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Obesity is associated with metabolic syndrome, such as diabetes, hypertension, and 
hyperlipidemia. Therefore, drug development for the treatment of obesity is needed. Leptin 
is an anti-obesity hormone that inhibits food intake and increases energy metabolism, 
and, as such, treatments involving leptin were expected to be beneficial for obesity; how-
ever, since most obese patients are in a state of leptin resistance, these treatments may 
not be useful. Therefore, the amelioration of leptin resistance has recently been attracting 
interest as a treatment for obesity. The mechanisms underlying the development of leptin 
resistance need to be elucidated in more detail. Endoplasmic reticulum (ER) stress was 
recently suggested to be involved in the pathogenesis of leptin resistance. The molecular 
mechanisms responsible for leptin resistance and possible pharmacological treatments 
for obesity have been discussed herein, with a focus on ER stress.
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LePTin

Leptin is an anti-obesity hormone that was first discovered by Dr. Friedman’s group in the year 1994 
(1). It is secreted from adipose tissue and circulates in the bloodstream. Several splicing isoforms 
of the leptin receptor have been identified to date, such as Ob-Ra, Ob-Rb, Ob-Rc, Ob-Rd, Ob-Re, 
and Ob-Rf. Of these, the Ob-Rb isoform is the longest and has Box 1, 2, and 3 regions, which are 
important for Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) 
binding. Upon binding to the Ob-Rb receptor, leptin activates JAK2/STAT3 signaling. The Ob-Rb 
long isoform is mainly expressed in the hypothalamus (2, 3). In addition to the hypothalamus, we also 
previously demonstrated that a functional leptin receptor of Ob-Rb is expressed in the brain stem (4). 
We reported that leptin has the ability to activate STAT3 signaling in the hypothalamus and the brain 
stem (4). Since a mutation in the Ob-Rb receptor in db/db mice results in severe obesity, the Ob-Rb 
receptor is considered to play an important role in the anti-obesity effects of leptin. Furthermore, the 
importance of Ob-Rb–STAT3 signals from leptin receptors was demonstrated by the replacement 
of Tyr 1138 in Ob-Rb with a serine residue, which specifically disrupted Ob-Rb–STAT3 signaling 
in mice, resulting in obesity (5). Other isoforms, such as Ob-Ra, Ob-Rc, Ob-Rd, and Ob-Rf, are the 
short isoforms of leptin receptors and only have the Box 1 region. These isoforms activate JAK2, 
but not STAT3 signaling, and, as such, are not involved in the anti-obesity effects of leptin. We 
previously reported that these short isoforms may play a role in regulating immune function through 
the induction of interleukin (IL)-1β (6) and IL-1 receptor antagonists (7). However, the physiological 
roles of the short isoforms of leptin receptors have yet to be investigated in detail. On the other hand, 
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FiGURe 1 | Possible mechanisms for the development of leptin 
resistance with obesity. Several mechanisms have been suggested for the 
development of leptin resistance: (1) impaired leptin transport across the 
blood–brain barrier (BBB), (2) the induction of suppressor of cytokine 
signaling 3 (SOCS3), (3) the induction/activation of protein tyrosine 
phosphatase 1B (PTP1B), and (4) endoplasmic reticulum (ER) stress have 
been suggested to play roles in the development of leptin resistance in 
obesity.
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the Ob-Re isoform of the leptin receptor is known to be a soluble 
type that does not have a transmembrane region, and it circulates 
in the bloodstream and regulates leptin concentrations (8).

LePTin ReSiSTAnCe

The discovery of leptin led to the expectation that leptin therapy 
may be beneficial for obesity. However, since circulating levels of 
leptin are elevated with obesity (9), and most obese patients are 
in a state of leptin resistance, leptin therapy may not be beneficial 
for most obese patients (10). Therefore, a clearer understand-
ing of the mechanisms underlying the development of leptin 
resistance is considered as important. One of the mechanisms 
suggested to be responsible for leptin resistance is the impaired 
transport of leptin across the blood–brain barrier (BBB) (11, 12) 
(Figure 1). A previous study showed a decrease in the ratio of 
leptin levels in cerebrospinal fluid versus serum with obesity, 
suggesting that the capacity for leptin transport is lower in obese 
patients (13). Furthermore, impairments in leptin-induced 
STAT3 phosphorylation were demonstrated in a mouse model 
of diet-induced obesity following a peripheral, but not central 
injection of leptin (14).

Another possibility for the development of leptin resistance 
is impaired intracellular signal transduction. Previous studies 
reported that negative feedback regulators of JAK2/STAT3 
signal transduction increase with obesity. Suppressor of cytokine 
signaling 3 (SOCS3) is a negative feedback regulator (15–18) 
that acts downstream of the leptin receptor (19, 20) (Figure 1). 
The expression of SOCS3 was previously shown to be regulated 
through STAT3 and negatively regulates the effects of leptin 
(19, 20). In addition to SOCS3, protein tyrosine phosphatase 
1B (PTP1B) also plays a role in inhibiting the effects of leptin 
by de-phosphorylating JAK2 (21–23) (Figure 1). Furthermore, 
previous studies demonstrated that SOCS3 and PTP1B levels 
were elevated in a mouse model of obesity (19, 24, 25), suggesting 
the involvement of SOCS3 and PTP1B in leptin resistance with 
obesity.

The endoplasmic reticulum (ER) is an organelle that is involved 
in promoting protein folding (26–28). Various stresses, which 
impair ER function, lead to the accumulation of unfolded pro-
teins in the ER and cause ER stress. ER stress has been implicated 
in several types of diseases, such as neurodegenerative disease, 
diabetes, and obesity (18, 28). Cells activate unfolded protein 
responses (UPR), such as double-stranded RNA-activated pro-
tein kinase (PKR)-like ER kinase (PERK)-eukaryotic initiation 
factor 2 (eIF2α), inositol-requiring enzyme-1 (IRE1)-X-box-
binding protein 1 (XBP1), and activating transcription factor 6 
(ATF6) pathways, upon the accumulation of unfolded proteins 
(26–28). Recent findings suggest that ER stress is also involved in 
the development of leptin resistance (Figure 1). Previous studies 
demonstrated that ER stress was enhanced in a mouse model of 
obesity (29) and was suggested to be involved in the development 
of leptin resistance (30–32). One of the physiological factors that 
may cause ER stress is saturated fatty acids. Palmitate, a saturated 
fatty acid, but not oleate, was shown to increase ER stress in the 
pancreatic β cell line, INS-1 (33). Therefore, the excessive intake 
of saturated fatty acids may cause ER stress and leptin resistance 
in obesity. Furthermore, homocysteine has been reported to cause 
ER stress (34, 35). We previously demonstrated that peripherally 
injected homocysteine induced XBP-1 splicing in the mouse 
brain (36), and homocysteine inhibited leptin-induced STAT3 
phosphorylation in the mouse hypothalamus (30). Since plasma 
homocysteine levels increase with obesity (37), homocysteine-
induced ER stress may also play a role in the development of 
leptin resistance.

POSSiBLe PHARMACOLOGiCAL 
APPROACH TO AMeLiORATe LePTin 
ReSiSTAnCe BY TARGeTinG eR STReSS

As discussed above, leptin resistance is associated with obesity, 
and, thus, its amelioration may represent an important therapeutic 
approach for obese patients. One of the potential pharmacological 
approaches for obesity is the use of ER stress modulators. In this 
review, we focused on the attenuation of ER stress, a recently sug-
gested pharmacological strategy to ameliorate leptin resistance.

Several compounds have been reported to ameliorate ER 
stress and inhibit obesity. For example, fluvoxamine, a selective 
serotonin reuptake inhibitor, was previously shown to reduce 
leptin resistance in neuronal cells (38). Fluvoxamine has affinity 
for the sigma-1 receptor (Sig-1R) (39), which is an ER protein 
involved in ER stress (40). Since fluvoxamine has the ability to 
reduce ER stress through Sig-1R (41), its pharmacological effect 
of attenuating leptin resistance may be due to a reduction in 
ER stress (38). In addition to fluvoxamine, another compound 
attracting interest is celastrol, which was identified in the roots 
of Tripterygium wilfordii (thunder god vine) (42). It was found 
to ameliorate hypothalamic ER stress and the development of 
obesity in mouse models (42).

Chemical chaperones are chemical compounds that assist 
in protein folding (43) and have been suggested to ameliorate 
ER stress-induced leptin resistance. For example, the chemi-
cal chaperone, 4-phenyl butyric acid (4-PBA), was previously 
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reported to ameliorate ER stress-induced leptin resistance (30, 
31). Furthermore, the non-steroidal anti-inflammatory drug 
(NSAID), flurbiprofen, was shown to function as a chemical 
chaperone and ameliorate ER stress-induced leptin resistance 
and high fat diet-induced obesity (44). Caffeine also exhibited 
chaperone activity and reduced ER stress-induced leptin resist-
ance in a neuronal cultured cellular model (45).

In addition to a strategy to ameliorate ER stress through the 
use of chemical chaperones, pharmacological modulators of UPR 
may be beneficial. The activation of UPR may induce protein 
folding signals, which then inhibit the accumulation of unfolded 
proteins in the ER. The activation of UPR by the overexpression of 
an ER stress sensor protein has been shown to attenuate ER stress-
induced leptin resistance (31). Moreover, the expression of the 
spliced form of XBP1 in pro-opiomelanocortin (POMC) neurons 
was found to improve ER stress-induced leptin insensitivity (46). 
Therefore, future studies to identify and evaluate the anti-obesity 
effects of these types of compounds, which have the ability to 
modulate the effects of UPR, will be of interest. On the other 

hand, since the activation of UPR was suggested to be involved 
in cancer development (47), potential side effects must also be 
carefully considered when developing drugs to modulate UPR.

Overall, targeting ER stress may be beneficial for the 
treatment of obesity. This approach may assist in enhancing 
the effects of endogenous leptin on leptin resistance in obese 
patients. The identification and elucidation of the pharmaco-
logical mechanisms of action of drugs targeting obesity war-
rant further study.
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