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Synthetically combining the C-40 side-chain structural features of the antiviral candidates 50-methylaris-
teromycin and 50-homoaristeromycin into a diastereomeric pair of C-40 side-chain dihydroxylated aris-
teromycins (6 and 7) is reported. Broad antiviral analyses of the both targets found promising effects
towards HBV (6, 6.7 lM and 7, 7.74 lM) and HCMV (only 7, 0.72 lM). No other activity was found.
Neither of the diastereomers was cytotoxic in the assays performed.

� 2018 Elsevier Ltd. All rights reserved.
While the report of biologically inactive carbocyclic thymidine
(1) in 19621 introduced a new class of nucleosides, it was the syn-
thesis of racemic carbocyclic adenosine (aristeromycin, 2)2 and
subsequent isolation of the (�)-enantiomer from Streptomyces
citricolor3 that the era of carbocyclic nucleosides began and became
a focal point for the pursuit of carbocyclic nucleosides as therapeu-
tic candidates and as probes for biological processes.4 Our interest
in aristeromycin and analogs therefrom began with the report of
50-noraristeromycin (3) with activity towards human
cytomegalovirus.5 Over the years6 since 1992 we have looked back
to see what analogs lie in the wake of our work that suggested a
further look into structural possibilities. Recently, in that regard,
we were drawn to our reports that 50-methylaristeromycin (4)7

and 50-homoaristeromycin (5)8 have meaningful antiviral proper-
ties that had not been developed through analog design. This stim-
ulated us to consider combining the two side chain features of 4
and 5 into diastereomers 6 and 7 (whose designation is derived
from 50-homoaristeromycin in blue possessing a 50-hydroxyl).
The outcome of that pursuit is presented here (see Fig. 1).

Oxidation of alkenes to glycols is well established in the syn-
thetic organic toolbox. Thus, for this investigation, the known N-
6 protected carbocyclic adenine nucleoside with the unsaturated
C-40 side chain 8 (available from D-ribose)9 served as the starting
point. To achieve the requisite diastereomers 9a and 9b ADmix-a
(for 9a) and ADmix-b (for 9b) were employed, respectively. Depro-
tection of 9a and 9b with 2 N hydrochloric acid produced 6 and 7.
The stereochemistry of 6 and 7 was determined by mesylation of
9a/9b to 10a/10b that were deprotected to 11a/11b. Reductive
removal of the 60-mesylate with lithium aluminum hydride yielded
12a/12b (a convenient, alternative synthesis of those diastere-
omers). The spectroscopic properties of 12a were identical to that
previously reported for 4 (same as 12a).7 To address any possible
structural ambiguity in this study, confirmation of 6 was achieved
by an X-ray structural analysis.10

In an antiviral analysis,11 both 6 and 7 showed moderate activ-
ity towards hepatitis B (EC50 7.1 lM and 7.4 lM, respectively; CC50

>100 lM)) while only 7 was potent against human cytomegalo-
virus (EC50 0.72 lM; CC50 >300 lM). Compound 6 was found to
lack the significant yellow fever properties reported for 4 indicat-
ing addition of a hydroxyl to the methyl carbon of 4 (12a), resulted
in an undesirable outcome for future development of 4 as a yellow
fever antiviral candidate. A similar conclusion can be reached for
the loss of the orthopox activity of 5 due to the presence of the
extra hydroxyl group on the C-50 position of both diastereomers
6 and 7 (see Scheme 1.).
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Fig. 1. Relevant carbocyclic nucleosides.
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Scheme 1. Synthetic steps to targets 6 and 7. Reagents and conditions: (a) ADmix-a for 9a; ADmix-b for 9b, t-butyl alcohol, H2O, 67% for 9a; 79% for 9b; (b) 2 N HCl, MeOH,
93% for 6, 86% for 7; (c) MsCl, Et3N, CH2Cl2, 80% for 10a, 78% for 10b; (d) 2 N HCl, MeOH, 79% for 11a, 78% for 11b; (e) LiAlH4, THF, 89% for 12a, 90% for 12b.
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Compounds 6 and 7 were inactive towards polio virus, SARS
coronavirus, respiratory syncytial virus, hepatitis C virus, herpes
simplex 1 and 2 viruses, vaccinia virus, dengue, Rift Valley fever,
Venezuelan equine encephalitis, H1N1 influenza A virus, and West
Nile virus. No cytotoxicity was found for either 6 or 7 in the assays
conducted.

In conclusion, a convenient synthesis of the diastereomeric
hybridization of 50-methylaristeromycin (4) and 50-homoaris-
teromycin (5) to 50-hydroxy-50-homoaristeromycin (6 and 7)
has provided a new C-40 structural entity for the aristeromycin
family of analogs that showed potent HBV (6 and 7) and moder-
ate HCMV activities (7). It should be noted that the hydroxyl
substituents offer the opportunity of making substituent changes
at those centers for possible new aristeromycin structural
variations.
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