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Abstract: The presence of minor compounds in virgin olive oils has been proven to play multiple
positive roles in health protection, encouraging its production. The key factors that influence the oil
quality are ripening stages and the state of health of the fruit. For this reason, at the oil mill’s reception
yard, fruits are visually inspected and separated according to their external appearance. In this way,
the process parameters can be better adjusted to improve the quantity and/or quality of olive oil.
This paper presents a proposal to automatically determine the oil quality before being produced from
a previous inspection of the incoming fruits. Expert assessment of the fruit conditions guided the
image processing. The proposal has been validated through the analysis of 74 batches of olives coming
from an oil mill. Best correlation results between the image processing and the analytical data were
found in the acidity index, peroxide values, ethyl ester, polyphenols, chlorophylls, and carotenoids.
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1. Introduction

Due to its healthy composition and great commercial value, the Virgin Olive Oil (VOO) market
is in current expansion [1]. Emerging countries are developing their own olive industries, thereby
increasing competition among traditional Mediterranean producers [2]. Given this new scenario,
widening the range of products is an opportunity to increase profits by opening up new markets.

Existing legislation [3] recognizes only three VOO commercial categories (in the order of highest
to lowest quality): Extra Virgin Olive Oil (EVOO), Virgin Olive Oil (VOO), and Lampante Virgin Olive
Oil (LVOO). These categories are marked mainly by degradation parameters such as the acidity index,
peroxide values, ethyl esters, K232 and K270. The limit values of these parameters are progressively
less strict for each of those categories. When the values reach the threshold for Lampante, the oil
cannot be consumed and needs to be refined before doing so.

Olive oil is extracted in the oil mill using exclusively mechanical means. That is why the incoming
fruits play a major role in the quality of oil. The mechanical extraction allows the presence of minor
compounds, granting taste, aroma, and colour. These holistic features are a potential distinction for
commercial brands [4].

Minor compounds include two main groups: polyphenols and pigments, which are responsible
for relevant health properties and also for increasing the shelf life [5]. Polyphenols are the main
group, acting as antioxidant and antiradical agents [6]. These properties have been recognized,
in a specific health regulation approved by the European Commission [7], because of its contribution
to protecting blood lipids from oxidative damage. In this matter, a recent review [8] proposes to extend
the types of polyphenols considered in the EC 2012 claim. The other group, pigments, which are
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related to oil colour [9], protect against degenerative diseases. Green tones are associated with the
chlorophyll content, while yellow tones are related to carotenoid components [10]. Both pigments act
as antioxidants or prooxidants, depending on the storage conditions [11].

The quantity of these minor compounds is influenced by the olive variety, the fruit ripeness and
the environmental conditions [6]. Considering the whole fruit development, the polyphenol content
increases with the degree of ripeness until it reaches a maximum at the fully ripe stage. Afterwards,
the quantity of polyphenol decreases in overripe stages. Consequently, chlorophyll and carotenoids
show a similar behaviour. Both reach a maximum value at the unripe stage, decreasing as fruits ripen
and almost disappearing at the overripe stage. In addition, the carotenoids loss is less severe than that
of chlorophyll [12].

Overripe fruits have purple or black skin colour and show a lack of turgor. At this stage, they are
vulnerable to harvest damage and wind falls with the subsequent external ground contamination,
increasing the risk of spoiling the oil. Overripe stages are not strictly related to low quality oil, although
a careful manipulation is required to avoid any fruit damage at harvest and storage [13].

The ripe stage of the fruits and their quality are manually assessed at the reception yard.
The objective of this inspection is twofold. First, the production of similar oil lots requires
a homogeneous incoming fruits. Second, damaged fruits should be rejected or stored separately
for further processing. The fruit assessment is normally done by a trained operator. This task is
subjective, time-consuming, highly influenced by the lighting conditions, and subject to errors.

For those reasons, it is highly recommended to automate this procedure. Computer vision has
been proven as a feasible technology to couple external fruit inspection with accurate results [14].
Riquelme et al. [15] identified different types of olive skin damage, mainly at the unripe stage,
using colour and texture features. Further research done by Ram et al. [16] incorporated shape, colour
and texture features to determine the fruit oil content. It was successfully applied to sets of ten fruits
of just one variety. Furferi et al. [17] established a correlation among the fruit ripeness, obtained
by computer vision, and the content of polyphenol, oil and sugar in fruit from different varieties.
Guzmán et al. [18] established different levels of external damage in fruit lots acquired by an infrared
sensor. In Cáceres et al. [19], the oil acidity index and peroxide values were accurately correlated with
colour and texture features by an Artificial Neural Network. A separation of fruits coming from the
ground and trees, in three different varieties, was achieved by processing the skin texture in [20].

In the same context, an estimation of the olive-fruit mass and its size was done through the analysis
of correlations between fruit images and reference weight measurements in [21]. Other non-invasive
technologies such as electronic noses [22] and hyperspectral imaging [23] have been applied to
food inspection or remote sensing applications for monitoring environmental resources [24,25].
Computer vision techniques have also been applied to measuring the main variables of olive tree
architecture [26] and for oil spill surveillance [27]. Recently, the research group Benalia et al. [28]
contemplated the automatic classification of one to one olives, according to a standard index [29].
Despite the laborious task, principal component analysis at the CIELAB colour space was successfully
performed for class determination. Best results were found at green stages.

The aim of this study is to determine olive oil quality parameters by processing images acquired
from olive fruits. The image processing is based on expert knowledge. More specifically, an exhaustive
evaluation of the fruit condition, made by an expert, has been done and correlated with analytical data
of minor compounds and degradative parameters. This valuable information has been included in the
image processing to determine, in a fast and reliable way, the oil quality. The results of this work will
be of great interest for olive oil producers. Having an estimation of the oil quality before its production
will enable to improve the adjustment of the production parameters.

The rest of the paper is organized as follows. Section 2 details the proposed methodology
presenting the results of the visual assessment, the hardware set-up for the image acquisition and
the image processing algorithms. Section 3 shows the experimental validation of the proposal and
a discussion of the results. Finally, the conclusions are drawn in Section 4.
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2. Material and Methods

To evaluate the link between the olive fruit appearance and the quality of its extracted oil,
the methodology shown in Figure 1 was applied. Different olive fruit batches were sampled from
various producers when they arrived at the olive oil mill. Images from these batches were acquired
and a representative group of olives was selected for each batch to visually assess their physical
appearance. After this, all the olive batches were processed into oil, and this oil was chemically
analysed. Statistical comparisons were performed between the physical appearance of the fruits and
the quality parameters of the oil. This comparison enabled us to establish significant relationships
between the human visual perception and the quality parameters obtained by analytical methods.
Hence, the criteria used in the visual inspection were employed to select and extract features from the
acquired images. These features served as a basis for the development of predictive models, based on
PLS regressions, to automatically achieve our goal, the determination of olive oil quality parameters.

Olive 
Samples

Image 
Acquisition

Feature 
Extraction

Representative 
Group Selection

Visual 
Assessment

PLS

Virgin Olive Oil 
Extraction Laboratory Olive Oil Quality 

Parameters

Statistical Differences per 
Olive Categories 

Olive Oil 
Quality 

Parameters 
Estimation 
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Categories

Features Selection

Yi,n

Xi,n

Figure 1. Overview of the proposed methodology for quality properties determination.

2.1. Olive Batches Preparation and Oil Extraction

From the end of November 2017 until January 2018, a total of 84 olive batches were obtained
weekly from an Olive Oil Cooperative and all of them were used by the expert in the visual assessment.
The batches were randomly collected after the cleaning step and before the hopper storage at the
mill yard. Each batch consisted of 3 kg of olives and they were shipped to the Group of Robotics,
Automation and Computer Vision (GRAV) facilities at the Universidad of Jaén with a view to being
processed in less than 12 h. A representative group of 100 fruits were selected for assessing the ripeness
and the health state of the batch. Additionally, two groups of approximately 250 g. were used to
acquire the corresponding images and then they were returned into their respective batch. Finally,
each olive batch was processed to extract its corresponding virgin olive oil (VOO).

For the VOO extraction task, an industrial extraction factory system at a laboratory scale was used.
The registered name is Abencor and it consisted of a hammer mill, a thermomixer and a centrifugal
machine. Each batch was processed with the same process variables, that is, the olive paste was
kneaded for 40 min at 30 ◦C and it was centrifuged at 3000 rpm for 90 s. The extracted oil was disposed
into dark glass 125 mL bottles (from now on defined as samples). Samples were identified by its batch
number and delivered to the accredited chemical laboratory for its analysis.

The chemical analyses were performed three times following standard methodologies in the
accredited laboratory CM Europa S.L. The acidity index, peroxide values, K270 and K232 were
analysed according to the EU REG. 2568/91. Ethyl esters were obtained following the EU REG.
2569/91. For polyphenols the COI/T.20/Doc No 29 was used. Finally, pigments were measured by
spectrophotometry according to Minguez-Mosquera et al. [9].

2.2. Visual Assessment

According to the fruit colour and turgor, three ripening groups were initially established.
Thus, batches containing unripe fruits with a higher green component were catalogued in the first
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group, including those ones with totally green or with at least more than 50% of green colour in their
skin. The second group consisted of ripe batches with more than 50% of the fruits with purple and
black colours, including those completely dark but sustaining the turgor of the fruit. Finally, the third
group was assigned to overripe batches containing fruits with completely dark colours, but still tender.
This methodology does not include the official eight ripe stages (COI/OH/Doc. No 1, 2011), because
some indexes can only be evaluated by peeling the fruit which is not applicable to a non-invasive
system; as described in our proposal.

Each batch was also evaluated by its general appearance, regarding its health, cleanness or damage
condition, which could influence the final oil quality. After these evaluations, the aforementioned
second group was subdivided into two groups. The first group involved batches with a higher
percentage of ripe fruits and with optimal health conditions. The second group included batches with
a high number of ripe but, in this case, spoiled fruits. Therefore, considering the ripeness of the fruit
and its external appearance, the four categories shown in Figure 2 were defined.

(a) (b)

(c) (d)
Figure 2. Fruit categories defined by the visual assessment. (a) Category 1. Most of the fruits are
totally green or with more than 50% of green colour. (b) Category 2. Purple or black fruits with
an optimal health condition. (c) Category 3. Purple or black fruits including spoiled fruits. (d) Category
4. Overripe fruits including tender fruits.

The olive oil quality parameters for the former categories are presented in Table 1. It is shown that
the acidity index was not influenced so much by maturity stages as it was by the fruit health. This issue
is revealed by the significant differences observed between Cat-2 and Cat-3. A similar tendency was
also followed by the peroxide index. On the contrary, the ultraviolet absorbance parameter K232,
which indicates primary oxidation metabolites, was significantly different between Cat-1 and the
others. Due to the quick processing for oil extraction, the parameter K270, which indicates secondary
oxidation products, did not give a significant variation among categories. Provided that a new analysis
is performed after a period of storage, this parameter could show substantial differences. The last
parameter related to the degradation process of the fruits, ethyl esters, had a major impact depending
on the fruit health condition.
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Table 1. Minimum, maximum and mean values for each chemical parameter. Statistical differences
(Tuckey’s, p ≤ 0.05) are denoted by different letters in the mean column.

Acidity
Index
(%)

Peroxide
Index
(meq/Kg)

K270 K232
Ethyl
Ester
(mg/Kg)

Ethyl
Palmitate
(mg/Kg)

Ethyl
Oleate
(mg/Kg)

Polyphenols Chlorophyll Carotenoids

Cat-1

Min. 0.17 2.70 0.09 1.26 3.00 2.00 1.00 241.00 9.80 8.83

Max. 0.25 4.80 0.17 1.51 10.00 4.00 6.00 841.00 34.73 16.53

Mean 0.20 a 3.87 a 0.13 a 1.38 a 5.77 a 2.92 a 2.85 a 538.31 a 21.26 c 13.20 b

Cat-2

Min. 0.12 2.10 0.12 1.34 4.00 2.00 1.00 452.00 6.24 7.49

Max. 0.31 5.80 0.28 1.92 9.00 4.00 5.00 1275.00 31.88 20.46

Mean 0.22 a 3.75 a 0.17 a 1.53 b 5.77 a 2.62 a 3.15 a 765.92 b 17.42 bc 12.20 ab

Cat-3

Min. 0.17 2.60 0.11 1.39 5.00 2.00 3.00 182.00 6.30 4.96

Max. 0.59 15.40 0.21 1.70 64.00 15.00 50.00 864.00 20.30 16.91

Mean 0.35 b 6.76 ab 0.15 a 1.52 b 17.00 ab 4.92 ab 12.00 ab 585.54 ab 12.89 ab 10.50 ab

Cat-4

Min. 0.15 2.70 0.10 1.31 5.00 2.00 2.00 171.00 2.42 3.04

Max. 0.79 22.50 0.20 1.77 104.00 21.00 83.00 846.00 22.90 14.78

Mean 0.41 b 8.98 b 0.15 a 1.50 b 31.00 b 7.38 b 23.31 b 457.62 a 10.42 a 9.39 a

In case of polyphenols, however, their contents were higher in Cat-2 with a tendency to decrease
in Cat-3, according to fruit poor health conditions. Also, significant differences were found between
Cat-1 and Cat-2 because these compounds were still being generated on the fruits from unripe to
ripe stages.

As for the chlorophyll and carotenoid pigments, the first two categories presented higher levels
of these compounds. The maturing process involves losses of chlorophyll and carotenoid compounds.
Changes start in the skin and then grow into the pulp. So, even in the early black fruit stages,
compounds of chlorophylls and carotenoids still remain.

These statistical results were useful to justify the extraction of colour and texture features from
the acquired images in order to develop predictive models to estimate the aforementioned olive oil
chemical parameters.

2.3. Image Processing

The olive fruit images for further processing were acquired using an ad-hoc hardware set-up. In the
acquisition set-up, olive batches were placed into a methacrylate rectangular tray (250× 165× 20 mm)
with a white background. Images were acquired by means of a CMOS camera MAKO G-223C with
colour sensor, 2048 × 1088 resolution and 5.5 µm pixel size. The camera with a lens of 25 mm was
positioned at 600 mm. With the former conditions the camera field of view was 270× 143 mm, enabling
the image acquisition of a large part of the tray.

The lighting system consisted of one 125 W halogen lamp placed in the camera optical axis.
This high luminance lighting system allows the camera to run at its maximum frame rate, 50 fps.
Due to technical problems with the lighting system, batches corresponding to 21st of November were
discarded. Hence, a total of 74 batches were used in the image processing.

Once acquired, the images were preprocessed to remove the background and different features,
extracted from the resultant images. These features were correlated with the chemical parameters to
obtain the predictive models. Both issues are detailed in the next subsections.

2.3.1. Features Extraction

The main goal of this step was to extract the useful information from the acquired images. First,
the original images in the RGB colour space (Ar,g,b) were turned into grey level images and then
binarized. To extract olives from the white background, a global threshold binarization algorithm
was used and the threshold was heuristically fixed. The inverse of the resultant logical mask (M̄) was
applied to the original images through the logical AND operator (Equation (1)). The result for each
step can be seen in Figure 3.

Ir,g,b = Ar,g,b × M̄ (1)



Sensors 2018, 18, 3826 6 of 13

1

3

Figure 3. Image processing for features extraction.

Now, colour and texture features can be extracted from the images. The masked RGB images Ir,g,b
were turned into HSV (Ih,s,v) and Lab (Il,a,b) colour spaces. Then, the average of the grey levels for
each channel was computed by (Equation (2)).

Īc =
∑N

n=1 ∑M
m=1 Ic(n, m)

N ×M
(2)

where Īc is the mean intensity of the different c channels and N × M is the number of pixels in
the image.

The texture features were extracted from the images according to the Haralick descriptors [30]:
angular second moment, contrast, correlation, variance, inverse difference moment, sum average,
sum variance, sum entropy, entropy, difference variance, difference entropy, information measures
of correlation and maximal correlation coefficient. The former features, along with the colour ones,
were used to build the matrix of features Xi,j where each row i belongs to the batch and the columns
j are the extracted features from the batch (a total of 23 features). Finally, different vectors Yi,n were
coded for each n analytical result.

2.3.2. Regression Model

The regression model, based on Partial Least Squares (PLS) [31], was applied to correlate the
image features with the analytical reference values. PLS models try to find the multidimensional
direction in the Xi,j space that explains the maximum multidimensional variance direction in the Yi,n
space. The general model can be explained according to Equations (3) and (4).

Xi,j = Ti,lv · PT
j,lv + Ei,j (3)

Yi,n = Ui,lv ·QT
n,lv + Fi,n (4)

where T and U are the score matrices, P and Q are the loading matrices and E and F are the error terms,
all of them of X and Y, respectively. The number of selected latent values is denoted by lv.

The PLS algorithm was applied to each analytical parameter through the methodology presented
in Figure 4. It was an iterative process, where the number of latent values used by the model was
increased from 1 to 23 according to the maximum number of latent values, which depended on the
number of features. For each iteration, the model was trained and validated 1000 times by using the
50\50 holdout validation process. The prediction ability of the models was compared by means of the
following parameters: Root Mean Square Error (RMSE) (Equation (5)), the Regression coefficient (R2)
(Equation (6)) and the Ratio of Performance to Deviation (RPD) (Equation (7)).
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Number of PLS components for lv=1 to lv=23

Iteration number k = 1000

Original dataset (Random partition)

50% 50%

Partial Least Square 
Training Model

lv-PLS components

Partial Least Square 
Prediction

lv-PLS components
RMSE (lv,k) value

Figure 4. Diagram of the proposal methodology to develop and validate the PLS regression models.

RMSE =

√
∑N

i=1(yi − ŷl)2

N
(5)

R2 = 1− ∑N
i=1(yi − ŷl)

2

∑N
i=1(yi − ȳ)2

(6)

RPD =

√
1

N−1 ·∑
N
i=1(yi − ȳ)2

RMSE
(7)

where N is the number of predicted samples, yi is the target value, ŷi the predicted value and ȳ is the
average value of the analytical reference value.

3. Results and Discussion

This section introduces and discusses the different results achieved in this paper.
First, the characterization of the olive batches, used in this research, is presented through the
analytical parameters of the oil samples. This will serve as a basis for a better understanding of
the data distribution for the analytical parameters shown in the second part of this section, the image
processing results.

3.1. Laboratory Results for the Analytical Parameters

With the purpose of establishing the oil quality, the most outstanding parameters were analysed
in each oil sample. Table 2 shows the maximum, minimum, mean and standard deviation for the
quality parameters in eight sampling dates. The number of olive batches, obtained to produce the
oil samples, varied according to the production capacity of the oil mill. Fruits for each batch were
randomly chosen from the conveyor belts, located in the reception yard. The random selection of
batches entailed different producers and locations, which implied differences in ripening stages and
health conditions. Values for the standard deviation in the analytical parameters show that the lack of
homogeneity in the batches was not related to the date.
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Table 2. Laboratory results for the analytical parameters. The number of samples per day is indicated
by “n”.

Parameters
Sampling Dates

21/11/2017 28/11/2017 4/12/2017 12/12/2017 18/12/2017 10/1/2018 17/1/2018 23/1/2018
n = 10 n = 10 n = 10 n = 10 n = 11 n = 13 n = 7 n = 13

Acidity Index ∗∗∗

min 0.12 0.17 0.20 0.15 0.19 0.27 0.29 0.15
max 0.25 0.24 0.31 0.30 0.48 0.79 0.50 0.66

mean 0.19 0.20 0.25 0.22 0.28 0.45 0.39 0.40
SD 0.03 0.02 0.04 0.04 0.08 0.18 0.08 0.14

Peroxide Value ∗∗

min 2.10 2.80 2.70 2.40 5.10 3.00 2.80 2.60
max 5.80 4.60 4.30 5.40 11.30 17.20 10.90 22.50

mean 4.20 3.58 3.62 3.55 7.43 8.26 4.89 7.55
SD 0.93 0.55 0.56 1.01 1.97 5.50 2.99 6.06

K270

min 0.12 0.11 0.09 0.10 0.11 0.12 0.10 0.13
max 0.19 0.28 0.22 0.24 0.23 0.19 0.21 0.21

mean 0.14 0.17 0.16 0.17 0.15 0.15 0.16 0.16
SD 0.02 0.04 0.04 0.05 0.04 0.03 0.04 0.02

K232

min 1.29 1.26 1.27 1.31 1.43 1.28 1.31 1.41
max 1.67 1.92 1.76 1.97 1.84 1.68 1.70 1.76

mean 1.41 1.50 1.49 1.63 1.57 1.47 1.56 1.53
SD 0.11 0.17 0.14 0.23 0.14 0.12 0.13 0.11

Ethyl Esters ∗

min 3.00 5.00 4.00 11.00 5.00 11.00 5.00 8.00
max 7.00 10.00 6.00 34.00 15.00 104.00 57.00 70.00

mean 5.40 7.10 4.90 19.00 9.09 31.77 14.57 24.46
SD 1.51 1.60 0.88 7.42 3.21 27.75 18.82 15.89

Ethyl Palminate ∗

min 2.00 2.00 2.00 3.00 2.00 3.00 2.00 3.00
max 4.00 4.00 3.00 10.00 5.00 21.00 13.00 15.00

mean 2.07 3.40 2.10 6.30 3.36 7.54 4.14 6.23
SD 0.82 0.70 0.32 2.00 0.92 5.46 3.98 3.14

Ethyl Oleate ∗

min 1.00 3.00 2.00 6.00 3.00 8.00 2.00 5.00
max 5.00 6.00 4.00 24.00 10.00 83.00 44.00 55.00

mean 2.60 3.80 2.80 12.20 5.82 24.23 10.43 18.15
SD 1.35 1.14 0.79 5.98 2.23 22.45 14.93 12.78

Polyphenols ∗

min 321.00 329.00 241.00 290.00 358.00 182.00 171.00 221.00
max 782.00 1275.00 1089.00 1176.00 916.00 864.00 861.00 757.00

mean 532.60 739.20 744.60 719.20 662.45 516.54 597.00 535.69
SD 136.45 246.97 232.71 315.84 197.70 239.18 233.79 148.25

Chlorophyll ∗
min 9.84 8.83 7.49 6.88 9.40 4.96 3.04 4.49
max 17.22 20.46 14.69 22.26 19.41 15.74 7.02 14.78

mean 13.92 13.38 10.54 11.73 13.09 10.47 5.74 10.11
SD 2.33 3.20 2.45 4.58 2.91 3.47 1.56 3.07

Carotenoids ∗

min 13.51 12.13 6.24 5.40 5.60 2.40 3.20 2.42
max 34.73 31.88 19.58 39.50 19.20 28.60 12.10 14.01

mean 23.80 20.89 11.76 12.80 11.78 15.71 7.50 8.63
SD 6.57 5.25 4.21 10.06 4.69 8.31 3.25 3.20

*: mg
Kg ; **: mEq O2

Kg ; ***: % Oleic Acid.

Additional information can be obtained from Table 2. In general, the acidity index, peroxide
values, K270, K232, ethyl esters, including ethyl palmitate and ethyl oleate tend to rise in the last
sampling dates. This is due to a prevalence of overripe fruits at the end of the season. If we had
extended the period of time in this study (after January) more samples with higher values of these
components would have been obtained.

On the contrary, polyphenols, chlorophyll and carotenoids follow a usual decrease, as these
quality components are present in higher amounts at early ripe stages (mostly present at the beginning
of the season). In this case, an early start of the present research would have shown an increase of
these parameters.

3.2. Image Processing Results

As detailed in Section 2, the olive fruits were visually assessed and correlated with VOO quality
parameters (Table 1). This study showed conclusively that the colour and state conditions of the fruits
provide a valuable information to determine the quality parameters.
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The former knowledge was used to design a methodology, based on computer vision, to automate
the expert task. So, the features assessed in the manual process were obtained from the images.
In this sense, the maturity of the fruits was analysed by processing images in different colour spaces,
and the health state was obtained by computing texture features of the fruit skin. Then, a prediction
model based on PLS was developed for each of the chemical parameters related to the VOO quality.
The validation results of these models are presented in Table 3.

As shown in this table, every PLS model had a different design since the number of latent variables
was different. Most of them presented a regression coefficient above 0.7, despite the fact that most
of the fruits were in the ripe and overripe stages. This is a significant advantage compared to early
studies in which it was difficult to evaluate these stages [15,28].

Table 3. Regression coefficient (calibration and validation), root mean square error (calibration and
validation), number of PLS components employed in the models for each chemical parameter and ratio
of performance to deviation.

Parameter R2
c R2

v RMSEc RMSEv lv RPD

Acidity Index 0.89 0.84 0.11 0.12 2 2.16
Peroxide value 0.87 0.74 3.97 4.12 1 1.01

K270 0.83 0.64 0.03 0.04 3 1.28
K232 0.83 0.69 0.13 0.15 4 1.29

Ethyl Ester 0.88 0.72 15.74 16.89 2 1.07
Ethyl Palmitate 0.85 0.68 3.21 3.42 2 1.17

Ethyl Oleate 0.88 0.74 12.67 13.52 2 1.07
Polyphenols 0.88 0.78 200.6 243.50 5 1.32
Chlorophyll 0.91 0.85 5.96 6.71 2 1.08
Carotenoids 0.88 0.72 3.02 3.40 2 1.44

The outstanding regression plots are presented in Figure 5. In every sub figure, the x-axis is
the target (analytical values from chemical laboratory) and the y-axis is the regression model output.
The best correlation result was for the acidity index Figure 5a. It was a regression coefficient of
0.84, a RMSEv of 0.12 and a RPD of 2.16. As the acidity index is the most important parameter to
establish the commercial category of the olive oil, the former values are particularly relevant. Generally,
this parameter remains stable throughout the production process and at the oil storage [32], in contrast
to the rest of the chemical parameters considered in this study.

Figure 5b corresponds to the peroxide index which also had fine correlation results (Rv = 0.74
and RMSEv = 4.12). According to [33], this can be easily explained, since this parameter rises when
the olive fruit is spoiled and it represents the primary oxidation compounds. It is directly proportional
to degradation conditions of the fruits, decreasing when they are transformed into secondary oxidation
compounds. Then, the secondary oxidation compounds, which were assessed by the K270 parameters,
reached lower correlation results (Rv = 0.64 and RMSEv = 0.04). It means that for this parameter
there are no differences among the olive fruit categories, although these differences might appear
in the produced oil during its storage. Since K232 is another way of measuring primary oxidation
compounds, the correlation results (Rv = 0.69 and RMSEv = 0.15) were slightly below the peroxide
value. However, the assessment of this quality parameter is optional, so this lower fitting is not so
critical. In ref. [34], the authors reached a similar conclusion.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Fruit Image correlations by PLS are presented for different oil parameters. (a) Acidity Index.
(b) Peroxide Index. (c) Ethyl Ester. (d) Polyphenols. (e) Chlorophylls. (f) Carotenoids.

Ethyl esters, another degradative parameters which are related with early fermentative reactions,
increases in damaged fruits. These parameters are subject of the latest discussion about reducing their
limits for best quality oils. Recent research has found that the ethyl ester production starts when the
fruits are on the tree and increases at overripe stages [13]. It also has demonstrated that ethyl esters
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depend on the ripe fruit conditions and varietal influence. This last factor was not considered in this
research. So, the correlation results which were Rv = 0.72 and RMSEv = 16.89 (Figure 5c) presented
an accurate fitting.

For the polyphenols content, the fitting presented in Figure 5d is remarkable. This parameter is
influenced by many factors such as the variety of fruits, environmental conditions and agronomical
practices [6]. High accuracies of the prediction models for this parameter would indicate the potential
to improve the health benefits and the shelf life of the future extracted oil. Even though the RMSEv for
this parameter is quite high, considered the wide range of it should be taken into account, from 171 to
1275 mg/kg, over the samples (Table 2).

It is important to denote that differences of fitting have been found for pigments. Particularly,
chlorophyll (Figure 5e) had the best correlation overall the studied parameters (Rv = 0.85 and
RMSEv = 6.71). This shows that the colour features were properly selected, as this pigment is highly
colour skin dependent as confirmed [10]. Conversely, for carotenoids (Figure 5f), the correlation fit was
high but not so accurate (Rv = 0.72 and RMSEv = 3.40). This issue can be explained by the inherent
behaviour of these compounds. Their declining is less pronounced and they are more stable among
different ripe stages [11].

4. Conclusions

The assessment of the olive fruit conditions at the start of the virgin olive oil production process is
an issue of critical importance to optimize the quality of the produced oil. Nowadays, it is the master
miller who supervises the fruits brought by the farmers and selects the production line according to
the quality. In this paper we present the relationship between colour and texture features, extracted
from olive fruit images, and different chemical parameters of the olive oil produced from these fruits.
To fulfil this task, 10 prediction models have been implemented based on Partial Least Squares (PLS),
one for each quality parameter. The best results in the prediction were achieved for the acidity index
(Rv = 0.84 and RMSEv = 0.12) and chlorophylls (Rv = 0.85 and RMSEv = 6.71). The proposed
method could be implemented on-line in an olive mill in order to classify olive batches at the beginning
of the industrial process, thus avoiding losses in quality in the produced olive oil. Last but not least,
the prediction models integrated into an on-line system could be useful to comply with the regulation
RES-2/94-V/06 related to the quality management guides for the olive oil industry proposed by the
International Olive Oil Council.
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