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Objective. The inability to intervene in Alzheimer’s disease (AD) forces the search for promising gene-targeted therapies. This
study was aimed at exploring molecular signatures and mechanistic pathways to improve the diagnosis and treatment of
AD. Methods. Microarray datasets were collected to filter differentially expressed genes (DEGs) between AD and
nondementia controls. Weight gene correlation network analysis (WGCNA) was employed to analyze the correlation of
coexpression modules with AD phenotype. A global regulatory network was established and then visualized using
Cytoscape software to determine hub genes and their mechanistic pathways. Receiver operating characteristic (ROC)
analysis was conducted to estimate the diagnostic performance of hub genes in AD prediction. Results. A total of 2,163
DEGs from 13,049 background genes were screened in AD relative to nondementia controls. Among the six coexpression
modules constructed by WGCNA, DEGs of the key modules with the strongest correlation with AD were extracted to
build a global regulatory network. According to the Maximal Clique Centrality (MCC) method, five hub genes associated
with mitochondrial complexes were chosen. Further pathway enrichment analysis of hub genes, such as oxidative
phosphorylation and retrograde endocannabinoid signaling, was identified. According to the area under the curve (AUC)
of about 70%, each hub gene exhibited a good diagnostic performance in predicting AD. Conclusions. Our findings
highlight the perturbation of mitochondrial complexes underlying AD onset, which is mediated by molecular signatures
involved in oxidative phosphorylation (COX5A, NDUFABI, SDHB, UQCRC2, and UQCRFS1) and retrograde
endocannabinoid signaling (NDUFAB1) pathways.

1. Introduction life security of the elderly, with the number of cases pre-

dicted to rise to 152 million by 2050 [3]. Pathologically,

Alzheimer’s disease (AD), accounting for 60~80% of all ~ the core hallmarks of AD are the accumulation of

dementias, is rapidly becoming a devastating, epidemic,
and costly neurodegenerative disease [1, 2]. It is also known
as the third “health killer” worldwide, a serious threat to the

beta-amyloid (Af) peptide and hyperphosphorylated tau,
which constitute extracellular senile plaques and intracellu-
lar neurofibrillary tangles, respectively [4]. With the increase
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of deposits, this clinical entity presents with progressive cog-
nitive decline, accompanied by late behavioral and psychiat-
ric abnormalities [1]. Such a well-defined pathology and
slow-progressing course of AD offer no opportunity for
intervention; that is, there are currently no Food and Drug
Administration- (FDA-) approved pharmacotherapies
(including the common clinical use of rivastigmine, galanta-
mine, donepezil, and memantine) that can stop or even
delay the occurrence and development of disease [5-7].
Accordingly, much effort has been directed towards genomic
identification of novel targets, which may be the optimal
strategy for early diagnosis and therapy of AD.

With advances in high-throughput sequencing and micro-
array technology, bioinformatics analysis is cumulatively
employed to investigate genetic factors that contribute to the
risk of AD [8]. Several AD-related genes (e.g., PP2A, RGS2,
TOMMA40, and APOE4) have been recognized as potential
candidates in an attempt to predict individual susceptibility,
provide targeted prevention, and create personalized treat-
ment [9-11]. Nevertheless, integrated genomic analysis has
not been systematically applied to AD research [12]. Indeed,
previous outcomes were mainly derived from a single dataset
with insufficient sample size and monocentric study design
in Gene Expression Omnibus (GEO) database, an invaluable
resource of a publicly available genomic repository affording
gene expression data and clinical phenotypes [13]. The
obtained molecular signatures may simply represent the
genetic predisposition of a small population with AD, a poten-
tial interpretation for the inapplicability of partial outcomes in
clinical practice. In view of this, we attempted to excavate
novel molecular targets and decipher their mechanistic path-
ways via integrated genomic analysis on multiple datasets,
aiming to provide more authentic and trustworthy results to
gain insight into the pathogenesis of AD.

Throughout the GEO database, five gene expression pro-
files of GSE132903, GSE118553, GSE5281, GSE37264, and
GSE36980 that met the inclusion criteria were collected for
this analysis. First, we compared the gene expression data
from AD tissues and non-AD tissues, which have funda-
mentally different biological properties to generate differen-
tially expressed genes (DEGs). Subsequently, all DEGs were
grouped into six modules with high statistical significance
by weighted gene coexpression network analysis (WGCNA),
a commonly used and proven approach for bioinformatics
analysis of coexpressed genes, indicating that genes in each
module are transcriptionally correlated and work together
in a coordinated fashion. Furthermore, pathway enrichment
analysis over genes in each module was conducted to deter-
mine in what cellular processes the correlated genes wrought
in, hence providing a cellular level understanding of the
coexpressed genes. We noted that brown and turquoise
modules exhibited the strongest positive/negative correla-
tion with AD, implying the close relationship of their enrich-
ment pathways with AD. Having all these statistical results,
we have then built a global regulatory network to identify
hub genes and their pathogenic processes, for how these
molecular targets are causally linked to AD. The findings
of this study contribute to our understanding of the underly-
ing genomic mechanisms of AD, which may provide key
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clues for diagnostic and therapeutic strategies based on these
molecular signatures.

2. Materials and Methods

2.1. Data Resources. Microarray datasets including
GSE132903, GSE118553, GSE5281, GSE37264, and
GSE36980 were downloaded from the GEO database. The
RNA sequencing (RNA-seq) data were derived from tempo-
ral lobe tissues of postmortem human brains. GSE132903
collected the middle temporal gyrus from AD cases (1 =97)
and nondementia controls (n=98); GSE118553 contained
the temporal cortex from AD (n =45) and control subjects
(n=24); GSE5281 gathered the middle temporal gyrus from
AD patients (n=16) and controls (n=11); GSE37264
included the temporal cortex from AD cases (n = 8) and con-
trols (n=8); GSE36980 obtained the temporal cortex from
AD (n=10) and nondementia controls (n=19). Both the
middle temporal gyrus and temporal cortex belong to the
temporal lobe, a preferential region that is susceptible to
AD neurodegeneration [14, 15] and has commonly been ana-
lyzed in genomic studies [16-18]. All individuals in the case
group can be considered as sporadic AD patients based on
the original literature (or recruitment studies) for each data-
set [19-23]. In total, 336 participants including 176 AD
(male/female: 89/87) and 160 gender-matched controls
(male/female: 89/87; p=0.64) were enrolled. The average
age for AD patients was 83.60 + 8.25 (range: 40-105) years
relative to 81.38 £+ 10.78 (range: 43-102) years for controls.
Demographic data of each subject were detailed in Supple-
mentary Table 1. Participants with pathological and/or
clinical diagnosis of AD should meet one of following
standardized criteria: (1) the Diagnostic and Statistical
Manual of Mental Disorders- (DSM-) III, DSM-IV, or
DSM-V criteria [24-27]; (2) the International Classification
of Diseases- (ICD-) 10 criteria; (3) the National Institute of
Neurological and Communicative Disorders and Stroke-
Alzheimer’s Disease and Related Disorders Association
(NINCDS-ADRDA) [28]; and (4) the Consortium to
Establish a Registry for Alzheimer’s Disease (CERAD)
guidelines [29] and the Braak stage [14].

2.2. Data Preprocessing and DEG Screening. Before process-
ing of gene data, GSE113439 and GSE53408 were annotated
according to the GPL10558 platform of Illumina Human
HT-12 v4 arrays expression beadchip; GSE5281 was
obtained based on the GPL570 platform of Affymetrix
Human Genome U133 Plus 2.0 Array; GSE37264 was avail-
able from the GPL5188 platform of Affymetrix Human Exon
1.0 ST Array; GSE36980 was profiled on the GPL6244 plat-
form of Affymetrix Human Gene 1.0 ST Array. Gene expres-
sion data of all datasets were uniformly normalized
employing the normalizeBetweenArrays function of limma
package in R software [30]. Referring to the annotation pro-
file of each dataset, we converted the probes into gene sym-
bols or deleted unlabeled probes. If multiple probes were
annotated to a single gene, the one with the highest expres-
sion value was retained. RNA-seq data from five datasets
were merged into a new dataset, and their batch effects were
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eliminated using the removeBatchEffect function. Gene
expression between AD and control tissues was compared
to screen DEGs by ImFit and eBayes functions. The limma
package was adopted for two-dimensional hierarchical clus-
tering analysis of DEGs, with the results visualized by vol-
cano plots. A false discovery rate- (FDR-) adjusted p < 0.05
and fold change (FC) > 1.3 were considered statistically sig-
nificant [30-32].

2.3. Weighted Gene Coexpression Network Analysis. Using
WGCNA package in R software [33], a gene coexpression
network was constructed to investigate the expression and
interaction of DEGs in AD. First, gene expression values
were standardized into fragments per kilobase of transcript
per million mapped reads (FPKM), and sample clustering
was carried out to remove outliers using the hclust function.
Next, Pearson correlation coefficients of all gene pairs were
calculated, by which an eigengene network matrix reflecting
the similarity between genes was generated. The soft thresh-
olding power (f value) of 7 was selected to ensure the scale-
free network, hence transforming the similarity matrix into
an adjacency matrix. A topological overlap matrix (TOM)
was then established to measure the average network con-
nectivity of each gene. Based on the relevant parameters
(mergeCutHeight =0.25 and minModuleSize = 30), genes
with similar expression profiles were classified into different
modules through the dynamic tree cutting method. Finally, a
cluster dendrogram was plotted by hierarchical clustering to
assess the correlation of module eigengenes (MEs) with clin-
ical phenotypes (e.g., AD, age, and gender). Among coex-
pression modules, the one with the highest negative or
positive correlation with AD was defined as the key module.
Detailed information of DEGs in module-trait relationships
is listed in Supplementary Table 2.

2.4. Functional Enrichment Analysis of Coexpression
Modules. Employing the packages of org.Hs.eg.db and clus-
terProfiler, functional annotations of DEGs in coexpression
modules were accomplished by Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis
[34]. The biological significance of each module was exhib-
ited in the form of a bar chart. In this analysis, p
valueCutoff = 0.05 was set as the enrichment of KEGG path-
way with statistical significance.

2.5. Global Regulatory Network Construction, Hub Gene
Selection, and Pathway Enrichment Analysis. Through the
online STRING (Search Tool for the Retrieval of Interacting
Genes, https://www.string-db.org/) database [35], DEGs of
key modules were uploaded to build a global regulatory net-
work. The results of protein-protein information (PPI) were
further analyzed and visualized by using Cytoscape (version
3.8.2) software [36]. In the global regulatory network, the
cytoHubba plugin was adopted to identify hub genes
through the Maximal Clique Centrality (MCC) method
[37]. Moreover, the mechanistic pathways of hub genes were
enriched applying ClueGO plugin [38].

2.6. Diagnostic Performance Assessment. Utilizing the pROC
function in R software, the receiver operating characteristic

(ROC) analysis was performed to evaluate the diagnostic
performance of hub genes in distinguishing AD from non-
dementia controls [39]. The area under the curve (AUC)
value was calculated to quantify the sensitivity and specific-
ity of ROC analytic results. In general, an almost perfect
prediction is represented by an AUC value of close to
100%, while a random selection of AUC is closed to 50%.
For all analyses, statistical significance is assigned at p values
less than 0.05 (p < 0.05).

3. Results

3.1. Differentially Expressed Genes. After preprocessing the
gene expression profiles through annotation, merging, and
normalization, we used the limma package to filtrate DEGs
between AD cases and nondementia controls. Gene expres-
sion analysis showed that 2,163 out of 13,049 background
genes were differentially expressed in AD relative to nonde-
mentia controls. Volcano plot exhibited the number of
DEGs identified from the merged gene expression data
(Figure 1(a)). Heatmap displayed the expression of DEGs
between AD cases and controls (Figure 1(b)).

3.2. Coexpression Modules and Functional Enrichment
Analysis. In the process of hierarchical sample clustering
through average linkage, 245 eligible subjects were incor-
porated according to cut-off height of 40. WGCNA were
used to cluster DEGs into seven uniquely colored modules,
wherein non-co-expressed genes were grouped into the
grey module, implying that they participated in abiotic
processes. Heatmap of module-trait relationships
(Figure 2(a)) showed the diminishing negative correlation
of turquoise (correlation coefficient=-0.44, p=8e—13),
blue (correlation coefficient=-0.4, p=7e—11), and red
(correlation coefficient = -0.28, p=7e—06) modules with
AD phenotype, while brown (correlation coefficient = 0.45,
p=9e—14), yellow (correlation coefficient =0.37, p=3e—
09), and green (correlation coefficient=0.35, p=2e—08)
modules were degressively positively correlated with AD.
Annotation results of the KEGG pathway (Figure 2(b))
revealed that DEGs in the blue module were enriched in
synaptic vesicle cycle and carbon metabolism; DGEs in
the brown module were related to propanoate metabolism
and hippo signaling pathway; DEGs in the green module
were involved in mitogen-activated protein kinase
(MAPK) and phospholipase D signaling pathways; DEGs
in the red module had implications in glutamatergic syn-
apse and hippo signaling pathway; DGEs of the turquoise
module participated in long-term potentiation, glutamater-
gic synapse, retrograde endocannabinoid signaling, and
oxidative phosphorylation; and DEGs in the yellow module
were associated with Notch and peroxisome proliferator-
activated receptor (PPAR) signaling pathways.

3.3. Global Regulatory Network and ROC Analysis. On the
basis of DEGs in two key modules (brown and turquoise),
a global regulation network was constructed to provide PPI
(Figure 3). As shown in Figure 4, five hub genes (COX5A,
NDUFABI1, SDHB, UQCRC2, and UQCRFSI1) strongly
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FiGurek 1: Visualization of differential expression analysis. (a) Volcano plot of the genes between AD and nondementia controls: red and
blue indicate upregulation and downregulation, respectively. (b) Heatmap of differentially expressed genes: color alterations from green
to red represent gene expression from downregulation to upregulation. AD: Alzheimer’s disease.
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FIGURE 2: Weighted correlation network analysis and module-pathway enrichment. (a) Module-trait relationships: color changes from green
to red indicate the correlation between MEs and clinical phenotypes from negative to positive. (b) KEGG pathway enriched by coexpressed
genes in each module. AD: Alzheimer’s disease; KEGG: Kyoto Encyclopedia of Genes and Genomes; MEs: module eigengenes.
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interacting with other DEGs were screened out through the
cytoHubba function. Pathway enrichment analysis of hub
genes (Figure 5) showed that COX5A, SDHB, UQCRC2,
and UQCRFS1 were involved in oxidative phosphorylation;
NDUFAB1 was implicated in oxidative phosphorylation
and retrograde endocannabinoid signaling pathways. Ana-
Iytic results of the ROC curve (Figure 6) presented a high
discrimination ability of each hub gene in the onset of AD

(COX5A: AUC = 68.7%; NDUFABI: AUC = 74.4%; SDHB:
AUC =69.3%; UQCRC2: AUC=72.9%; and UQCRFSI:
AUC = 66.8%).

4. Discussion

Although AD has been investigated for decades, the inability
to prevent and cure it remains a thorny issue at present.
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However, previous failed attempts at pharmaceutical devel-
opment have not been in vain, as they highlight the critical
need for gene-targeted therapies, which have made consider-
able breakthroughs in oncology and are increasingly being
extended to central nervous system diseases [40-43]. With
this background, genomic identification of novel biomark-
ers, therapeutic targets, and potential molecular underpin-

nings appears to be particularly important. Herein, we
performed an integrative genomic analysis of five datasets
involving 13,049 background genes, of which 2,163 DEGs
were generated and then statistically analyzed to establish
coexpression modules related to AD phenotype. Based on
coexpressed genes of key modules, a global regulatory net-
work was constructed to identify hub genes (ie., COX5A,



NDUFABI, SDHB, UQCRC2, and UQCRES1) as well as
their mechanistic pathways underlying AD onset.

According to the results of WGCNA, the brown and tur-
quoise modules were overwhelmingly correlated with AD,
which were enriched in propanoate metabolism, glutamater-
gic synapse, long-term potentiation, oxidative phosphoryla-
tion, and hippo and retrograde endocannabinoid signaling
pathways. Converging lines of evidence have linked AD to
mitochondrial bioenergetic dysfunction, a process that pre-
dates the apparent appearance of plaques and persists
throughout the pathological cascades of AD [44-47]. In
terms of oxidative phosphorylation, it is the main energy
source of mitochondria modulated by four respiratory mul-
tisubunit enzyme complexes, namely, complexes I-IV [48,
49]. During neurodegeneration of AD, A8 and tau synergis-
tically restrain the synthesis and function of mitochondrial
respiratory complexes, giving rise to an impaired oxidative
phosphorylation system [50]. The resultant decrease in oxi-
dative phosphorylation promotes free radical production
and adenosine triphosphate (ATP) depletion, leading to
altered axonal transport, dysregulated organelle dynamics,
neuronal loss, and apoptosis, as documented by in vitro
experiments of AD at transcriptional and proteomic levels
[51]. Additional evidence in support of this viewpoint comes
from observations in Ts65Dn mice that oxidative phosphor-
ylation disruption occurs in the early stages of cognitive
decline in AD, an indicator specifically associated with basal
forebrain cholinergic neurodegeneration that may propagate
pathology within cortical memory and executive function
circuits [52]. For retrograde endocannabinoid signaling,
endocannabinoids play a profound neuroprotective role in
the AD model by modulating the temporal dynamics of
excitatory and inhibitory synaptic neurotransmitter release
[53, 54]. For instance, endocannabinoids bind to and
activate the cannabinoid 1 receptor (CB1R) to enhance
synaptic plasticity and neurotransmitter delivery, which are
essential for cognition, memory emotion, and motor func-
tions [55, 56]. Administration of 2-arachidonoylglycerol
(2-AG), a complete agonist of cannabinoid receptors, has
been found to evoke the generation of anti-inflammatory
mediators that protect neurons against Af insults in a
concentration-dependent manner [57, 58]. This is confirmed
by multiple experiments that inhibition of monoacylglycerol
lipase (MAGL), a 2-AG hydrolase, mitigates Af-induced
neurodegeneration and apoptosis via CB1R-dependent sup-
pression of NF-«B phosphorylation and ERKI1/2 and
cyclooxygenase-2 expression [59, 60]. Collectively, these
data are supportive of our findings that oxidative
phosphorylation and retrograde endocannabinoid signaling
participate in the pathogenesis of AD.

More importantly, COX5A, NDUFABI, SDHB,
UQCRC2, and UQCREFS1 were selected as hub genes, and
the downregulation of these genes is supposed to be vitally
causative of AD. COX5A is the nuclear genome-encoded
subunit Va of cytochrome c oxidase (COX or complex IV),
which is indispensable in the regulation and assembly of
mitochondrial respiratory chain holoenzyme [61, 62]. Previ-
ous studies have shown that mitochondrial COX activity in
AD brains is dramatically decreased, an early alteration of
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bioenergetic dysfunction closely related to cognitive decline
[63, 64]. Knockdown of COX5A suppresses the COX activity
by reducing the affinity of residual enzymes to oxygen,
thereby interfering with the ultracomplex pattern of the
mitochondrial respiratory chain necessary for bioenergy
metabolism [65]. Conversely, upregulation of COX5A can
restore COX activity and intracellular ATP depletion to
increase the synaptic excitability of entire dendrites through
activation of brain-derived neurotrophic factor (BDNF),
resulting in improvements in AD hippocampus-dependent
spatial leaning, recognition, and memory deterioration
[66]. In addition, there is convincing evidence that COX5A
is also an important regulator of oxidative phosphorylation
in brain senescence and degeneration [67], consistent with
our pathway enrichment analysis for the involvement of
COX5A in AD via oxidative phosphorylation.

NDUFABI, a subunit of the NADH: ubiquinone oxido-
reductase (NQR), encodes the initial enzyme of the
mitochondrial respiratory chain (i.e., complex I) that cata-
lyzes the transport of electrons from NADH to ubiquinone
for ATP synthesis [68]. In Parkinson’s disease [69] and AD
[70], deficiency of complex I inhibits the activity of the elec-
tron transport chain, rendering it unable to cope with
increased oxidative stress, leading to a pattern of pro-
grammed cell death termed as apoptosis. This is validated
by administration of 1-methyl-4-phenylpyridinium ion
(MPP1), an inhibitor of complex I, eliciting internucleoso-
mal DNA degradation and inappropriate apoptotic activa-
tion in cultured PC12 and cerebellar granule cells [71].
SDHB, encoding the iron-sulfur subunit B of succinate
dehydrogenase (SDH or complex II), carries electrons from
flavin adenine dinucleotide (FADH) to coenzyme Q during
succinate oxidation [72]. As demonstrated in iPSC-derived
neural stem cells of presenilin 1 familial AD, downregulation
of SDH contributes to an imbalance between mitochondrial
fission, fusion, and morphology in AD hippocampus, a
chronic fragmentary state of neurogenesis defects not only
impelling self-renewal capacity of stem cells but also deplet-
ing stem cell pool [38, 73].

UQCRC2 and UQCREFSI encode ubiquinol-cytochrome
¢ reductase proteins, which are components of mitochon-
drial respiratory complex III. Approximately 30~70% reduc-
tion in complex III activity was observed in AD, possibly
associated with excitotoxic cell death ascribed to insufficient
control over glutamate release [74, 75]. More specifically,
ATP depletion caused by complex III deficiency facilitates
plasma membrane depolarization and Ca** overload,
followed by the release of Ca**-independent glutamate and
overactivation of postsynaptic glutamate receptors, which
are excitotoxic neurotransmitters contributing to cell death
[76]. Moreover, APOE4 (1-272) fragment preferentially
binds UQCRC2 to inhibit the enzymatic activity of complex
III and promote the formation of neurofibrillary tangle-like
structures, hence directly linking UQCRC2 to AD pathology
[77]. Likewise, our findings pointed to a generalized down-
regulation of mitochondrial complexes I-IV in AD brains,
which participated in oxidative phosphorylation and retro-
grade endocannabinoid signaling pathways. Analytic results
of the ROC curve showed that five candidate genes had high
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diagnostic performance in AD prediction, supporting them
as potential biomarkers or intervention targets for AD.
These data highlight the involvement of the mitochondrial
respiratory chain in AD onset, in agreement with previous
biochemical studies using assays for electron transport chain
activity [78].

Of note, several limitations of the present study should
be taken into consideration. The batch effects during bioin-
formatics analysis cannot be completely removed by using
the removeBatchEffect function, which may obscure the real
biological signals if not adequately handled [79-81]. More-
over, we cannot rule out AD-related gene mutations in a
small number of patients due to lack of such relevant infor-
mation from the original study. Another limitation is the
lack of detailed clinical and pathological data (e.g., Braak
stage, plaque and tangle density, and Mini-Mental State
Examination Score (MMSE)) to classify the severity of dis-
ease stages for each individual. To estimate the impact of
the candidate markers proposed in this study on the pro-
gression of AD (not only limited to AD onset) and their clin-
ical application value, prospective trials with large sample
sizes and long-term follow-up, as well as detailed recording
data of clinical and pathological disease severity, are encour-
aged to be carried out in the future. Additionally, basic
experiments in vivo and in vitro are also recommended to
verify the mechanistic pathways of COX5A, NDUFABI,
SDHB, UQCRC2, and UQCREFSI in the pathogenesis of
AD, which likely provide a substantial foundation for clini-
cally targeted therapy.

5. Conclusion

In aggregate, integrative genomic analysis identified five
molecular signatures associated with mitochondrial com-
plexes, potentially participating in the pathogenesis of AD
through oxidative phosphorylation (COX5A, NDUFABI,
SDHB, UQCRC2, and UQCRFS1) and retrograde
endocannabinoid signaling (NDUFABI1) pathways. Our
findings lend strong support for mitochondrial dysfunction
underlying AD onset, which may elicit enthusiasm for the
interaction of bioenergy restoration with AD therapy by tar-
geting these molecular signatures.
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