MscL protein was examined by evaluating the backbone structural fluctuations. To this
end, the root mean square fluctuations (RMSF) mapped onto the average structures (S2 Fig.)
have shown that the most mobile regions are localized mainly on the periplasmic loop of the
protein. The smaller fluctuations in the TM region indicated the structural integrity of this re-
gion upon ligand or charge incorporation.

Structural expansion of the channel
The extent of channel structural expansion in each engineered MscL model was examined by
evaluating the average pore radius along the channel axis, considering only the backbone
atoms for the sake of comparison (i.e. the steric effects of side chains and ligands were ne-
glected). In Fig. 2, the average pore radius as a function of the axial position is depicted for all
models, including the wild-type protein. The pore radius profile has shown a gradual expan-
sion of the channel following the sequential incorporation of additional negative charges into
the channel core. A rather similar degree of expansion is observed along the whole TM1 helix,
suggesting its tendency to behave as a rigid body. The distribution of the minimum pore radius
(see inset of Fig. 2) has provided a monotonic shift (5L<4L<3L<2L<1L<NL) towards larger
radius values in going from 5L to NL. Hence, the observed trend in pore radius supported an
increasing charge effect, as previously observed on charge-mediated MscL gating.[16] To fur-
ther estimate the extent of channel opening, we have approximated the area of the pore by
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evaluating the area of a regular pentagon with edge given by the average distances of adjacent
Cα atoms (i.e., on proximal subunits) at the same residue along a stretch of aminoacids flanking
the functionalized site. Results depicted in S3 Fig., once again indicated a larger expansion of
the NL model as compared to the 5L, in line with the pore radius profile (Fig. 2). However, the
maximum channel opening was quite smaller than the one reported for membrane tension and
charge-induced mechanism (up to ~30 Ang diameter).[46,47] In order to test the overall stabil-
ity and geometric features of the expanded channel in the NL model, an additional 100 ns MD
simulation was performed at high temperature (330 K), but no significant changes have
been noticed.

Moreover, it is worth nothing that the WT simulation was initiated from an equilibrated
configuration of the NL model after replacing each charged group at the functionalized sites
with Valine. Such a hydrophobic substitution led to a fast channel closure (a few nanoseconds)
as indicated by the radius profile (Fig. 2). A similar spontaneous channel closure has been ob-
served for MscS channel during unrestrained MD simulations.[48] Note that the pore dimen-
sion in the WT model appeared somewhat larger than the corresponding X-ray structure,
owing to thermal fluctuations and a more realistic environment (crystal packing forces are gen-
erally unleashed in MD simulations of proteins, as observed in a previous MD study on the X-
ray structure of Tb-MscL[49]).

Ion permeation: PMF and translocation mechanism
The ion flux through the functionalized MscL proteins was analyzed by monitoring separately
the total number of ions entering into the channel (Entry in Table 2) and the number of ions
permeating the channel through opposite vestibules of the pore (Exit in Table 2). Then, a per-
meation rate has been obtained as the ratio of permeated over entered ions. In all cases, results

Fig 2. Average pore radius along the channel. Average pore radius along the channel axial position (Z-coordinate) with respect to the mutated site
(shaded portion, Z = 0 Ang). Inset plot represents the distribution of minimum pore radius calculated by limiting the analysis to the constricted zone of the pore
(residues 17 to 23).

doi:10.1371/journal.pone.0120196.g002
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have been collected from corresponding MD simulations upon application of voltage. Due to
the overall small pore dimension and the filtering effect of the negatively charged groups, only
K+ ions were able to permeate through the engineered MscL channels from the periplasmic
side. As reported in Table 2, the permeation statistics for K+ ions has shown the occurrence of
ion flux only through 1L and NL models. In 1L model, the bulky ligand in the pore largely at-
tenuated the permeation events (~11%), albeit a structural expansion similar to the NL model
is observed (Fig. 2). The NL model allowed the highest ion flux (~57%) throughout the entire
simulation (a rather similar permeation rate has been also obtained from selected portion of
the whole trajectory). In WT simulation, no ion permeation was observed under applied
voltage.

Energetic barrier for K+ translocation through 1L and NL models that permit the ion flux
was examined by evaluating the single-ion PMF profile along the pore, considering a region
that flanks ~10 Ang on either side of the mutated site. The PMF profile (Fig. 3A) reports a
downhill in the free energy barrier in both systems as the ion approaches the mutated sites
from the periplasmic side (Fig. 3A, shaded region), where it is highly stabilized by the electro-
static attractions of the charged groups. In both cases, an increasing PMF barrier is observed as
the ion exited from the cytoplasmic side since this region constitutes a hydrophobic stretch.
The higher barrier observed for the 1L model at this stretch can be rationalized as follows: the
bulky ligand narrows the channel size and perturbs the local symmetry of the pore lining resi-
dues, thereby hindering the linear flux at the exit pathway from the functionalized site
(Fig. 3B), providing an additional energetic cost for translocation. On the other hand, the NL
model showed a more attractive PMF (~ 2–3 kcal/mol) in the z< 0 region as compared to the
1L model, due to the higher total charge at the functionalized site and the absence of any
bulky ligand.

As evidenced by the single-ion PMF, the electrostatic attractions extended by the ring of
charged groups may present an electrostatic trap, restraining the K+ ion movement along the
pore. To investigate the factors that facilitate the escape from such a strong attractive site, the
ion coordination of permeating K+ ions has been carefully scrutinized, considering both water
and other cations. For each K+ ion inside the pore, the average number of water/other K+ ions
within a spherical region of defined radius has been evaluated. The number of water molecules
around the ion has shown to decrease as it approaches the mutated site (Fig. 3C) and such de-
hydration is similar for both the 1L and NL models. It is reasonable to assume that the loss of
water is compensated by the interactions with the charged groups, specifically the oxygen
atoms. At variance, the average number of surrounding cations has increased around the mu-
tated site (Fig. 3D). The NL model has shown an average number of up to ~2.5 cations within a
sphere of 5 Ang radius (~1 cations within 4 Ang radius, see inset in Fig. 3D). The surrounding
cations can give a significant contribution to the permeating ion by counterbalancing the

Table 2. Ion flux (K+) through the engineered MscL channels.

Model Entry (#) Exit (#) Permeation (%)

5L 42 0 0

4L 32 0 0

3L 36 0 0

2L 29 0 0

1L 79 9 11

NL 129 77 60

WT_1e 86 33 38

doi:10.1371/journal.pone.0120196.t002
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attractive forces of the negatively charged ring, thus aiding the ion to escape from the electro-
static trap described above. In 1L model, the bulky ligand restricts the available pore size and
consequently the number of surrounding cations (~1 cations within 5 Ang radius). This result
is also confirmed by the average number of K+ ions along the pore (see the histogram of K+

counts along the axial positions in Fig. 4). The lower cation density at the level of the

Fig 3. PMF profile, water and ion coordination around the potassium ion. (A) PMF profile as a function of the z-coordinate. The origin was set at the Cα

geometric centroid of the mutated site. Vertical dashed lines indicate the average location of the acetate group oxygens centroid with respect to the origin. (B)
Schematic view of ion exit pathway from the mutated site. The charged group (NL) and the bulky ligand (1L) are shown in yellow. Blue spheres inside the
pore represents the K+ ion. (C) Average number of water molecules and (D) potassium ions within a radius of 3.5 and 5 Ang, respectively, around the
permeating K+ ion. Data obtained with a smaller radius (4 Ang) is shown in the inset.

doi:10.1371/journal.pone.0120196.g003

Fig 4. Ion occupancy and histogram of ion counts along the axial positions.Occupancy of K+ ion inside the pore obtained by extracting the ions within a
distance of 10 Ang from the mutated site along the radial and axial dimensions. Right panel shows the histogram of K+ counts along the axial positions for NL
(black) and 1L (blue) models.

doi:10.1371/journal.pone.0120196.g004
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functionalized site in the 1L model is expected to provide a less effective electrostatic counter-
balance, as required for a rapid escape from the highly charged site of the pore. Such a result, in
turn, may explain the lower permeation rate observed in the 1L model with respect to the NL
model (Table 2).

Alternative functionalization sites
The TM1 helix in Tb-MscL contains other two hydrophobic residues (L17, T25) similarly ex-
posed to the pore with respect to V21, and located on either side of V21. We have investigated
the effect of charge incorporation at these alternative sites (Table 1), performing additional
simulations of corresponding fully charged systems (i.e., after introduction of the charged
group in all five subunits). To be specific, we have generated two additional MscL protein mod-
els by attaching the same functional group, i.e. a charged acetate group, at either position 17 or
25 and compared the results with the original engineered protein (NL system). The pore radius
profile along the channel axis, as issuing from both models, has shown no appreciable expan-
sion as compared to the result obtained for position 21 (Fig. 5). Overall, the tested models dis-
played a pore radius similar to the WT protein, indicating the absence of any significant
structural transitions induced by the charges. Note that the location of T25 already provides
sufficient space to accommodate the charged groups without demanding for any additional

Fig 5. Average pore radius and protein-water interaction at cytoplasmic entrance. (A) Average pore
radius along the axial position. (B) Representative snapshot of the 17Mmodel with charged groups shown in
green. (C) Interaction of charged groups with water molecules within a distance of 3 Ang (17Mmodel).
Protein-water hydrogen bonds are shown as blue springs.

doi:10.1371/journal.pone.0120196.g005
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structural rearrangements. As a matter of fact, the same pore size has been observed at position
21 and 25 in both corresponding engineered proteins, namely NL and 25Mmodels, with the
difference that in the former case a channel expansion has occurred that allows the coordina-
tion of K+ ions at the pore center. On contrary, residue L17, being located at the narrower en-
trance at the cytoplasmic edge is expected to be sensitive to charge perturbations (Fig. 5B).
However, visual inspection revealed that the charged groups inserted at this position reorient
themselves to make stronger interactions with the water molecules that fill the space between
the transmembrane and the cytoplasmic domain (Fig. 5C). The interaction with water mole-
cules can effectively shield the charge repulsions, thereby attenuating the need for an energeti-
cally expensive structural change. As a result of such structural differences, the ionic transport
capability was drastically reduced in both alternative functionalized MscL proteins, leading to
about 5–7 permeated K+ ions within a 40 ns time interval, against 42 K+ ions for the NL system
within the same time interval.

Single-subunit engineered channel
Recent studies have demonstrated that introducing only one charge in a single subunit of the
MscL hydrophobic pore (at position G22 in Eco-MscL) is sufficient to trigger channel gating in
the absence of membrane tension.[16,17] Note that this is a rather different system with respect
to 4L, which is also characterized by the presence of one charge in the channel core region, be-
cause in the latter case four bulky ligands prevent channel opening. Such a gating mechanism
is driven by a rather peculiar phenomenon, in contrast to the charge repulsion effect described
above. In fact, it has been suggested that the incorporation of one charge in the channel interior
does break the short-range hydrophobic interactions by forcing hydration inside the pore.
[50,51] It is reasonable to assume that already a few water molecules approaching the charged
site may be enough to significantly weaken the inter-subunit interactions at the level of the
most constricted channel region. Besides, experiments suggested that the partially open struc-
ture achieved via single-subunit charging is the result of an asymmetric movement of the modi-
fied subunit with respect to the others.[16,17]

In order to better investigate, at molecular level, the present gating mechanism, we con-
ceived an additional model (WT_1e) in which the same negatively charged group was directly
attached to the constricted site (V21) in a single subunit (subunit 1) of the WT protein, there-
fore mimicking the light-actuation of a single subunit of MscL. Inspection of the average pore
radius along the channel axis revealed a clear expansion of the WT_1e model with respect to
the WT protein (S4 Fig.), albeit to a lesser extent compared to the NL model. This can be better
analyzed following the time evolution of the pore radius along the axial position, as shown in
Fig. 6. In the WT simulation, the channel is constricted around the mutated site (-1< z<1)
with a pore radius of< 4.5 Ang that is maintained throughout the considered time interval
(Fig. 6A), while an expansion up to 5.5 Ang and 6.5 Ang is observed for the WT_1e and NL
models (Fig. 6B,C). In the latter cases, a proportional expansion is observed in the regions
flanking the functionalized site. The partially expanded WT_1e model was sufficient to allow
ion permeation, as reported in Table 2.

Furthermore, the pore hydration upon single subunit modification was examined by moni-
toring the water molecules located within a defined radial distance from the channel central
axis and spanning 10 Ang along the z-direction on either side of position 21. The 2D distribu-
tion of water molecules depicted as a function of axis/radial coordinates inside the pore showed
a marked difference in the hydration pattern between WT andWT_1e models (Fig. 6D). In the
WT model, the pore is largely hydrated at the periplasmic and cytoplasmic vestibules, while the
channel core region remained occluded, as expected. This occlusion extends ~8 Ang and is
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consistent with previous estimates based on X-ray structure of Tb-MscL.[52] Introducing the
charge in a single subunit (WT_1e) lessens the pore occlusion especially around the
mutated site.

We also monitored the changes in inter-subunit contacts with time. In MscL, each TM1
helix does form contacts with other two TM1 helices from neighboring subunits. For example,
residues of subunit 1 are in contact with residues belonging to subunit 2 and 5. We monitored
the total contacts between the TM1 helix of subunit 1 (modified subunit) and TM1 helices of
subunit 2 and 5 relative to the starting configuration (i.e., native contacts). The plot of varia-
tions in inter-helix contacts as a function of time is shown in Fig. 6E. It is apparent that be-
tween TM1 helices of subunit 1 and 2, only ~50% of the native contacts are retained in the last
part of the simulation, while it is further less between subunit 1 and 5 (~40%). Intriguingly, the
contacts between TM1 helices of subunit 2 and 5 with their other adjacent neighbors (TM1
helix of subunit 3 and 4, respectively) are highly maintained (~80%). These observations have
shown a partial detachment of the TM1 helix of subunit 1 from its neighbors, thus supporting

Fig 6. Pore radius, hydration along the channel and intersubunit contacts. Pore radius along the axial positions as a function of simulation time for (A)
WT, (B) WT_1e and (C) NL models, obtained considering the backbone atoms. (D) Distribution of water molecules in the pore. For clarity, water molecules at
the periplasmic vestibule of the pore are shown in black. (E) Inter-helix (TM1 vs TM1) contacts in WT_1e simulation relative to the starting configuration as a
function of time.

doi:10.1371/journal.pone.0120196.g006
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an asymmetric rearrangement of the pore. As a result, the WT_1e channel became permeable
to ions during the simulated time interval. From the number of ions passing through the pore
(Table 2), we estimated a conductance of about 80 pS, smaller than the NL model but still
significant.

Discussion
In the experimental context of ref. [15], where the light-responsive engineered MscL channel
was originally presented, only binary scenarios were assumed: an “off”state with all subunits
containing the neutral bulky photo-active ligands and an “on” state with all subunits converted
to the corresponding charged moieties upon light irradiation. Here, taking inspiration from
this pioneering study, we investigated in more detail through atomistic MD simulation the ef-
fect of charge activation. Starting from the “off” state (5L model), the photo-active ligands were
sequentially replaced by charged groups and the corresponding functionalized MscL proteins
thoroughly studied. Simulation results have shown a gradual expansion of the channel propor-
tional to the increasing number of charges in the pore lumen (Fig. 2 and S3 Fig.), in going from
the off (5L model) to the on state (NL model). In particular, the NL model displayed a conduc-
tive pore, in agreement with experiments. It is worth noting that after each chemical (electro-
static) change in the channel interior, the following structural relaxation occurred in the
nanosecond timescale, thus supporting a relatively fast dynamical response of the protein
channel. This result is in stark contrast to the millisecond-timescale opening observed in the
native protein via the tension-induced mechanism.[53] To cope with experiments, as discussed
in the following, we interpret our results as the first observation of initial MscL substates along
the gating mechanism leading to the complete open channel. All systems have shown a rather
stable structural character, after initial relaxation. Therefore, the observed trend in channel
opening seems compliant with a gating mechanism triggered by strong charge repulsion sud-
denly induced in an inner region of the channel. Such an apparently simple mechanism does
work so effectively only when position 21 on the TM1 helix was considered. Despite similar
structural features, two alternative tested sites, namely position 17 and 25, have shown not
quite the same effect, yet leading to an active MscL channel. These results are supported by sev-
eral experimental evidences indicating the special role of residue G22 in Eco-MscL. Moreover,
in qualitative agreement with our findings, mutagenesis studies on residues L19, V23 and G26
in Eco-MscL, which roughly correspond to L17, V21 and T25 in Tb-MscL, showed spontane-
ous channel activity upon charge incorporation [10,11]. In addition to such known results, in
this study we attempted to provide a molecular interpretation for the effectiveness of position
21 for charge-induced activation of the MscL channel. Indeed, it has been found that this site is
the most “sensitive” for the reason that it is, at the same time, the most constricted within the
pore hydrophobic stretch and the less exposed to solvent. Accordingly, mutagenic studies have
shown that V21 of Tb-MscL participate in the lock and reported that V21D mutant decreased
the energy barrier for gating, resulting in gain-of-function phenotype.[54,55]

On the other hand, inspired by recent experiments that demonstrated channel activation
upon chemical modification of a single subunit of Eco-MscL,[16,17] an additional model was
considered where the charged group was introduced at only one site (i.e. V21 of subunit 1) of
the Tb-MscL protein. Our simulation revealed a partially expanded pore allowing ion translo-
cation (Fig. 6B, Table 2), again in qualitative agreement with experiments. In contrast with the
previously described charge-repulsion trigger, the channel activation is achieved through a
forced hydration into the channel core region, thus leading to pore expansion. The present gat-
ing mechanism is consistent with the proposed hydrophobic breaking effect[1] as observed
with single-charge subunit substitution[16,17] or with polar residue substitution.[9] In fact, it
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has been observed that replacement of hydrophobic residues with hydrophilic ones triggered
channel gating at reduced or no applied tension. Hence, it has been suggested that hydrophobic
residues in the narrow pore region do create a functional channel block, which can be easily de-
stabilized upon incorporation of polar (charged) residues, resulting in a conductive channel
configuration through structural rearrangements.[50,51]

Our investigation has also unraveled further molecular details concerning the asymmetric
motion of the only charged subunit with respect to the others. Such a structural transition, not
triggered by a strong repulsive interactions, is possibly another confirm of the highly flexible
character of the MscL channel. This is perhaps not surprising if we consider that the natural ac-
tivation mechanism of the mechanosensitive channels does require a considerable structural
change driven solely by membrane tension, whereas other protein channels activated by differ-
ent stimuli (e.g., voltage and ligands) are significantly more rigid and insensitive to membrane
stress. Furthermore, the MscL transition from the closed to the open state has been described
as an iris-like symmetric motion of all subunits.[56–59] However, recent evidences indicated
that MscL gating could also follow an asymmetric route.[60,61] In our model (WT_1e), the
charge introduced in a single subunit resulted in a gradual weakening of the contacts between
the latter subunit and the other pore-forming helices, while the contacts between the other na-
tive subunits have been consistently maintained (Fig. 6E). These findings supported a progres-
sive and asymmetric detachment of one subunit with respect to the others, an observation in
agreement with experiments pointing towards a nonlinear contribution of individual subunits
to the tension sensitivity.[16,17]

While the present computational investigation has provided an overall consistent picture
with respect to known experiments, especially for the WT_1e and NL models representing acti-
vated MscL protein channels, some important details contrast with experimental findings. In
particular, the extent of pore expansion achieved in our simulations is significantly smaller
than experimental predictions. The introduction of a single charge on a pore residue in one
subunit of Eco-MscL has been estimated to lead to a pore diameter of up to ~10 Ang.[17] In
our work, even for the most expanded NL model, we obtained a pore diameter of about 5.5
Ang around the functionalized site (including side chains). As a result, the computed conduc-
tance for both WT_1e and NL systems was found to be underestimated by a factor of about ~3
with respect to the experimental counterpart (e.g, NL model provided a conductive channel of
140 pS instead of ~500 pS[15]). We note, however, that a discrepancy between theory and ex-
periments of the same order is not unusual,[62,63] as probably due to other important factors
usually difficult to include in the molecular modeling of ion conductance, such as a more com-
plex lipid composition, membrane pressure fluctuations, polarization effects, and so on. As an
example, in a previous computational study the impact of different lipids on MscL has been ad-
dressed:[23] therein, some important structural rearrangements of the protein have been no-
ticed, especially in the C-terminal region, though the MscL pore has resulted unaffected. In
addition, a recent study showed that a specific lipid composition, including phosphatidylinosi-
tol, is crucial for allowing a physiological opening of Tb-MscL.[64]

In our case, we envisage that the expanded pore likely represents a sub-conducting state of
the channel. MscL has been shown to visit sequential intermediate states during the transition
from the closed to the open state. The charge-induced activation apparently populates the
same initial substates achieved by the natural trigger, i.e. membrane tension.[17] Accordingly,
our models presumably captured such initial substates visited upon activation whose diameter
has been previously estimated to lie in the 5–10 Ang range (the observed stability of the NL
model channel at high temperature confirmed such a substate character). In other simulation
studies focused on the natural MscL gating mechanism, a membrane tension or radial forces
on protein were used to achieve an extended opening in an affordable time.[18,56,65–67] Here,
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we aimed at addressing the charge-triggered structural events in the absence of tension, there-
fore no external forces were applied to the protein or the membrane. In addition, other possible
causes for the observed disagreement may be related with protein structural differences be-
tween the Eco and Tb-MscL. Indeed, Tb-MscL has been shown to gate at about twice the ten-
sion needed to gate Eco-MscL, when expressed in E.coli spheroplasts (in-vivo) or reconstituted
in azolectin liposomes (in-vitro), a feature that was observed when the crystals of Tb-MscL was
resolubilized and functionally reconstituted.[55] Hence, despite the high conservation of the
MscL pore residues among different organisms,[54] structural features of individual MscL
may have implications on its sensitivity to perturbations and interactions with the lipid
environment.

Conclusions
The bacterial mechanosensitive channel of large conductance (MscL) has been conceived as an
ideal activated nanovalve for controlled drug delivery with several advantages that include: i)
large conductance, ii) non-selective pore, iii) easy isolation from cells, iv) in-vitro translation,
v) reconstitution in synthetic lipids and vi) charge-induced activation of channel gating. In par-
ticular, incorporation of photo-active groups into the hydrophobic channel core through site-
specific mutations and chemical synthesis has enabled a light-activated gating mechanism,
which offers a high spatio-temporal control without affecting the environment. In addition to
these relevant features, the present computational study has unraveled a few interesting details
concerning the MscL charge-induced gating: (1) a fast pore-opening dynamics (nanosecond
timescale) leading to initial conducting substates, (2) a high sensitivity of the channel structural
expansion to several factors (including the choice of the functionalization site in the channel
interior, the number of incorporated charges, the ion distribution along the pore) and (3) an
asymmetric subunit movement upon single-charge incorporation into the pore. We note that
the observed sensitivity of charge perturbations towards selected channel interior sites may
support the need for a preliminary molecular modeling of the detailed triggering events leading
to pore gating. As well, we note that independent subunit movements upon charge activation
not only support the proposed asymmetric motion in MscL channel opening but also do sug-
gest the possibility of a subunit-specific triggering to achieve pores of desired sizes.

Supporting Information
S1 Fig. Root mean square deviations as a function of time. Backbone RMSD, calculated with
respect to the starting configuration of respective simulations. The right panel represents the
distribution of the RMSD values over the last 20 ns.
(TIF)

S2 Fig. Per residue averaged root mean square fluctuations. Backbone RMSF mapped onto
the average structure. The protein is represented as ribbon whose color (green to red) and
thickness is proportional to the RMSF values.
(TIF)

S3 Fig. Distribution of the pore area per residue. Pore area estimated for a stretch of residues
lining the TM1 helix for WT (gray), 5L (black) and NL (magenta). The vertical dashed line cor-
responds to the X-ray structure.
(TIF)

S4 Fig. Average pore radius as a function of axial position. Average pore radius along the
axial positions, obtained considering the backbone atoms.
(TIF)
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