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ABSTRACT Biogeographic patterns and drivers of soil microbial diversity have been
extensively studied in the past few decades. However, most research has focused on
the topsoil, while the subsoil is assumed to have microbial diversity patterns similar
to those of the topsoil. Here we compared patterns and drivers of microbial alpha
and beta diversity in and between topsoils (0 to 10 cm) and subsoils (30 to 50 cm)
of temperate grasslands in Inner Mongolia of China, covering an �1,500-km transect
along an aridity gradient. Counter to the conventional assumption, we find contrast-
ing biogeographic patterns of diversity and influencing factors for different bacterial
and archaeal groups and between depths. While bacterial diversity remains constant
or increases with increasing aridity in topsoil and decreases in subsoil, archaeal di-
versity decreases in topsoil and remains constant in subsoil. Microbial diversity in
the topsoil is most strongly influenced by aboveground vegetation and contempo-
rary climate but is most strongly influenced by the factor historical temperature
anomaly since the Last Glacial Maximum (LGM) and by soil pH in the subsoil. More-
over, the biogeographic patterns of topsoil-subsoil community dissimilarities vary for
different microbial groups and are overall most strongly influenced by soil fertility
differences between depths for bacteria and by contemporary climate for archaea.
These findings suggest that diversity patterns observed in the topsoil may not be
readily applied to the subsoil horizons. For the subsoil in particular, historical climate
plays a vital role in the spatial variation of bacterial diversity. Overall, our study pro-
vides novel information for understanding and predicting soil microbial diversity
patterns at depth.

IMPORTANCE Exploring the biogeographic patterns of soil microbial diversity is crit-
ical for understanding mechanisms underlying the response of soil processes to cli-
mate change. Using top- and subsoils from an �1,500-km temperate grassland tran-
sect, we find divergent patterns of microbial diversity and its determinants in the
topsoil versus the subsoil. Furthermore, we find important and direct legacy effects
of historical climate change on the microbial diversity of subsoil yet indirect effects
on topsoil. Our findings challenge the conventional assumption of similar geo-
graphic patterns of soil microbial diversity along soil profiles and help to improve
our understanding of how soil microbial communities may respond to future climate
change in different regions with various climate histories.
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Soil microbes play an indispensable role in soil formation and biogeochemical cycles
and hence provide key ecosystem services, including the mediation of greenhouse

gas emissions and climate change (1, 2). Exploring the biogeographic patterns of soil
microbial diversity is critical for understanding mechanisms underlying the responses of
soil processes to climate change. Subsoil (i.e., soils residing �20 cm below ground)
contains more than half of soil organic carbon (OC) globally (3). Recent experimental
studies have indicated that subsoil may show different responses to global climate
changes than topsoil (4, 5) due to distinct soil environments, microbial assemblages,
and their functional responses to climate changes (6). Yet, studies on soil microbial
diversity have focused mostly on the topsoil, while the biogeographic patterns of
microbial diversity in the subsoil on a large scale remain elusive. With a soil physical
environment and microbial communities that are unique compared to those of the
topsoil (3), the subsoil may show divergent patterns of microbial diversity from the
topsoil. Microbial community composition differences between top- and subsoils may
explain their differences in soil processes and responses to global changes (6). Hence,
comparing biogeographic patterns and drivers of soil microbial diversity at different
depths is important to improve our understanding of soil processes in a changing
world.

Soil microbial diversity is influenced by a wide array of variables, including edaphic
properties (e.g., soil pH and nutrients) (7–10), vegetation (11, 12), contemporary climate
(13–15), and historical climate change (16–18), etc. These variables may have differen-
tial controls on microbial diversity in the subsoil than in the topsoil due to the varied
ranges and different orders of importance of these factors. For instance, linkages
between vegetation and soil microbes can be directly mediated by plant species-
specific symbioses or rhizodeposition (19). Given the predominant distribution of plant
roots in the topsoil, the distribution and diversity of subsoil microbes may be less
affected by vegetation than those of the topsoil counterparts. Similarly, contemporary
climate, including precipitation (or aridity) and temperature, has been shown to have
a considerable effect on the topsoil microbial diversity (13–15), by restricting microbial
access to soil nutrients or moisture (19, 20) and/or accelerating metabolic rates and
biochemical processes (14). Such effects, however, may be dampened at depth (21)
because microbial communities have a much longer turnover time in the subsoil (22,
23) and are considered to be less affected by contemporary climates.

Historical climate change since the Last Glacial Maximum (LGM; i.e., the most recent
glaciation, ca. 21,000 to 18,000 years before present) is found to be a better predictor
of species richness than contemporary climate for vertebrates (24) and plants (25, 26)
in Europe and North America. A recent study also suggests that climate change since
the LGM may influence soil bacterial richness and composition (16). Due to the long
residence time of both soil organic matter and microbial communities at depth (21, 27,
28), microbial diversity in the subsoil may be more strongly influenced by historical
climate change than that in the topsoil. However, in comparison to edaphic and
contemporary climatic factors, the effect of historical climate change on soil microbial
diversity patterns remains poorly understood.

In addition to varied environmental influences, the diversity pattern along soil depth
may vary among different microbial clades (29). Declining carbon substrate availability
with soil depth leads to an oligotrophic environment at depth, which may restrict
bacterial activity and promote subsurface-dwelling groups capable of utilizing recalci-
trant carbon sources (30, 31). Previous studies have shown that soil bacterial diversity
is typically highest in the topsoil and decreases with soil depth (29, 32). However, the
diversity or abundance of different bacterial phyla may decrease (31, 32), increase (33),
or remain consistent (29) along soil profiles. In comparison with soil bacterial diversity
patterns, soil archaeal diversity patterns are much less explored at depth. Some studies
have revealed that the relative abundance of archaea or the ratio of archaea to bacteria
tends to increase with soil depth (34), while other studies have assumed that archaeal
diversity decreases or remains constant along soil profiles (35–37). Hence, diversity and
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composition variations of different microbial groups also need to be compared to
understand the mechanisms driving microbial diversity patterns at different soil depths.

Here, using amplicon-based sequencing of 16S rRNA genes, we compare the
biogeographic patterns of bacterial and archaeal diversity in and between the topsoil
(0 to 10 cm) and subsoil (30 to 50 cm) along a temperate grassland transect in Inner
Mongolia of China. As an integral part of the Eurasian steppe, this transect spans arid
to mesic ecosystems along an aridity gradient from Northeast China toward the West,
covering a broad range of climates, soil physicochemical conditions, and plant species
richness. Coupled with a comprehensive data set of edaphic, vegetation, and climatic
(both contemporary climate and historical climate change) variables, we evaluate the
relative importance of different environmental factors driving microbial diversity at
different soil depths and the microbial community dissimilarity between the top- and
subsoils. This study aims to test the following three hypotheses. (i) The biogeographic
patterns of diversity vary between bacteria and archaea and among different groups.
(ii) Microbial diversity patterns in the subsoil do not entirely mimic those in the topsoil,
and the microbial community dissimilarity between the top- and subsoils varies with
environmental gradients. (iii) Microbial diversity is strongly influenced by contemporary
climate and vegetation in the topsoil and by historical climate change in the subsoil.

RESULTS
Geographic variations in soil bacterial and archaeal diversity. A survey of

high-throughput amplicon sequencing for the 16S rRNA was performed to cover a large
portion of bacterial and archaeal domains. According to the rarefaction results (see
Fig. S1 in the supplemental material), curves of soil bacterial and archaeal communities
almost reached an asymptote, suggesting that the sequencing depth was appropriate
for surveying most soil bacteria and archaea. After quality filtering, denoising, and
removal of potential chimeras, a total of 3,531,946 and 4,086,723 high-quality se-
quences (grouping into 23,458 and 3,152 operational taxonomic units [OTUs] at 97%
sequence similarity per sample) were obtained for bacteria and archaea, respectively.

Soil bacteria were dominated by 3 classes (Alphaproteobacteria, Betaproteobacteria,
Gammaproteobacteria) and 10 phyla, including Actinobacteria, Acidobacteria, Firmicutes,
Bacteroidetes, Planctomycetes, Verrucomicrobia, Gemmatimonadetes, Nitrospirae, Chloro-
flexi, and Armatimonadetes (Fig. S2). Among them, Actinobacteria, Alphaproteobacteria,
Acidobacteria, Chloroflexi, Nitrospirae, and Verrucomicrobia are predominantly oligotro-
phic while Bacteroidetes, Gemmatimonadetes, Betaproteobacteria, and Firmicutes are
copiotrophic (38–40). Soil archaea were dominated by three phyla, including Crenar-
chaeota, Parvarchaeota, and Euryarchaeota (Fig. S2). Among them, Crenarchaeota func-
tion as ammonia-oxidizing archaea (AOA) (41). Parvarchaeota are known as acidophilic
(42), while Euryarchaeota function as methanogens and denitrifiers (2, 41).

The OTU richness and phylogenetic diversity (PD) of bacteria exhibited no longitu-
dinal trends in the topsoil from southwest to northeast, while the Shannon-Wiener
diversity (here called Shannon diversity) significantly decreased (r � �0.39, P � 0.026)
(Fig. 1 and Fig. S3). In contrast to topsoil bacteria, the OTU richness, PD, and Shannon
diversity of topsoil archaea increased along the same gradient (r � 0.44, P � 0.012, for
OTU richness; r � 0.41, P � 0.022, for PD; r � 0.58, P � 0.001, for Shannon diversity)
(Fig. 1 and Fig. S3). For different clades, the OTU richness, PD, and Shannon diversity
decreased from southwest to northeast in the topsoil for most oligotrophic bacterial
clades (P � 0.05, except for the OTU richness and PD of Acidobacteria and Verrucomi-
crobia) and increased for most copiotrophic bacterial clades (P � 0.05, except for the
OTU richness and PD of Gemmatimonadetes) (Fig. 2). The OTU richness, PD, and
Shannon diversity of rare and unclassified archaeal clades and the Shannon diversity of
Parvarchaeota increased (P � 0.05) along the same geographic direction, while the
Shannon diversity of Crenarchaeota decreased (P � 0.05) (Fig. 2).

In the subsoil, the OTU richness (r � 0.46, P � 0.008), PD (r � 0.39, P � 0.030), and
Shannon diversity (r � 0.44, P � 0.013) of bacteria displayed overall opposite geo-
graphic trends from those in the topsoil, increasing from southwest to northeast (Fig. 1
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and Fig. S3). Similarly, the three diversity indices of most bacterial (both oligotrophic or
copiotrophic) clades also increased in the same geographic direction (P � 0.05) (Fig. 2),
while only one oligotrophic clade (Verrucomicrobia) showed a decline in the Shannon
diversity (P � 0.05). For archaea, only the Shannon diversity of Crenarchaeota decreased
from southwest to northeast (P � 0.05); the other archaeal clades showed no trends in
diversity (Fig. 2).

The topsoil-subsoil Bray-Curtis dissimilarity was overall greater than the weighted
UniFrac dissimilarity for both bacterial and archaeal communities, whereas the two
indices showed consistent geographic patterns for bacteria and archaea (Fig. 1).
Particularly, the topsoil-subsoil dissimilarity for bacterial communities did not show
clear trends from southwest to northeast, while those for archaeal communities in-
creased (r � 0.66, P � 0.0001, for Bray-Curtis; r � 0.55, P � 0.001, for weighted UniFrac)
(Fig. 1 and Fig. S3). For different bacterial clades, two oligotrophic clades (Alphapro-
teobacteria, Verrucomicrobia) and one copiotrophic clade (Bacteroidetes) showed de-
creasing trends in the topsoil-subsoil community dissimilarities along the same gradi-
ent, whereas one oligotrophic (Nitrospirae) and one copiotrophic (Gemmatimonadetes)
clade showed an increasing trend in community dissimilarity (Fig. 2). For archaeal
clades, only the rare and unclassified archaea showed an increasing trend in the

FIG 1 Sampling sites and geographic variation in soil bacterial and archaeal alpha diversity and community dissimilarity. (a) Spatial distribution of sampling
sites across the temperature grasslands in Inner Mongolia; (b to g) changes in bacterial and archaeal OTU richness (b and c), phylogenetic diversity (PD) (d and
e), and Shannon diversity (f and g) in topsoil and subsoil with longitude; (h and i) changes in the Bray-Curtis (h) and weighted UniFrac dissimilarities (i) between
topsoil and subsoil with longitude. Land cover classification is based on the Global Land Cover Characteristics Database v2.0 (https://edcftp.cr.usgs.gov/project/
glcc/globdoc2_0.html). Solid lines indicate significant linear regressions (P � 0.05).
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topsoil-subsoil Bray-Curtis dissimilarity from southwest to northeast (Fig. 2). Other
bacterial and archaeal clades showed no significant trends (Fig. 2).

Explanatory variables for soil bacterial and archaeal diversity variations. The
OTU richness, PD, and Shannon diversity of soil bacteria and archaea in the topsoil and
subsoil displayed opposite correlations with the majority of the six environmental
variables, including historical temperature anomaly, contemporary climate, vegetation,
soil fertility, soil pH, and soil mineral content (Table 1). Interestingly, the oligotrophic
and copiotrophic bacterial clades in the topsoil showed opposite correlations with the
majority of environmental variables in terms of OTU richness, PD, and Shannon
diversity. The same also applied to Crenarchaeota and the remaining archaeal phyla
(Data Set S1). In the subsoil, most oligotrophic and copiotrophic bacterial clades
showed relatively similar correlations with environmental variables, while archaeal
clades showed no consistent correlation with environmental variables (Data Set S1).

FIG 2 Geographic variation in the alpha diversity (a to r) and community dissimilarity (s to x) of different soil bacterial and archaeal functional groups. (a to
i) Topsoil; (j to r) subsoil. For bacteria, two classes (Alphaproteobacteria and Betaproteobacteria) and eight dominant phyla (the rest of those listed) were
categorized as oligotrophic and copiotrophic clades, respectively. Archaea included Crenarchaeota (frequently functioning in ammonia-oxidizing processes),
Euryarchaeota (frequently functioning in methane generation processes), Parvarchaeota, and the rare and unclassified clades. Solid lines indicate significant
linear regressions (P � 0.05; n � 32).
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Using hierarchical partitioning, we found that the environmental variables explained
25.5% and 29.3% of the variation in the topsoil bacterial OTU richness and PD, with
historical temperature anomaly having the largest independent effects, explaining
13.4% and 18.3% of the variation (P � 0.05) (Fig. 3). The same environmental variables
explained 27.4% and 19.9% of the variation in the topsoil archaeal OTU richness and PD,
with contemporary climate and soil fertility having the largest independent effects,
respectively (P � 0.05) (Fig. 3), and showing positive relationships with archaeal OTU
richness and PD (P � 0.05) (Fig. 4). In comparison with OTU richness and PD, more
variation in the topsoil bacterial and archaeal Shannon diversity indices were explained
by environmental variables (45.6% for bacteria and 53.4% for archaea) (Fig. 3). Among
these environmental variables, vegetation had the largest independent effect, explain-
ing 11.2% and 15.5% of the variation in bacterial and archaeal Shannon diversity
indices, respectively (P � 0.05) (Fig. 3), and showing a negative and positive relation-
ship with bacterial and archaeal Shannon diversity indices, respectively (P � 0.05)
(Fig. 4). Soil mineral content and soil pH also had similar or secondary negative
independent effects on the topsoil bacterial and archaeal Shannon diversity indices,

TABLE 1 Pearson correlations between soil microbial alpha diversity in the top- and subsoils and environmental variablesa

Variable

Pearson correlation

Bacteria Archaea

OTU
richness PD

Shannon
diversity OTU richness PD

Shannon
diversity

Top Sub Top Sub Top Sub Top Sub Top Sub Top Sub

Historical temperature anomaly 0.18 0.44* 0.24 0.37* �0.28 0.41* 0.35* �0.08 0.24 �0.09 0.53** �0.07
Contemporary climate �0.09 0.30 �0.07 0.23 �0.53** 0.24 0.51** 0.02 0.37* �0.04 0.55** 0.01
Vegetation �0.09 0.31 �0.08 0.23 �0.56*** 0.28 0.45** 0.00 0.32 �0.07 0.61*** 0.06
Soil fertility �0.18 0.03 �0.13 0.01 �0.47** 0.02 0.39* 0.20 0.42* 0.18 0.19 0.05
Soil pH 0.06 0.02 0.04 0.06 0.41* 0.10 �0.32 0.31 �0.19 0.38* �0.56*** �0.02
Soil mineral �0.25 0.28 �0.19 0.27 �0.47** 0.24 0.18 0.34 0.25 0.37* 0.08 0.06
aThe one, two, and three asterisks after values in bold indicate significant correlations at a P level of �0.05, �0.01, and �0.001, respectively. Top, topsoil; Sub, subsoil.

FIG 3 Relative importance of different environment variables for alpha diversity and community dissimilarity of soil
bacterial and archaeal communities. (a) Bacteria; (b) archaea. The bacterial and archaeal alpha diversity in top- and
subsoils was represented by OTU richness, phylogenetic diversity (PD), and Shannon diversity, while the commu-
nity dissimilarity between top- and subsoils was represented by the Bray-Curtis and weighted UniFrac dissimilar-
ities. The relative importance of different environment variables was calculated as their independent effects using
hierarchical partitioning (see Table S2 in the supplemental material). The asterisks indicate significant independent
effects (P � 0.05; n � 32).

Liu et al.

September/October 2019 Volume 4 Issue 5 e00566-19 msystems.asm.org 6

https://msystems.asm.org


respectively, explaining 11.2% and 11.0% of the variation (P � 0.05) (Fig. 3). Besides,
historical temperature anomaly and contemporary climate showed negative indepen-
dent effects on the topsoil archaeal Shannon diversity, explaining 10.3% and 10.1% of
the variation (P � 0.05) (Fig. 3). The other environmental variables had no significant
independent effects on bacterial or archaeal OTU richness, PD, or Shannon diversity
(Fig. 3).

In the subsoil, the environmental variables explained 36.4%, 28.7%, and 41.2% of the
variation in bacterial OTU richness, PD, and Shannon diversity, respectively, with
historical temperature anomaly consistently having the highest positive effect (13.3%,
10.1%, and 13.1%, P � 0.05), whereas other environmental variables had no significant
independent effects (Fig. 3 and 4). The same environmental variables explained 30.5%,
32.7%, and 3.8% of the variation in subsoil archaeal OTU richness, PD, and Shannon
diversity, respectively, with soil pH having the highest positive effects on archaeal OTU
richness (13.6%, P � 0.05) and PD (16.1%, P � 0.05) and no environmental variables
exerting significant effects on archaeal Shannon diversity (Fig. 3 and 4).

The biogeographic patterns in the topsoil-subsoil Bray-Curtis and weighted UniFrac
dissimilarities of bacterial and archaeal communities were dominantly influenced by
environmental variables different from those influencing diversity in the top- and
subsoils (Table 2). Overall, the environmental variables explained 26.1% and 36.5% of

FIG 4 Changes in alpha diversity and community dissimilarity of soil bacterial and archaeal communities with dominant
environmental factors. The purple, salmon, and blue points represent meadow steppe (MS), typical steppe (TS), and desert
steppe (DS). Solid lines indicate significant linear regressions (P � 0.05; n � 32).
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the variation in Bray-Curtis and weighted UniFrac dissimilarities for bacterial commu-
nities and 68.5% and 71.8% for archaeal communities, respectively (Fig. 3). Among
them, soil fertility had the highest negative independent effects on bacterial Bray-Curtis
(17.9%, P � 0.05) and weighted UniFrac (23.9%, P � 0.05) dissimilarities, while other
environmental variables had no significant independent effects (Fig. 3 and 4). Contem-
porary climate had the highest negative independent effect on archaeal Bray-Curtis
(27.9%, P � 0.05) and weighted UniFrac (27.9%, P � 0.05) dissimilarities, followed by
vegetation (22.4%, P � 0.05, for archaeal Bray-Curtis; 26.4%, P � 0.05, for archaeal
weighted UniFrac) and historical temperature anomaly (11.0%, P � 0.05, for archaeal
Bray-Curtis) (Fig. 3 and 4).

Cascading environmental effects on bacterial and archaeal diversity. Building
on the above-mentioned correlation analysis, we used structural equation models to
delineate the causal effects of environmental variables on soil bacterial and archaeal
diversity. The structure equation models (SEMs) are developed from a priori models
(Fig. 5, solid and dotted lines) based on knowledge (13, 16, 43), with potential flows of
causality from all categories of environmental variables to the dependent soil bacterial
and archaeal diversity. The validated SEMs yield good model fits, indicated by nonsig-
nificant �2 tests (P � 0.05), high comparative fit indices (CFI � 0.95), low root mean
square errors of approximation (RMSEA � 0.05 and/or RMSEA � 0.08), and low Akaike
information criteria (AIC) (44).

In the topsoil, the constructed SEMs explained 3.2% and 25.9% of the variation in
bacterial and archaeal OTU richness (Fig. 5). Among the examined environmental
variables, no environmental variables had significantly direct effects on bacterial OTU
richness (Fig. 5). In contrast, contemporary climate had a direct and positive effect on
archaeal OTU richness (Fig. 5). The SEMs explained 26.5% and 16.6% of the variation in
bacterial and archaeal PD, with historical temperature anomaly and contemporary
climate having direct effects on bacterial PD and soil fertility having a direct positive
effect on archaeal PD (Fig. 5). The SEMs explained 39.7% and 47.5% of the variation in
the bacterial and archaeal Shannon diversity indices, respectively (Fig. 5). Vegetation
and soil mineral content had a direct negative effect on the topsoil bacterial Shannon
diversity, while contemporary climate and historical temperature anomaly indirectly
influenced the bacterial Shannon diversity by affecting vegetation and soil mineral
content, respectively (Fig. 5). In contrast, vegetation and soil fertility had direct positive
and negative effects, respectively, on the archaeal Shannon diversity (Fig. 5).

In the subsoil, the constructed SEMs explained 20.8%, 11.3%, and 37.3% of the
variation in bacterial OTU richness, PD, and Shannon diversity, respectively. Among the
environmental variables, historical temperature anomaly had direct positive effects on
the three diversity indices. Besides, soil minerals also had a direct positive effect on the
bacterial PD, and vegetation and soil pH had direct positive effects on the subsoil
bacterial Shannon diversity. In contrast, the SEMs explained 22.3% and 23.7% of
archaeal OTU richness and PD, respectively, with soil pH and soil mineral content
having direct positive effects consistently. No acceptable model was yielded for the
archaeal Shannon diversity (Fig. 5).

TABLE 2 Pearson correlations of community dissimilarity between the top- and subsoils with environmental variablesa

Variable

Pearson correlation

Bacteria Archaea

Bray-Curtis
dissimilarity

Weighted UniFrac
dissimilarity

Bray-Curtis
dissimilarity

Weighted UniFrac
dissimilarity

Historical temperature anomaly �0.03 �0.22 0.59*** 0.42*
Contemporary climate �0.07 �0.31 0.80*** 0.78***
Vegetation �0.03 �0.29 0.77*** 0.78***
Soil fertility difference �0.36* �0.53* 0.39* 0.44*
Soil pH difference �0.16 �0.13 �0.01 0.08
Soil mineral difference 0.02 �0.06 0.17 0.15
aThe one, two, and three asterisks after values in bold indicate significant correlations at a P level of �0.05, �0.01, and �0.001, respectively.
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FIG 5 Structural equation models disentangling major pathways of environmental influences on soil bacterial
and archaeal alpha diversity and community dissimilarity. The bacterial and archaeal alpha diversity in topsoil

(Continued on next page)
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The SEMs explained 12.9% and 28.0% of the variation in the topsoil-subsoil Bray-
Curtis and weighted dissimilarities for bacterial communities and 64.3% and 68.2% of
the variation for archaeal communities, respectively (Fig. 5). Among the six environ-
mental variables, only soil fertility difference had direct and negative effects on
bacterial Bray-Curtis and weighted dissimilarities. In contrast, contemporary climate
had direct effects on the archaeal Bray-Curtis dissimilarity, and vegetation and soil pH
differences had direct effects on archaeal weighted dissimilarities (Fig. 5). Contempo-
rary climate only indirectly influenced archaeal weighted dissimilarities via its effect on
vegetation (Fig. 5).

DISCUSSION

While the biogeographic pattern of soil microbial diversity has long been studied in
the topsoil, its variation in the subsoil compared to that in the topsoil remains largely
unknown. Here, using amplicon-based sequencing of 16S rRNA genes, we show
contrasting microbial diversity patterns and influencing factors in the topsoil versus the
subsoil as well as changes in topsoil-subsoil microbial community dissimilarities along
an aridity gradient in the temperate grasslands of Inner Mongolia. Our results reveal
divergent diversity patterns among different microbial phyla and functional groups at
the regional scale.

Divergent diversity patterns for various microbial groups in the topsoil. Our
study reveals divergent geographic patterns of bacterial and archaeal alpha diversity in
the topsoil along the aridity gradient in the temperate grasslands of Inner Mongolia,
with bacterial diversity showing none (OTU richness and PD) or decreasing (Shannon
diversity) trends, and archaeal diversity (OTU richness, PD, and Shannon diversity)
increasing from southwest toward northeast (Fig. 1; see Fig. S3 in the supplemental
material). These results support our first hypothesis that biogeographic patterns of
diversity vary between bacteria and archaea and among different lineages within these
groups. Among the environmental factors, historical temperature anomaly since LGM
has the greatest independent effects on the topsoil bacterial OTU richness and PD and
influences bacterial diversity directly. This result is consistent with previous findings
that the paleoclimate in the LGM and mid-Holocene also explains a significant propor-
tion of the global variation in topsoil bacterial diversity (16). However, the effect of
historical temperature anomaly can be detected only when its shared effects with other
environmental factors are controlled for (Fig. 3 and 5), suggesting that its effect may be
concealed by other factors and/or due to rapid turnover of microbial population and
organic matter in the topsoil (22, 23). Unlike with bacteria, contemporary climate and
soil fertility dominate the geographic patterns of topsoil archaeal OTU richness and PD,
respectively (Fig. 3). This result suggests that different dimensions of archaeal diversity
may be driven by different environmental factors. Among contemporary climate vari-
ables, aridity index and soil water content have the strongest positive effects on the
topsoil archaeal OTU richness, mainly dominating the geographic pattern of the rare
and unclassified archaeal clades (Table S1 and Data Set S1). Similarly, soil fertility
influences the topsoil archaeal PD, also mainly influencing rare and unclassified ar-
chaeal clades (Data Set S1). Therefore, disentangling the biogeographic distribution of
nonculturable archaea is critical for understanding the biogeography of archaeal
diversity (2, 45).

Vegetation has the strongest yet opposite effects on bacterial and archaeal Shannon
diversity indices (Fig. 5). Furthermore, contemporary climate, including mean annual

FIG 5 Legend (Continued)
(left column) and subsoil (right column) was represented by OTU richness (a and b), phylogenetic diversity (PD)
(c and d), and Shannon diversity (e and f). The community dissimilarity between top- and subsoils was
represented by Bray-Curtis (g) and weighted UniFrac (h) dissimilarities. Black and red arrows indicate positive
and negative effects (P � 0.05), respectively, and their width is proportional to their standardized path
coefficients (numbers on the arrows). Gray dotted and solid arrows indicate insignificant pathways included in
the a priori and final models, respectively. Black double-sided arrows indicate Pearson correlations. R2 indicates
the variance of bacterial and archaeal diversity explained by the models.
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precipitation (MAP), mean annual temperature (MAT), aridity index, and soil water
content, has an indirect and minor influence via its effects on vegetation (see Fig. 5).
This result is somewhat in line with the previous findings that vegetation and contem-
porary climate exert strong effects on the topsoil bacterial Shannon diversity in arid and
semiarid temperate grasslands (15), albeit in opposite directions. Bacterial communities
in the topsoil of the moisture- and N-limited Inner Mongolian grasslands (38, 46) are
dominated by oligotrophic clades (such as Actinobacteria and Chloroflexi) (Fig. 2) due to
their higher substrate affinities relative to those of copiotrophic clades (40). Therefore,
patterns in the diversity of oligotrophic clades and their response to vegetation and
contemporary climate changes may have dominated the patterns and responses of
total bacterial diversity.

Among the variables representing vegetation, plant species richness has a particu-
larly strong negative effect on the bacterial Shannon diversity (Table S1). This result
stands in contrast with previous studies reporting either a positive correlation between
bacterial diversity and plant diversity in the Rocky Mountains in Colorado, USA (12), or
a neutral relationship in global temperate grasslands (11, 47). For clades with different
functions, the Shannon diversity of most oligotrophic clades is negatively correlated
with plant species richness (Data Set S1), consistent with previous studies (38, 40). In
contrast, the Shannon diversity of most copiotrophic clades (such as Betaproteobacteria
and Gammaproteobacteria) is positively correlated with plant species richness (Data Set
S1) (47). These results together further corroborate the dominance of oligotrophic
bacterial clades in relatively infertile grassland such as the studied transect.

In contrast to bacteria, net primary productivity (NPP) and aboveground biomass
rather than plant species richness among the variables of vegetation dominate the
patterns of the archaeal Shannon diversity (Table S1). This suggests that plant carbon
inputs may lead to an increase in the topsoil archaeal Shannon diversity along the
aridity gradient (9, 34). Various archaeal phyla contribute differently to the Shannon
diversity of total archaea. Specifically, the increase in the archaeal Shannon diversity
from southwest toward northeast is dominated by Parvarchaeota and the rare and
unclassified clades (Fig. 2). The Shannon diversity of Parvarchaeota, which can degrade
multiple carbon resources (e.g., starch, cellulose, and disaccharides) (42), is positively
correlated with NPP and aboveground biomass (Data Set S1). By comparison, Euryar-
chaeota are predominantly methanogens and capable of autotrophic growth, confer-
ring their relative independence from plant carbon inputs indicated by NPP and
aboveground biomass (Data Set S1) (2, 41). In contrast, the Shannon diversity of
Crenarchaeota displays a negative correlation with NPP (Data Set S1). As Crenarchaeota
are capable of mixotrophic growth and assimilating carbon from oxidized inorganic
compounds, i.e., carbon dioxide (CO2) or bicarbonate (HCO3

�) (2), they may compete
strongly with plants for N in these N-limited grasslands, thus constraining their diver-
sification under elevated plant growth.

In addition, edaphic factors, including soil mineral content, fertility, and soil pH, also
influence soil bacterial and archaeal diversity. Soil mineral content negatively influences
bacterial OTU richness and Shannon diversity, mainly due to the negative response of
oligotrophic bacterial clades (Data Set S1). The effects of soil mineral content may
reflect the effects of historical temperature anomaly on soil formation (16). Soil fertility
shows causal but opposite effects on archaeal PD and Shannon diversity in the SEMs.
Its effect primarily reflects the indirect effects of contemporary climate, historical
temperature anomaly, and soil mineral content on archaeal diversity (Fig. 5). Among
the variables within the soil fertility group, soil total nitrogen is particularly important
for archaeal diversity (Table S1), consistent with a recent study in eastern China forests
(48). The negative effects of soil fertility and mineral content on archaeal Shannon
diversity are attributed mainly to the negative response of Crenarchaeota (Data Set S1),
which frequently function as ammonia-oxidizing archaea (41).

Contrasting patterns and drivers of microbial diversity in the subsoil versus
topsoil. Our study demonstrates contrasting geographic patterns of microbial diversity
in the subsoil and topsoil of the Inner Mongolian grasslands. While bacterial diversity
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in the topsoil shows no clear trends or decreases from southwest toward northeast, it
increases in the subsoil (Fig. 1). Similarly, archaeal diversity shows opposite patterns in
the topsoil and subsoil. These results support our second hypothesis and suggest that
we cannot infer the biogeographic patterns of microbial diversity in the subsoil from
those in the topsoil. Furthermore, as recent studies indicate that subsoil biogeochemi-
cal processes may be strongly influenced by global climate change (4–6), it is urgent to
further explore patterns as well as drivers of microbial diversity in the subsoil.

Using different statistical analyses, we also find that microbial diversity is influenced
by different variables in the top- and subsoil. In contrast to the dominant control by
historical temperature anomaly, vegetation, and contemporary climate on bacterial
diversity in the topsoil, historical temperature anomaly is the only dominant driver of
bacterial diversity in the subsoil (Fig. 3), which consistently and directly influences the
three dimensions of bacterial diversity (Fig. 5). This result supports our third hypothesis.
Influences of historical temperature anomaly on subsoil bacterial diversity may be
associated with its direct legacy effect on the distribution of soil bacteria during the
past and/or indirect effects on edaphic factors. Andam et al. (49) and Martiny (17)
argued that the influence of climate conditions more than 10,000 years ago can be
found in contemporary soil bacterial populations, such as Streptomyces. Previous
studies also suggest that historical climate (e.g., precipitation) can affect bacterial
diversity directly via its influence on enzyme sensitivity (50) or indirectly via its influence
on soil properties (such as carbon stocks and quality) (16, 28, 51). More importantly, we
show that historical temperature anomaly directly regulates subsoil rather than topsoil
bacterial diversity (except topsoil bacterial PD) (Fig. 5). Microbial population and
organic matter have a much slower turnover and longer residence time in the subsoil
than in the topsoil (22, 23), potentially rendering them less susceptible to contemporary
than historical climate variations. Historical temperature anomaly influences subsoil
bacterial diversity mainly via its effects on the diversity of Actinobacteria, Acidobacteria,
Alphaproteobacteria, Bacteroidetes, Gemmatimonadetes, Betaproteobacteria, Gammapro-
teobacteria, and Verrucomicrobia (Data Set S1), indicating that those clades may have
experienced higher variability during the last glacial period (16, 17). Besides, plant and
soil pH also have direct but weak independent effects on the subsoil bacterial Shannon
diversity, which might be caused by their close relationship with other factors, such as
contemporary climate.

Soil pH and soil mineral content (including contents of silt, sand, and extractable Fe)
significantly explain the patterns of subsoil archaeal OTU richness and PD (Fig. 3), which
is in contrast to the primary drivers of topsoil archaeal diversity (i.e., contemporary
climate, soil fertility, and vegetation for the three dimensions of topsoil archaeal
diversity, respectively). The fact that influences of edaphic variables (soil pH and soil
minerals) outcompete those of vegetation and contemporary climate on subsoil ar-
chaeal diversity might be because root biomass has a low proportion in subsoil, as most
roots usually develop in the topsoil, potentially rendering subsoil archaeal diversity less
susceptible to vegetation and contemporary climate than to edaphic variables (19).

Drivers of topsoil-subsoil microbial community dissimilarity. Given the contrast-

ing microbial diversity patterns in the topsoil versus the subsoil, we analyze patterns of
topsoil-subsoil microbial diversity dissimilarity in terms of taxonomic beta diversity
(Bray-Curtis) and phylogenetic beta diversity (weighted UniFrac) among different mi-
crobial groups. The pairwise community dissimilarities (Bray-Curtis and weighted Uni-
Frac) show contrasting geographic patterns for bacteria and archaea, corroborating our
second hypothesis. Community dissimilarities did not show clear trends for bacteria
from arid and semiarid grasslands in the southwest to mesic grasslands in the northeast
but increased for archaea (Fig. 1). These results are consistent with previous studies (29,
36) and suggest that microbial community composition may significantly vary vertically
across different regions and among different ecosystems (e.g., arid versus mesic
grasslands). They also emphasize the importance of soil depth as an environmental
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gradient that structures soil microbial communities, especially soil archaeal communi-
ties.

To further reveal environmental drivers for the topsoil-subsoil microbial community
dissimilarities, we explored whether topsoil-subsoil differences in soil parameters,
together with other climatic and vegetation variables, contribute to the microbial
community dissimilarities. Both hierarchical partitioning and SEM analyses indicate that
soil fertility difference significantly influences bacterial Bray-Curtis and weighted Uni-
Frac dissimilarities (Fig. 3 and 5). The strong negative effect of soil fertility on commu-
nity dissimilarities of bacteria is driven mainly by the community dissimilarities of some
oligotrophic clades (such as Acidobacteria and Alphaproteobacteria) and some copi-
otrophic clades (such as Gemmatimonadetes, Betaproteobacteria, and Firmicutes) (Fig. 2).
These results support previous findings on the role of soil fertility in shaping soil
bacterial community composition (52). Although historical temperature anomaly, con-
temporary climate, and vegetation have no significant effects on total bacterial com-
munity dissimilarities, they promote shifts in the community composition of some
bacterial clades (such as Armatimonadetes, Nitrospirae, and Gemmatimonadetes) (Data
Set S1).

In contrast to bacteria, the topsoil-subsoil archaeal community dissimilarities are
most strongly driven by contemporary climate (Fig. 3). The effect of contemporary
climate on archaeal community dissimilarities is achieved primarily through its influ-
ence on the dissimilarity of Parvarchaeota and the rare and unclassified clades (Data Set
S1). In addition, vegetation and historical temperature anomaly play a secondary role
in driving archaeal community dissimilarities, indicating that contemporary archaeal
community composition is also influenced by recent plant carbon input (9) and
long-term historical climate change (17). Most archaeal members are considered to be
descendants of very old cell lineages (2) and thus are more easily influenced by
historical temperature anomaly.

Conclusions. Our results demonstrate contrasting biogeographic patterns of diver-
sity between bacteria and archaea in the studied temperate grasslands, highlighting
the varied responses of different microbial groups to environmental variations in the
soil. More importantly, by comparing microbial diversities at different soil depths, we
show that microbial diversity patterns in the subsoil do not mimic those in the topsoil.
Until now, studies have focused primarily on microbial diversity patterns in the topsoil.
Our results suggest that these studies may misrepresent the distributions and diversity
variations of vast microbial communities at soil depths. It is therefore essential to add
a new dimension (soil depth) to our understanding of soil microbial diversity variations
along spatial gradients. Furthermore, historical temperature anomaly plays a more
important and direct role in regulating bacterial diversity in both the topsoil and the
subsoil. Finally, we should mention that microbial communities may vary between
different seasons in the temperate ecosystems, experiencing significant seasonality.
Seasonal variation was not analyzed in this study. The legacy effect of historical climate
change on subsoil microbial diversity and the seasonal dynamics of soil microbial
community need to be considered to better understand and predict the impacts of
future climate change on soil microbial diversity.

MATERIALS AND METHODS
Study area and soil sampling. Our study area spans an �1,500-km transect ranging from arid to

mesic grasslands in Inner Mongolia (ca. 107.929°E to 119.970°E, ca. 39.154°N to 49.618°N) with varied
climatic, edaphic, and vegetation conditions (see Fig. S4 and Data Set S2 in the supplemental material).
This transect includes several vegetation types (desert steppe, typical steppe, and meadow steppe) with
increasing mean annual precipitation (MAP) (ca. 165.0 to 411.5 mm) and decreasing mean annual
temperature (MAT) (ca. 6.4°C to –2.3°C) from southwest toward northeast. The desert steppe is arid and
low in plant species richness, dominated by perennial drought-adaptive species, including Stipa klemenzii
and Stipa breviflora, etc. (53). The typical steppe has the highest coverage in Inner Mongolian, with
intermediate levels of NPP and plant species richness, dominated by Stipa grandis, Stipa krylovii, and
Artemisia frigida, etc. (46). The meadow steppe has the highest NPP and plant species richness,
dominated by Stipa baicalensis and Leymus chinensis, etc. (46). Soil types along this transect include
Calcisols, Kastanozems, and Calcic Chernozem from southwest toward northeast (46).
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Soil samples were collected from 32 randomly selected sites along the transect in August 2015. At
each site, five subplots (1 m by 1 m) were set at the four corners and middle of a large plot (10 m by 10
m). Three subplots along the diagonal were randomly selected for each large plot. Within each subplot,
three soil cores were taken by excavating soils from predetermined depths to a total of 100 cm using a
50-mm-diameter soil auger (54). Soils from the same depth and subplot were thoroughly mixed as a
composite sample and divided into two portions. One portion was kept in an ice box and stored at – 80°C
immediately after being transported to the laboratory for DNA analysis, while the other portion was
air-dried for physicochemical analyses. In this study, only the topsoil (0 to 10 cm) and subsoil (30 to 50
cm) samples were used, and three subplot replicates were thoroughly mixed to constitute a represen-
tative sample at each site. All soils were sieved through a 2-mm mesh, with visible roots removed before
laboratory analysis. The aboveground biomass (AGB) of each species was harvested by clipping the entire
aboveground part, dried at 75°C to a constant weight, and weighed separately for each subplot. The NPP
of each site was estimated using data from the Numerical Terradynamic Simulation Group (NTSG) with
a spatial resolution of 1 by 1 km (http://www.ntsg.umt.edu/project/modis/mod17.php).

Soil physicochemical analysis. Total carbon (TC) and total nitrogen (TN) concentrations of soil
samples were measured by combustion using an elemental analyzer (Vario EL III; Elementar, Hanau,
Germany). Soil OC was calculated as total carbon minus inorganic carbon, which was analyzed volu-
metrically by reaction with hydrochloric acid, as previously described (55). Total phosphorus (TP) was
extracted using perchloric acid-sulfuric acid (HClO4-H2SO4) digestion and measured by a colorimetric
method with molybdenum blue (56). Soil pH was measured using a soil-to-water ratio of 1:2.5 (wt/vol).
Soil texture was examined by laser diffraction using a Malvern Mastersizer 2000 (Malvern Instruments
Ltd., UK) after removal of organic matter and calcium carbonates (55). Dithionite-extractable iron (Fed)
and aluminum (Ald) were extracted from soil using the citrate-bicarbonate-dithionite (CBD) method (57)
and subsequently determined on an inductively coupled plasma-atomic emission spectrometer (ICP-AES;
ICAP6300, Thermo Scientific, USA).

DNA extraction and high-throughput amplicon sequencing. DNA was extracted from soils using
the MoBio PowerSoil DNA isolation kit (MoBio Laboratories, Carlsbad, CA, USA) according to the
manufacturer’s protocol. DNA concentration was first assessed on 1% agarose gels and a NanoDrop
2000/2000C (NanoDrop, Germany) based on 260/280 and 260/230 nm absorbance ratios. According to
the concentration, DNA was diluted to 1 ng �l�1 using sterile water to serve as a template solution.

For bacteria, the V4 region of the 16S rRNA gene was amplified with the forward primer 515F
(5=-GTGCCAGCMGCCGCGGTAA-3=) and the reverse primer 806R (5=-GGACTACHVGGGTWTCTAAT-3=),
generating ca. 253-bp fragments (58). The primers contain a pair of 6-bp error-correcting forward and
reverse barcode sequences, respectively. For archaea, 16S rRNA genes were amplified with primer pair
1106F (5=-TTWAGTCAGGCAACGAGC-3=) and 1378R (5=-TGTGCAAGGAGCAGGGAC-3=) with a pair of 8-bp
forward and reverse barcode sequences, generating ca. 280-bp fragments (59). The primer set 1106F/
1378R mainly targeted methanogenic archaeal 16S rRNA genes but can still detect nonmethanogenic
clades due to nonspecificity (60). All the barcodes were unique to every soil sample.

The PCR was performed in 30-�l reaction systems after mixing 15 �l of Phusion high-fidelity PCR
master mix (New England Biolabs), 0.2 �M forward and reverse primers labeled with specific barcodes,
and about 10 ng template DNA. Thermal cycling was repeated by use of the following procedure: initial
denaturation at 98°C for 1 min, followed by 30 cycles of denaturation at 98°C for 10 s, annealing at 50°C
for 30 s, and elongation at 72°C for 30 s, with a final step of 72°C for 5 min. At the termination of thermal
cycling, PCR products were mixed with the same volume of 1� loading buffer (contained SYBR green)
and used to conduct electrophoresis on a 2% agarose gel for detection. Samples with a bright main strip
between 400 and 450 bp were chosen for further experiments. PCR products were mixed in equal density
ratios, and then PCR mixture products were purified with a GeneJET gel extraction kit (Thermo Scientific).
Equal molar concentrations of PCR products for each sample were pooled. Sequencing libraries were
generated using an Illumina TruSeq DNA PCR-free library preparation kit (Illumina, USA) in accordance
with the manufacturer’s recommendations, and index codes were added. The library quality was
assessed using a Qubit 2.0 fluorometer (Thermo Scientific) and an Agilent Bioanalyzer 2100 system.
Finally, the libraries were sequenced on an Illumina HiSeq 2500 platform, and paired-end reads were
generated in fastq or fasta format with forward and reverse directions assigned to separate files.

Processing of sequencing data. Raw DNA sequences generated from the Illumina HiSeq 2500
platform were processed on the Galaxy pipeline in Metagenomics for Environmental Microbiology
(http://mem.rcees.ac.cn:8080/root/index) (61) at the Research Center for Eco-Environmental Sciences,
Chinese Academy of Sciences. Specifically, the raw DNA sequences assigned to samples were first
cleaned by removing the barcodes and primer sequences. The paired-end reads were then merged by
FLASH (version 1.0.0), a very fast and accurate analysis tool which is designed to merge paired-end reads
(62). The minimum required overlap length of paired-end reads was set to at least 30 bp, and the
maximum overlap length approximated 90% of read pairs. The maximum allowed ratio of number of
mismatches to overlap length was set as 0.25, with the Phred Offset representing the quality values of
bases set as 33 and the standard deviation set as 10% of the average fragment length. After merging the
paired-end reads, the sequences were filtered with the BTRIM program with an average quality score
threshold of �20 over a 5-bp window size and a minimum length of 200 bp (63). The sequences were
further denoised by removing the sequences of less than 200 bp or with ambiguous bases. Finally, the
sequences were trimmed to keep sequences for bacteria between 245 and 260 bp and for archaea
between 272 and 288 bp, followed by exclusion of putative chimeric sequences. Therefore, we obtained
a total of 3,531,946 and 4,086,723 high-quality bacterial and archaeal sequences, respectively, which
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were grouped into 23,458, and 3,152 OTUs for soil bacteria and archaea at 97% sequence similarity, and
corresponding fasta format sequences were obtained using the UPARSE pipeline (64).

The reads of OTUs were annotated by referring to the Greengenes database (65) for taxonomic
information for bacteria and archaea with a minimum 50% confidence score. Because the 505F/806R
primer pair can target a small quantity of archaea due to its marginal nonspecificity, we therefore
removed the OTUs that were annotated as archaea in the following analysis. In addition, the OTUs
annotated as bacteria by the 1106F/1378R primer set targeting archaea were also removed.

To build a phylogenetic tree with the fasta sequences, MAFFT software (66) was first used to align the
sequences, and a maximum likelihood (ML) tree was built using ExaML software (67) for soil bacteria and
RAxML software (68) for soil archaea. Both ExaML and RAxML were obtained from https://cme.h-its.org/
exelixis/software.html. To make the data comparable among different sites, we standardized the OTU
table across all samples to 32,885 and 50,347 sequences (all were the smallest number of sequences
across the sample) for bacteria and archaea per sample, respectively. All the following analyses were
based on the standardized data. By random sampling and generation of rarefaction curves, we found
that the rarefaction curves for all samples for soil bacterial and archaeal OTUs leveled off at the current
sequencing depth.

Climate data. To evaluate the effect of contemporary climate on soil microbial diversity, we used
mean annual precipitation (MAP, mm), mean annual temperature (MAT, °C), aridity index, and soil water
content (SWC, mm month�1) from 1950 to 2000. These variables have been shown to be the dominant
factors of both aboveground and belowground communities in the Inner Mongolian grassland in
previous studies (15). The MAP and MAT data, with a spatial resolution of 30 arc seconds, were obtained
from the WorldClim website (http://worldclim.org/version2) (69). The aridity index is calculated as the
ratio of MAP to potential evapotranspiration (PET). The data on PET and soil water content with a spatial
resolution of 30 arc seconds were obtained from the CGIAR-CSI Global PET database (www.cgiar-csi.org/
data/global-aridity-and-pet-database) and soil water balance database (https://cgiarcsi.community/data/
global-high-resolution-soil-water-balance), respectively (70).

To calculate the climate data of a site with a given longitude, latitude, and altitude, we took the
following steps. First, the grid cells of a data layer within 100 km from the site were extracted. Second,
the longitude and latitude of the centroids of these grid cells were calculated, and their altitudes were
extracted from the GTOPO30 digital elevational model with a resolution of 1 by 1 km (http://eros.usgs
.gov/#/Find_Data/Products_and_Data_Available/gtopo30_info) using their centroid coordinates. Third,
the following model was established for each variable separately, using the extracted climate data,
longitude, latitude, and altitude of these grid cells:

MMT �or MMP� � a � �b � longitude� � �c � latitude� � �d � altitude�
where a, b, c, and d are regression coefficients, MMT is mean monthly temperature, and MMP is mean
monthly precipitation. Fourth, the value of each variable at the focal plot were calculated separately by
inputting the longitude, latitude, and altitude into the corresponding model.

To evaluate the effect of historical climate change on soil microbial diversity, we calculated the
anomaly of mean annual temperature (T anomaly) as contemporary mean annual temperature minus
that at the Last Glacial Maximum based on MIROC (Model for Interdisciplinary Research on Climate) (71).

Statistical analysis. OTU (operational taxonomic unit) richness, phylogenetic diversity (PD), and
Shannon-Wiener diversity (here called Shannon diversity) were used to estimate the alpha diversity in
topsoil and subsoil microbial communities with the vegan (version 2.4-5) package in R (version 3.4.3) (72).
Bray-Curtis and weighted UniFrac dissimilarities were used to estimate the taxonomic and phylogenetic
beta dissimilarities between paired topsoil and subsoil microbial communities, respectively, using vegan
and phyloseq (version 1.22.3) packages in R (73).

To explore the drivers of microbial alpha and beta diversity variations, 19 variables were compiled or
measured, including historical temperature anomaly since LGM, MAP, MAT, aridity index, soil water
content, plant aboveground biomass, plant species richness, NPP, soil total nitrogen, soil total carbon,
soil organic carbon, soil total phosphorus, soil pH, soil-extractable Ca, soil-extractable Mg, soil-extractable
Fe, soil-extractable Al, soil clay, soil silt, and soil sand (Fig. S4, Table S1, and Data Set S2; see details in
Text S1). To avoid collinearity between variables in the following regression analysis, we classified all
parameters into six groups based on their ecological implications: (i) soil fertility (including soil total
nitrogen, soil total carbon, soil organic carbon, and soil total phosphorus); (ii) soil pH; (iii) soil mineral
content (including soil silt, soil sand, soil-extractable Fe, and soil-extractable Al); (iv) vegetation (including
plant aboveground biomass, plant species richness, and NPP); (v) contemporary climate (including MAP,
MAT, aridity index, and soil water content), and (vi) historical temperature anomaly. Differences in soil
properties between the topsoil and the subsoil were calculated as follows:

topsoil-subsoil difference � �Xtop � Xsub� ⁄ �Xtop � Xsub� � 100%

where X represents the soil property, top represents topsoil, and sub represents subsoil.
Principal-component analysis (PCA) was conducted for each group encompassing more than one

variable, and the first principal component (PC 1) was extracted to represent each variable group. These
components explained 62.2% to 92.6% of the variations in the original variables (Table S2). The feasibility
of using PCA was checked using the Kaise-Meyer-Olkin (KMO) test and the Bartlett test of sphericity (BS)
(Table S2), which indicates that PCA is appropriate to use for our data (43).

Relationships of microbial diversity and topsoil-subsoil community dissimilarity with environmental
variables were assessed by a simple Pearson correlation using the R package Hmisc (74). To further
compare the independent effects of different environmental factors, we conducted hierarchical parti-
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tioning using the R package hier.par (75). The relative independent effects refer to their independent
effects in the total variations.

Structure equation models (SEMs) were used to evaluate the direct and indirect effects of environ-
mental factors on microbial diversity and topsoil-subsoil community dissimilarity (13). The SEMs were
fitted by maximum likelihood estimation using AMOS 17 (13). For the categories of environmental
variables, the PC 1 of the four variable groups and two individual variables (historical temperature
anomaly and soil pH, which were standardized) were used as predictors. A priori models were evaluated
and optimized by stepwise exclusion of variables with nonsignificant regression weights and stepwise
inclusion of additional correlations based on modification indices and goodness of fit for the initial model
(43). Due to our relatively small data set with a nonnormal distribution, the models were modified with
the Satorra-Bentler correlation to improve the chi-square approximation of goodness-of-fit test statistics
and confirmed using the Bollen-Stine bootstrap test (43). Models were considered to have a good fit
when the bootstrap P value was within 0.1 to 1.0. Since there is no single universally accepted test of
overall goodness of fit for SEMs, we also used the �2 test, the root mean square error of approximation
(RMSEA), the CFI, and the AIC as criteria to test the goodness of the model fit (13). The model has a good
fit when the �2 and AIC are low, the CFI is high (CFI � 0.95), and the RMSEA is near 0 (RMSEA values of
�0.05 can be considered a good fit; values between 0.05 and 0.08 can be considered an adequate fit)
(44). We checked the bivariate relationships between all variables to ensure that a linear model was
appropriate (Fig. S5).

Data availability. HiSeq 2500 sequencing data have been deposited in the public National Center
for Biotechnology Information (NCBI) database under BioProject accession number PRJNA557316.
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