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Brain cancer and leukemia are the most common cancers diagnosed in the

pediatric population and are often treated with lifesaving chemotherapy.

However, chemotherapy causes severe adverse effects and chemotherapy-

induced peripheral neuropathy (CIPN) is a major dose-limiting and debilitating

side effect. CIPN can greatly impair quality of life and increases morbidity of

pediatric patients with cancer, with the accompanying symptoms frequently

remaining underdiagnosed. Little is known about the incidence of CIPN, its

impact on the pediatric population, and the underlying pathophysiological

mechanisms, as most existing information stems from studies in animal models

or adult cancer patients. Herein, we aim to provide an understanding of CIPN in the

pediatric population and focus on the 6 main substance groups that frequently

cause CIPN, namely the vinca alkaloids (vincristine), platinum-based antineoplastics

(cisplatin, carboplatin and oxaliplatin), taxanes (paclitaxel and docetaxel),

epothilones (ixabepilone), proteasome inhibitors (bortezomib) and

immunomodulatory drugs (thalidomide). We discuss the clinical manifestations,

assessments and diagnostic tools, as well as risk factors, pathophysiological

processes and current pharmacological and non-pharmacological approaches

for the prevention and treatment of CIPN.
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1 Introduction

Chemotherapy-induced peripheral neuropathy (CIPN) is defined as dysfunction of

peripheral nerves caused by the use of one or more chemotherapeutic agents. The

prevalence of CIPN amongst pediatric patients and cancer survivors can approach >90%
depending on the patient population, chemotherapeutic agent used, the cumulative dose

administered, and the criteria used to diagnose CIPN (Purser et al., 2014; Kandula et al., 2016).

While all main classes of chemotherapy agents are known to cause CIPN, vinca alkaloids and

platinum compounds are used more commonly in pediatric populations and are highly
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associated with pediatric CIPN (Kandula et al., 2016). These agents

affect the function of the sensory, motor and/or autonomic

peripheral nervous systems, leading to the development of

debilitating and untreatable symptoms. While CIPN caused by

the different classes of chemotherapeutics can manifest with

similar symptoms, there are key differences in the underlying

molecular mechanisms of neurotoxicity (Starobova and Vetter,

2017). These symptoms are debilitating as they can persist for

months or years after the discontinuation of the chemotherapy

treatment, resulting in a need to develop effective treatment strategies

for CIPN to improve the long-term functional performance and

quality of life of pediatric patients with cancer. However, we lack a

detailed understanding of the underlying mechanism of CIPN in

children that is essential for the development of effective prevention

or treatment strategies (Kandula et al., 2016; Kandula et al., 2018). In

the treatment of childhood cancer, chemotherapy is often

administered as a complex regimen that combines multiple

drugs, causing synergistic neurotoxicity and complicating the

identification of specific therapeutic targets. Despite past efforts to

develop effective treatments for CIPN, no successful approach has

been identified to date. Instead, the amelioration of symptoms in

pediatric patients often relies on the reduction, interruption, or

cessation of the chemotherapy treatment, drastically decreasing

their likelihood of survival (Grisold et al., 2012; Smith et al., 2021).

This review focusses on the 6 main substance classes of

chemotherapeutics that frequently cause CIPN, the vinca

alkaloids (vincristine), platinum-based antineoplastics (cisplatin,

carboplatin and oxaliplatin), taxanes (paclitaxel and docetaxel),

epothilones (ixabepilone), proteasome inhibitors (bortezomib),

and immunomodulatory drugs (thalidomide). While there is data

to suggest that the drugs doxorubicin and cyclophosphamide, often

used in the treatment of childhood leukemia or brain cancers, may

cause neuropathy, there is insufficient evidence of this in pediatric

populations and therefore will not be included in this review

(Lipshultz et al., 1991; Mulrooney et al., 2009). We discuss the

clinical manifestations, risk factors and pathophysiological processes

involved in pediatric CIPN. Specifically, we highlight the unique

features of pediatric CIPN compared to adult CIPN and discuss

diagnostic tools for childhood CIPN. Finally, we critically evaluate

the efficacy of current pharmacological and non-pharmacological

approaches for the prevention and treatment of pediatric CIPN and

discuss future advances in development of CIPN treatments.

2 Childhood and adolescent cancers

The most common types of cancer diagnosed in

children <14 years include leukemias and cancers of the central

nervous system (CNS) (for full list see Table 1) (Siegel et al., 2022).

On the other hand, the most common types of cancer diagnosed in

adolescents aged 15 to 19 are Hodgkin’s lymphoma and thyroid

cancer (for full list see Table 1) (Siegel et al., 2022). It has been

predicted that by 2030, 6.7 million children will be diagnosed with

cancer worldwide (Ward et al., 2019). Despite the significant

improvement in the 5-year relative survival, from 73% in 1994 to

86% in 2016, cancer remains the leading cause of death by disease for

children and adolescents in first-world countries (Youlden et al.,

2015). Unlike adult cancers, which are predominantly caused by

combination of environmental (physical, chemical and biological)

carcinogens with genetic factors, there is no evidence that

environmental factors cause childhood cancer (Soto and

Sonnenschein, 2010; de Martel et al., 2020). Existing data suggest

that the presence of certain genetic risk factors may be the cause,

however, further studies in pediatric populations are required (Daub

et al., 2021). The type of cancer, the extent of spread, the response of

the tumour to chemotherapy treatment and the activity of the

immune system distinguish pediatric cancers from adult tumors,

necessitating that these malignancies are approached as separate

diseases (Ries, 1999). The standard of care therapeutics for cancers

such as leukemia and brain cancer include neurotoxic

chemotherapeutics that cause dose-limiting, long-term adverse

effects, decreasing the overall survival (Smith et al., 2021).

3 The use and mode of action of
chemotherapy drugs

The six following chemotherapeutic classes are indicated for the

treatment of pediatric cancers (for full list see Table 2). Vinca alkaloids

are a class of drugs derived from the Madagascar periwinkle plant,

Catharanthus roseus G. Don. The 4 major vinca alkaloids that are

used clinically are vincristine (first generation), vinblastine (first

generation), vindesine (second generation) and vinorelbine (third

generation). The third-generation agents are reportedly less

neurotoxic and associated with a decreased frequency of adverse

events (Budman, 1997). Vinca alkaloids aremitotic inhibitors, and are

frequently used in pediatric chemotherapy regimens, particularly for

blood cancers and solid tumors. Vinca alkaloids cause apoptosis of

cancer cells by binding to the β-tubulin subunit of microtubules and

to the spindle proteins in the S phase of the cell cycle, inhibiting

microtubule formation, which results in mitotic arrest of the cancer

cells in metaphase (Himes, 1991; Downing, 2000).

Taxanes inhibit microtubule polymerization, leading to

inhibition of their function and mitosis, followed by apoptosis

of cancer cells (Schiff and Horwitz, 1980; Downing, 2000).

Paclitaxel and docetaxel are only recommended to be used for

the treatment of refractory or recurrent solid pediatric tumors

(Hurwitz et al., 1993). However, phase I and II studies in

pediatric populations show that docetaxel elicits only partial

response in Ewing sarcoma and shows low efficacy in other

solid tumor types, such as medulloblastoma and neuroblastoma

(Oppert et al., 1991; Seibel et al., 1999).

Epothilones are another group of microtubule-stabilizing agents

that cause mitotic arrest. Ixabepilone, a semi-synthetic analog of

epothilone B, is used in the treatment of refractory breast cancers in

adults and is being evaluated for use with pediatric refractory solid

Frontiers in Molecular Biosciences frontiersin.org02

Tay et al. 10.3389/fmolb.2022.1015746

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1015746


tumors given encouraging preclinical data (Low et al., 2005; Jacobs

et al., 2010; Genovesi et al., 2021) (Figure 1).

Platinum-based compounds, particularly cisplatin, carboplatin

and oxaliplatin, cause apoptotic cell death by binding to DNA

strands leading to cancer cell arrest and cell death. They are

frequently used in the treatment of solid tumors in the adult and

pediatric population (Szymkowski et al., 1992; Mello et al., 1995).

Bortezomib is a dipeptide derivative of boronic acid that

inhibits the mammalian 26S proteasome and the secretion of

cytokines in the bone marrow (Kane et al., 2003). Consequently,

it induces apoptosis and interferes with downstream signaling

pathways such as angiogenesis and cell proliferation (Hideshima

et al., 2001). It is the first proteasome inhibitor that was approved

by the Food and Drug Administration (FDA) for the treatment of

multiple myeloma and mantle cell lymphoma and is used to treat

relapsed leukemias and refractory lymphomas in the pediatric

population (Bertaina et al., 2017).

Thalidomide, an immunomodulatory drug, is a potent vascular

endothelial growth factor (VEGF) inhibitor, and it is frequently used

to treatmultiplemyeloma in adults (Franks et al., 2004; Kenyon et al.,

1997; D’Amato et al., 1994). It is used to treat inflammatory

conditions such as juvenile rheumatoid arthritis, vasculitis,

refractory inflammatory bowel disease, graft versus host disease,

and less commonly, medulloblastoma and hepatocellular carcinoma

in pediatric patients (Kandula et al., 2016).

4 Incidence of pediatric
chemotherapy-induced peripheral
neuropathy

Pediatric CIPN is a common, debilitating side effect of

chemotherapy and the actual incidence in pediatric populations is

probably higher than the reported incidence (Table 2). Especially in

very young pediatric populations, CIPN is often un- or under-

recognized, as young children are less able to verbally communicate

and, as such, the diagnosis often relies on reporting performed by a

parent/care-giver, or using unstandardized diagnostic tools and

assessments of CIPN (Calhoun et al., 2003; Gilchrist et al., 2014).

Additionally, the extent of neuronal damage and the severity of

symptoms depends on the chemotherapeutic agents used, the

cumulative dose of the chemotherapy, the chemotherapy

regimen, the duration of the chemotherapy, the site of the

neuronal damage (e.g., myelin sheath, axon, cell body) and

concomitant neuropathies and diseases (Kandula et al., 2016).

The incidence of vincristine-induced peripheral neuropathy

in children highly depends on the cumulative dose of vincristine

and was reported as high as 90% (Anghelescu et al., 2011;

Langholz et al., 2011; Lavoie Smith et al., 2015; Kandula et al.,

2016). For example, only 10% of patients who received

cumulative doses of 5–10 mg/m2 of vincristine experienced

severe peripheral neurotoxicity compared to 20%–52% of

patients who received cumulative doses 30 mg/m2 (Langholz

et al., 2011). Additionally, conventional nerve conduction

studies established that >90% of patients who were given

vincristine had motor neuropathy after 4–5 weeks of

treatment (Courtemanche et al., 2015a). The differences in

reported incidence from these studies emphasize that the

diagnosis of CIPN often depends on the diagnostic tools used,

and that CIPN is likely widely under-reported.

Oxaliplatin is the most neurotoxic compound in the

platinum-based group, with incidence of CIPN reported to be

as high as 50% (Fouladi et al., 2006; Spunt et al., 2007a; Macy

et al., 2013). Cisplatin and carboplatin are less neurotoxic

compared to oxaliplatin, however, the incidence of cisplatin or

carboplatin-induced neuropathy in the pediatric population is

rather unclear, as there is lack of clinical studies and both

derivates are almost exclusively administered with other

chemotherapy agents, such as vincristine or paclitaxel

(Kandula et al., 2016).

TABLE 1 Common types of cancer arising in children and adolescents (Siegel et al., 2022).

Types of cancer in children 0–14 years Percentage of
cases (%)

Types of cancer in adolescents 15–19 years Percentage of
cases (%)

Leukemia (acute lymphoblastic leukemia and acute myeloid leukemia) 29 Hodgkin’s lymphoma 15

Central nervous system tumors 26 Thyroid cancer 11

Neuroblastoma 6 Central nervous system tumors 10

Wilm’s tumor 5 Acute lymphoblastic leukemia 8

Non-Hodgkin’s lymphoma 5 Non-Hodgkin’s lymphoma 8

Hodgkin’s lymphoma 3 Testicular cancer 8

Rhabdomyosarcoma 3 Soft tissue sarcoma 7

Retinoblastoma 2 Bone tumors (osteosarcoma and Ewing’s sarcoma) 7

Osteosarcoma 2 Melanoma 6

Ewing’s sarcoma 1 Acute myeloid leukemia 4

Frontiers in Molecular Biosciences frontiersin.org03

Tay et al. 10.3389/fmolb.2022.1015746

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1015746


TABLE 2 Summary of the mode of action and incidence of pediatric CIPN associated with various chemotherapeutic agents. WHO scale of CIPN grades: Grade 1: paresthesia and/or decreased tendon
reflexes; Grade 2: severe paresthesia and/or mild weakness, Grade 3: intolerable paresthesia and/or marked motor loss; Grade 4: paralysis (Miller et al., 1981).

Cancer type Mode of action on cancer cells Incidence References

Vincristine • Acute lymphoblastic leukemia Binds to tubulin and inhibits microtubules formation resulting
in mitotic arrest at metaphase

Any grade: 78%–100% Anghelescu et al. (2011), Langholz et al. (2011),
Lavoie Smith et al. (2015)• Hodgkin’s lymphoma

• Non-Hodgkin’s lymphoma Grade 3/4: 10%–52%

• Neuroblastoma

• Rhabdomyosarcoma

• Wilms’ tumor

• Embryonal tumors of the CNS (medulloblastoma, atypical
teratoid/rhabdoid tumor (AT/RT), pineoblastoma, etc)

Oxaliplatin • Refractory or relapsed solid tumors Binds to DNA, forming cross-links that prevent DNA
replication, transcription, leading to cell cycle arrest

Grade 1/2: 37%–50% Fouladi et al. (2006), Spunt et al. (2007a),
Macy et al. (2013)Grade 3/4: 3%–8%

Cisplatin • Relapsed and refractory lymphoma Binds to DNA, forming cross-links that prevent DNA
replication, transcription, leading to cell cycle arrest

Unclear as existing evidence is
mostly from case reports

Kandula et al. (2016)

• Low-grade gliomas

• Embryonal tumors of the CNS (medulloblastoma, AT/RT,
pineoblastoma)

• Neuroblastoma

• Retinoblastoma (Frequently used in combination with
vincristine)

Carboplatin • Solid tumors Binds to DNA, forming cross-links that prevent DNA
replication, transcription, leading to cell cycle arrest

Grade 1/2: 4% Loss et al. (2004)

• Low-grade glioma

• Retinoblastoma

Paclitaxel • Under evaluation for recurrent or refractory solid pediatric
tumors

Microtubule stabilizing agent, causes G2/M cell cycle arrest Grade 1/2: 11%–50% Hurwitz et al. (1993), Doz et al. (2001),
Horton et al. (2008), Geller et al. (2009)Grade 3/4: 6%–12%

Docetaxel • Under evaluation for recurrent or refractory solid pediatric
tumors

Inhibits microtubules disassembly, resulting in G2/M cell cycle
arrest and cell death

Grade 3/4: 5% Blaney et al. (1997), Seibel et al. (1999),
Zwerdling et al. (2006), Yoon et al. (2014)

Ixabepilone • Under evaluation for refractory solid pediatric tumors Suppresses microtubules dynamics, resulting in G2/M cell cycle
arrest and cell death

Grade 1/2: 22% Widemann et al. (2009), Jacobs et al. (2010)

Grade 3/4: 2%–5%

Bortezomib • Relapsed leukemias and refractory lymphomas Reversibly inhibits the 26S proteasome resulting in disruption of
various cell signaling pathways and cell cycle arrest

Grade 1/2: 10%–18% Blaney et al. (2004), Muscal et al. (2013),
Horton et al. (2014)Grade 3/4: 6%

Thalidomide • Medulloblastoma Inhibitor of angiogenesis, prevents the production of
interleukin-6, activates apoptotic pathways via caspase
8-mediated cell death

Grade 2 or greater: 20%–40% Priolo et al. (2008), Lazzerini et al. (2013),
Lazzerini et al. (2015)• Hepatocellular carcinoma
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Paclitaxel was reported to cause CIPN in up to 50% of

pediatric patients, however the cumulative dose and

neurotoxicity relationship is unclear (Hurwitz et al., 1993; Doz

et al., 2001; Horton et al., 2008; Geller et al., 2009). On the other

hand, only 5% of pediatric patients receiving docetaxel developed

CIPN, particularly those that were administered 4 or more

courses of docetaxel (Blaney et al., 1997; Seibel et al., 1999;

Zwerdling et al., 2006; Yoon et al., 2014).

Phase I and II studies investigating the use of bortezomib in

pediatric patients have shown that 10%–18% of children who

were given 1–2 courses of bortezomib experienced grade 1 or

2 CIPN and up to 6% of children experienced Grade 3 or 4 CIPN

(Blaney et al., 2004; Muscal et al., 2013; Horton et al., 2014).

While there is a lack of toxicity data in children for

epothilones, data from adult clinical trials has shown that up

to 67% of patients that received ixabepilone experienced sensory,

motor and autonomic neuropathy (Vahdat et al., 2012). It

remains a challenge to estimate the incidence of neurotoxicity

caused solely by ixabepilone as patients who are treated with this

agent have typically been given other neurotoxic treatments. Due

to the lack of evidence and information on long-term effects, the

exact activity of ixabepilone in the peripheral nervous system and

reversibility of neuropathy after the cessation of treatment

remain unknown. However, the few studies involving children

that have been reported suggest that ixabepilone causes grade

1 sensory neuropathy in up 22% of cases, although the number of

patients examined was limited (Widemann et al., 2009; Jacobs

et al., 2010).

Similarly, the data assessing thalidomide-induced

neuropathy in the pediatric population is scarce. Two clinical

studies have shown that 20%–40% of patients receiving a dose of

1.5–3 mg/kg/day of thalidomide required either dose reduction

or treatment cessation due to CIPN. While several patients have

experienced coasting (the delayed emergence of CIPN symptoms

after drug treatment), 50% experienced an improvement in

electrophysiological abnormalities with the gradual reduction

in thalidomide dose (Priolo et al., 2008; Lazzerini et al., 2013;

Lazzerini et al., 2015).

5 Clinical manifestations of pediatric
chemotherapy-induced peripheral
neuropathy

Pediatric CIPN is often characterized by a combination of

sensory, motor, and autonomic symptoms of different intensities

(Table 3). CIPN symptoms interfere with the quality of life of

pediatric patients and cancer survivors, and, ultimately, with

adherence to optimal clinical protocols, as dose reduction is often

the only effective strategy to control CIPN (Seretny et al., 2014).

The severity and types of symptoms depend on the

chemotherapy agents used and the cumulative dose; however,

patient-patient variability in sensitivity to chemotherapy and, in

turn, the development of CIPN is also observed. Additionally,

different combinations of agents used within a chemotherapy

regimen often have cumulative effects. Sensory symptoms

include paresthesia, dysesthesia, hyperalgesia, allodynia,

numbness, pain and loss of proprioception. These typically

develop first in the feet and hands, presenting as a “stocking

and glove” distal distribution, with the longest axons displaying

abnormalities first before spreading proximally as the symptoms

progress (Bjornard et al., 2018). In severe instances, these

symptoms may result in a loss of sensory perception (Seretny

et al., 2014). The occurrence of motor symptoms is less frequent,

and include gait abnormalities, balance deficits, fine motor

disability and muscle weakness (Kandula et al., 2018).

Similarly, autonomic symptoms do not occur as often as

sensory symptoms and consist of diarrhea, constipation,

urinary retention, incontinence, paralytic ileus, and orthostatic

hypotension. The severity of CIPN symptoms is proportional to

the cumulative dose of chemotherapy administered and may also

develop weeks or months after the completion of treatment

(Maestri et al., 2005). Typically, oxaliplatin and paclitaxel have

been observed to result in acute CIPN within hours after infusion

(Argyriou et al., 2013a). Additionally, some patients treated with

chemotherapy drugs, such as oxaliplatin, may experience the

worsening of symptoms post-treatment (Park et al., 2013).

Vincristine-induced neurotoxicity occurs during the

early stages of treatment, typically within the first month

(Kandula et al., 2016). Vincristine-induced motor

neuropathy is more prominent in children compared to

adults, and manifests as ataxia, foot drop, muscle

weakness and gait abnormalities that can be symmetric or

asymmetric (Arzanian et al., 2009; Purser et al., 2014;

Courtemanche et al., 2015b). Sensory symptoms include

paresthesia and dysesthesia, and autonomic symptoms

often include constipation, urinary retention, and

orthostatic hypotension (Arzanian et al., 2009; Anghelescu

et al., 2011; Purser et al., 2014; Courtemanche et al., 2015b).

Vincristine also causes cranial neuropathies and a decrease

of deep tendon reflexes that manifests as ptosis, hoarse voice,

and extraocular eye movement (Lavoie Smith et al., 2015;

Kerckhove et al., 2017; Bjornard et al., 2018). Vindesine, a

second generation vinca alkaloid, has greater toxicity

compared to vincristine, limiting its clinical use (Vats

et al., 1992). On the other hand, vinorelbine (third

generation) is less neurotoxic than vincristine, possibly

due to its decreased capacity to bind to axonal

microtubules (Binet et al., 1990).

Oxaliplatin is a third-generation platinum derivative that

causes acute and chronic neuropathy. Phase I and II studies in

pediatric patients have shown that oxaliplatin causes

neurotoxicity that manifested as cold dysesthesia,

laryngopharyngeal and limb paresthesia and dysesthesia,

muscle cramps and jaw pain. Additionally, oxaliplatin causes

diarrhea and constipation (Spunt et al., 2007b; Geoerger et al.,
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2008; Beaty et al., 2010; Geoerger et al., 2011). Cisplatin is

commonly used in combination with vincristine and existing

evidence is derived from case reports which proves establishing

the incidence and clinical symptoms of peripheral neuropathy in

pediatric patients difficult. However, cisplatin causes paresthesia,

tingling in the extremities, numbness, mechanical and thermal

hyperalgesia, loss of vibration sense and taste, weakness, tremor,

constipation, and diarrhea (Kandula et al., 2016).

Paclitaxel causes dose limiting neuropathy that occurs early,

within 1 week of the infusion, and is characterized predominantly

by sensory symptoms, such as tingling, numbness and burning

pain in a “stocking and glove” distribution. Myalgia and

gastrointestinal disturbances are also common (Hayashi et al.,

2003; Horton et al., 2008; Kerckhove et al., 2017; Bjornard et al.,

2018). Adult patients who were administered large cumulative

doses have also been observed to exhibit motor symptoms (Freilich

et al., 1996), however, such doses are rarely used in pediatric

practice (Kandula et al., 2016).

There is limited data describing the development of CIPN

symptoms following ixabepilone and bortezomib treatment

in the pediatric populations. However, in a phase I study of

ixabepilone in children and adolescents with refractory solid

tumors, the neuropathy reported was mostly mild,

characterized predominantly by sensory symptoms

(Widemann et al., 2009; Jacobs et al., 2010). Bortezomib

causes sensory neuropathy characterized by sensory loss and

suppression of deep tendon reflexes that appears to be more

common in adults than in children (Blaney et al., 2004;

Messinger et al., 2012; Kerckhove et al., 2017; Bjornard

et al., 2018).

Thalidomide causes sensory, motor and autonomic

neuropathy that is characterized by paresthesia, numbness,

mild motor impairment and constipation (Smith et al.,

2008). Thalidomide-induced neuropathy in children is

dose-dependent and associated with proximal weakness.

Reduction of thalidomide dose leads to improvement of

electrophysiological abnormalities (Lazzerini et al., 2015),

however, thalidomide neuropathy may also progress after

discontinuation of the treatment (Fleming et al., 2005;

Bramuzzo et al., 2017).

FIGURE 1
Mode of action of chemotherapeutic agents in cancer cells. (A) Thalidomide inhibits angiogenesis, prevents the production of interleukin-6 and
activates apoptotic pathways via caspase 8-mediated cell death. (B) Chemotherapy affects the tumor immune microenvironment. (C) Vincristine
binds to the β-tubulin subunit of microtubule in the S phase of the cell cycle, which leads to the inhibition of microtubule assembly. The disruption of
mitotic spindle formation results in the mitotic arrest of cancer cells at metaphase and subsequent cell death. (D) Paclitaxel, docetaxel and
ixabepilone bind to the β-tubulin subunit of microtubule and inhibit microtubule disassembly, which causes G2/M cell cycle arrest and cell death. (E)
Bortezomib reversibly inhibits the 26S proteasome, which disrupts proteasome-mediated proteolysis. This disruption causes the accumulation of
ubiquitinated proteins and subsequent cell death. (F) Oxaliplatin, cisplatin and carboplatin bind to DNA to form cross-links that prevent DNA
replication and transcription, leading to cell cycle arrest and apoptosis. (G) Vincristine, paclitaxel and docetaxel alter the mitochondrial electron
transport chain while cisplatin results in the increased production of reactive oxygen species.

Frontiers in Molecular Biosciences frontiersin.org06

Tay et al. 10.3389/fmolb.2022.1015746

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1015746


6 Assessment and diagnostic tools of
pediatric chemotherapy-induced
peripheral neuropathy

Assessment and diagnosis of CIPN among pediatric cancer

patients and survivors can be challenging. Children generally are

either unable, or find it difficult, to recognize and describe

symptoms associated with CIPN. Additionally, the signs and

symptoms of CIPN experienced by individuals can be highly

variable, and often change over the course of treatment as well as

the transition from the pediatric, to adolescent, and adult years.

To date, there have been no systematic studies that have

specifically examined the temporal course of CIPN symptoms

over the course of treatment, nor specifically compared these

between different age groups. Accordingly, further research will

be needed that integrates factors such as individual susceptibility

to CIPN, age, time- and chemotherapy-related factors to

determine the most suitable methods for diagnosis and

assessment of CIPN for different chemotherapeutics and age

groups.

Nevertheless, a range of screening instruments have been

developed to diagnose and assess the severity of CIPN symptoms

in clinical settings, which can be divided into three major groups:

subjective assessments, objective assessments and combined

subjective and objective assessments (Table 4). However, there

are currently no standardized clinical guidelines for the use of

these tools and most of the screening tools discussed below have

not been specifically validated in pediatric or adolescent

populations.

Subjective assessments used for the diagnosis or assessment

of CIPN include quality of life (QoL) questionnaires and pain/

neuropathy scales, such as the Pediatric Quality of Life Inventory

and Wong-Baker FACES pain scale (for full list see Table 4).

Most of these questionnaires and scales are Patient-Reported

Outcome (PRO) measures that assess patients’ individual

perception of their own health and provide assessment of

quality of life, CIPN-related symptoms, and functional

limitations of patients. The majority of these PRO measures

lack specificity for CIPN, and the individual perception of pain

and overall health may vary between patients. Only the European

Organization for Research and Treatment of Cancer (EORTC)

QLQ-CIPN20 and Functional Assessment of Cancer (FACT-G)

has been specifically developed to assess the impact of CIPN and

includes the assessment of QoL via a 20-item questionnaire

assessing CIPN symptoms and functional impairment (Postma

et al., 2005). Altogether, the advantage of these scales is the

TABLE 3 Sensory, motor and autonomic symptoms of pediatric CIPN.

Drug Sensory Motor Autonomic References

Vincristine Paresthesia, numbness, tingling, loss of
sensory discrimination

Upper and lower extremities weakness,
wrist- or footdrop, gait abnormalities,
balance deficits, fine motor disability,
deteriorated deep tendon reflexes,
muscle cramps

Constipation, urinary
retention, incontinence,
paralytic ileus, orthostatic
hypotension

Arzanian et al. (2009), Anghelescu et al.
(2011), Purser et al. (2014),
Courtemanche et al. (2015b), Lavoie
Smith et al. (2015), Kerckhove et al.
(2017), Bjornard et al. (2018)

Oxaliplatin Paresthesia and dysesthesia of the
hands, feet and perioral region, acute
cold hyperesthesia, chronic peripheral
hypoesthesia/dysesthesia

Tetanic spasms, fasciculations,
prolonged muscular contractions

Constipation, diarrhea Spunt et al. (2007b), Geoerger et al.
(2008), Beaty et al. (2010), Geoerger
et al. (2011), Robinson et al. (2016)

Cisplatin Paresthesia, tingling in the extremities,
numbness, mechanical and thermal
hyperalgesia, loss of vibration sense
and taste

Weakness, tremor Constipation, diarrhea Kerckhove et al. (2017), Bjornard et al.
(2018)

Carboplatin Paresthesia Gait difficulties, ataxia Constipation, diarrhea Bjornard et al. (2018)

Paclitaxel Paresthesia, dysesthesia, numbness,
burning pain in a glove-and-stocking
distribution

Distal weakness, muscle cramps,
muscle aches

Diarrhea, arrhythmias,
orthostatic hypotension

Hayashi et al. (2003), Horton et al.
(2008), Kerckhove et al. (2017),
Bjornard et al. (2018)

Docetaxel Numbness and tingling in fingers/toes,
loss of pinprick sensation and altered
reflexes, cold allodynia

Distal weakness, muscle cramps,
muscle aches

Diarrhea, arrhythmias,
orthostatic hypotension

Kerckhove et al. (2017), Bjornard et al.
(2018), Tamburin et al. (2019)

Ixabepilone Paresthesia, dysesthesia, numbness and
pain in the hands and feet

Mild motor impairment with muscle
weakness such as foot drop, difficulty
in climbing stairs

Limited data available Widemann et al. (2009), Jacobs et al.
(2010), Vahdat et al. (2012), Tamburin
et al. (2019)

Bortezomib Distal sensory loss to all modalities
involving the suppression of deep
tendon reflexes

Limited data Limited data available,
diarrhea

Blaney et al. (2004), Kerckhove et al.
(2017), Bjornard et al. (2018)

Thalidomide Tingling or painful paresthesia,
numbness in the lower limbs

Mild motor impairment Constipation, diarrhea Smith et al. (2008), Fleming et al.
(2005), Bramuzzo et al. (2017)
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practicality and low cost. However, these subjective tests may not

be suitable for very young children, where evaluation of QoL or

PRO may only be possible through parents or caregivers,

requiring the use of objective assessments such as nerve

conduction studies or electromyography.

Electrophysiological tests are objective assessments used

for diagnosis or assessment of CIPN. These tests are

routinely used to assess the electrophysiological

abnormalities associated among patients with CIPN and

consist of nerve conduction studies, electromyography

(EMG), current perception threshold (CPT) and tactile

perception threshold (TPT) tests, to name a few (for full

list see Table 4). During these electrophysiological tests, an

electrical stimulus is applied to specific nerves or muscles to

assess, for example, the sensory nerve action potential

(SNAP), compound motor action potential (CMAP),

latency and conduction velocities. The quantitative

findings are then compared with age-specific norms

(Liveson and Ma, 1999). A variation is the vibration

perception threshold (VPT) test, which uses vibration

(e.g., via a tuning fork) to stimulate sensory neurons (Hilz

et al., 1998). Several new electrophysiological assessments

for CIPN have been developed but are not yet routinely

integrated into clinical practice. For example, the tactile

pleasantness test examines touch perception across

different skin sites (Ackerley et al., 2014). However,

studies have focused on healthy individuals and there is

no evidence whether the changes in tactile afferents

among patients exposed to neurotoxic chemotherapy

agents can be used to diagnose CIPN (Ackerley et al.,

2014; Pasqualotto et al., 2020). The advantage of

electrophysiological tests for the diagnosis of CIPN is that

these tests have a minimal bias and can mostly be performed

also on very young children. Keeping the child in a position

in which the electrophysiological investigations can be

undertaken may be challenging. Additionally,

abnormalities detected following chemotherapy such as

vincristine, can vary ranging from a purely sensory

neuropathy to a sensorimotor neuropathy and very

occasionally a pure motor neuropathy with no specific

patterns that distinctly characterize vinca alkaloids (Brigo

et al., 2012; Courtemanche et al., 2015b; Dudeja et al., 2019).

Therefore, studies investigating electrodiagnostic signatures

of chemotherapy agents will be necessary.

Another objective test that can be used to assess CIPN in

children is the Movement Assessment Battery for

Children—Second Edition (MABC-2), which is a functional

test that has been developed to assess functional and motor

impairment in children (Brown and Lalor, 2009). The MABC-2

has been specifically developed for children and adolescents who

are 3–16 years old and includes a performance test to assess

motor skills, as well as a checklist. However, the MABC-2 has not

been specifically developed to assess CIPN, and further research

will be needed to ascertain whether MABC-2 is suitable to assess

functional impairments that occur in the setting of CIPN

specifically.

Combined subjective and objective assessments are tests that

utilize questionnaires and combine these with functional,

neurological, or electrophysiological assessments. They include

tests such as the Pediatric–modified Total Neuropathy Scale

(ped-m TNS) and the Total Neuropathy Scale–Pediatric

Version (TNS-PV) (for full list see Table 4). The ped-m TNS

is a well validated assessment tool for neuropathy in the pediatric

population and specifically screens for neuropathy symptoms in

children. The questionnaire assesses sensory, motor, and

autonomic neuropathy symptoms and clinical examinations

test for light touch, pain and vibration sensation, muscle

function and deep tendon reflexes (Gilchrist et al., 2009;

Gilchrist and Tanner, 2013). The TNS-PV is a modified

version of the ped-m TNS and was specifically developed in

response to the high impact of vincristine-induced neuropathy in

children and it is well validated in the pediatric population. The

TNS-PV additionally assesses responses to temperature,

strength, and autonomic and laryngeal neuropathy (Lavoie

Smith et al., 2013; Lavoie Smith et al., 2015).

7 Risk factors for pediatric
chemotherapy-induced peripheral
neuropathy

The risk factors for development of CIPN in children include

age, ethnicity, genetic susceptibilities, disease factors and

treatment factors, to name a few (Table 5). The majority of

cases of CIPN in children are attributed to the use of vincristine

and platinum-based antineoplastics, as these chemotherapeutic

agents are frequently used in pediatric practice (Sałat, 2020). Age

may present a risk factor for pediatric CIPN however, the current

evidence is conflicting, with studies reporting everything from

increased risk of CIPN in younger and older children, to

increased risk of CIPN in adults, and some even reporting

that there is no evidence for association of age with CIPN

(van de Velde et al., 2017; Sałat, 2020; Triarico et al., 2021).

On one hand, the incomplete and developing maturation and

myelination of the peripheral nervous system in younger

children may impose greater risk of developing CIPN

following tubulin targeting agents, such as vincristine, which

impair the myelination of peripheral nerves (Stadelmann et al.,

2019). Younger children also have a faster metabolic rate, which

allows them to metabolize chemotherapy drugs faster (de Graaf

et al., 1995). This may have two different consequences. Firstly,

faster metabolism of the chemotherapy drug may decrease the

risk of peripheral nerve damage as the drug is eliminated faster.

Secondly, there is little evidence regarding the contribution of

chemotherapy metabolites to CIPN, however, this cannot be

excluded, and an increase in chemotherapy metabolites may
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TABLE 4 Tools used for the assessment and diagnosis of pediatric CIPN.

Instrument Description References

Subjective Assessments Wong-Baker FACES pain scale Cartoon drawings of faces displaying different levels
of pain

Wong and Baker, (1988)

Most preferred pain rating scale by childrem

Pediatric quality of life inventory generic core scales
(PedsQL)

Patient-Reported Outcome (PRO) Measures Varni et al. (2002)

Assessment of health-related quality of life in
children and adolescents with good internal
consistency and reliability

Includes multidimensional fatigue scale examining
general fatigue, sleep/rest fatigue and cognitive
fatigue

Pediatric outcomes data collection instrument
(PODCI)

Patient-Reported Outcome (PRO) Measures Allen et al. (2008)

Focus on function and quality of life of the child

European organization for research and treatment of
cancer (EORTC) chemotherapy-induced peripheral
neuropathy questionnaire (CIPN20) and functional
assessment of cancer (FACT-G)

Patient-Reported Outcome (PRO) Measures Postma et al. (2005), Kandula et al.
(2018)Includes 20-item questionnaire that provides

assessment of CIPN-related symptoms and
functional limitations of patients treated with
chemotherapy

The patient-reported outcomes version of the
common terminology criteria for adverse events
(PRO-CTCAE)

The CTCAE incorporates a library of 790 adverse
effects which are graded using an ordinal severity
scale

Dueck et al. (2015), Postma et al.
(1998)

Used to assess adverse effects, no specificity for CIPN

Modified balis pediatric scale A children-specific, modified version of CTCAE Lavoie Smith et al. (2015)

Objective Assessments Nerve conduction studies Surface electrodes are used to measure nerve
conduction velocity

Ryan et al. (2019)

Also for children <5 year of age

Electromyography (EMG) EMG is used to asses muscle activity Kneis et al. (2016), Wright et al.
(2017)A needle electrode is inserted directly into the muscle

group and records the electrical activity

Current perception threshold (CPT) Transcutaneous electrical stimulator used to assess
pain, delivering sinusoidal electrical stimuli at
different frequencies

Gaudreault et al. (2015)

Patients are assessed to the degree of pain of the
stimulus through forced choice questions

Tactile perception threshold (TPT) Quantitatively measures peripheral sensory nerve
function through tactile sensation

Ackerley et al. (2014)

Vibration perception threshold (VPT) Quantitatively measures large sensory nerve fibers
through vibration

Hilz et al. (1998)

Movement assessment battery for children (MABC) Diagnostic tool for identification of impairments in
motor performance of children and adolescents
3–16 years of age

Brown and Lalor, (2009)

Combined subjective
and objective
assessments

Pediatric–modified total neuropathy scale (ped-
m TNS)

Assessment of nerve function in children (5–18 years
old) and screening for sensory, motor, and
autonomic symptoms

Verstappen et al. (2005), Gilchrist
et al. (2009), Gilchrist and Tanner,
(2013)

This scale draws upon the Total Neuropathy Scale
(TNS) which was initially developed to assess
peripheral neuropathy among adults

Total neuropathy scale–pediatric version (TNS-PV) Developed in response to the high impact of
vincristine-induced neuropathy in children

Lavoie Smith et al. (2013), Lavoie
Smith et al. (2015)

Screens for chemotherapy associated sensory, motor
and autonomic symptoms

Neurological exam Includes assessment of subjective symptoms and
objective/physical exam

Haryani et al. (2017)
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increase the risk of damage to peripheral nerves (Sakurai et al.,

2009). Ethnicity imposes greater risk for development of

neuropathy following vincristine, which is metabolized via the

cytochrome P450 (CYP) 3A4 and CYP3A5 pathways (Dennison

et al., 2007). Reduced CYP3A5 activity has been observed in

Caucasian children, who are at greater risk to develop vincristine-

induced side effects (Dennison et al., 2006; Kishi et al., 2007;

Egbelakin et al., 2011; Agrawal et al., 2016). Similarly, allelic

variation of the CEP72 gene, which is involved in the formation

of microtubules, has been found to play a significant role in

development of vincristine-induced neuropathy in children. This

variant was more common in Caucasian than African American

children, which provides another potential explanation for the

interracial differences in the observed incidence of CIPN (Diouf

et al., 2015).

The evidence for sex as a risk factor for CIPN in the

pediatric population is unclear (van de Velde et al., 2017),

although some studies report that adult female patients are at

greater risk of CIPN following paclitaxel treatment compared

to adult males (Greenwald et al., 2019). In addition, dietary

factors have been associated with risk of CIPN, with vitamin B,

folate, iron, and other nutritional deficiencies in pediatric

patients with cancer reported to be associated with a

greater risk for CIPN (Dudeja et al., 2019). Other studies

have found conflicting associations between weight and CIPN,

with both underweight and overweight children reported as

having an increased risk for CIPN (Jain et al., 2014; Dudeja

et al., 2019; Sajdyk et al., 2020). From these studies it is unclear

what role diet and/or sex may have in the development

of CIPN.

Genetic polymorphism in the genes ABCB1, ABCC1,

ACTG1, CAPG, MAP4, SLC5A7, TTPA and TUBB1 could

modulate the risk of developing neuropathy in children

following vincristine treatment (Ceppi et al., 2014; Wright

et al., 2019). The ABCB1 and ABCC1 genes encode for efflux

transporter proteins and mutations in which lead to

intracellular accumulation of vincristine (Ceppi et al., 2014;

Wright et al., 2019). ACTG1, CAPG, MAP4 and

TUBB1 encode for genes related to actin or microtubule

expression and/or function. The SLC5A7 gene encodes for a

choline transporter involved in the synthesis of acetylcholine

in cholinergic neurons and was implicated in pathology of

inherited neuropathies (Wright et al., 2019). The TTPA gene

encodes the α-tocopherol transfer protein that regulates

vitamin E levels (Wright et al., 2019). Although studies

show that the mutations in those genes modulate the risk

to develop neuropathy following vincristine to some degree,

additional sufficiently powered studies may be required to

validate the association between these genetic polymorphisms

and pediatric peripheral neuropathy.

There is some conflicting evidence that pre-existing

neuropathies, such as the Charcot-Marie-Tooth or Guillain-

Barre syndrome, increase the severity of CIPN (Chauvenet

et al., 2003; Bhushan et al., 2015). For example, Charcot-

Marie-Tooth is often unrecognized in children, and it is often

diagnosed after children treated with chemotherapy experience

severe sensory and motor neuropathy symptoms (Trobaugh-

Lotrario et al., 2003). Additionally, patients with pre-existing

neuropathy are rarely included in clinical trials, hampering the

identification of pre-existing neuropathy as risk factor for CIPN.

Treatment factors, such as cumulative dose, the duration

of the chemotherapy treatment and concomitant

administration of other medications such as triazole or

imidazole have been associated with higher frequency and

severity of CIPN following chemotherapy treatment (Table 5).

Kandula et al. reported evidence supporting a dose-toxicity

relationship for CIPN in children receiving vincristine,

thalidomide, docetaxel, paclitaxel and oxaliplatin (Kandula

et al., 2016). However, the dose-dependence of CIPN

development appears to be specific to the chemotherapy

agent or combination regimen used. The duration of the

chemotherapy treatment is another possible risk factor for

CIPN. Higher doses of thalidomide over a short period of time

were associated with lower risk for CIPN compared to

regimens that involved a lower dose of thalidomide over a

longer period (Priolo et al., 2008; Lazzerini et al., 2013;

Lazzerini et al., 2015). In contrast, for vincristine a bolus

administration over 1–5 min led to higher distribution rate

of vincristine within central and peripheral compartments

compared to circulating vincristine, causing more severe

CIPN (van de Velde et al., 2017). Therefore, a prolonged

vincristine infusion could be implemented as strategy for

preventing CIPN. Additionally, some evidence shows that

the risk of developing CIPN was higher at the initial phase

of the chemotherapy compared to later stages of

chemotherapy (Langholz et al., 2011). The dose of

chemotherapy is often reduced early in the treatment due

to patients experiencing CIPN symptoms, which may

perhaps explain the higher risk for CIPN in the initial

stage of treatment. The use of concomitant medications,

such as azole antifungal agents, with chemotherapy has

been associated with increased frequency and severity of

CIPN. Imidazole and triazole inhibit the CYP3A4,

consequently inhibiting vincristine metabolism (Hamdy

et al., 2012; Moriyama et al., 2012; Teusink et al., 2012;

Kandula et al., 2016). Of note, granulocyte colony

stimulating factor is often used to support the

mobilization of hematopoietic stem cells after bone

marrow transplantation or following high-dose multi-

agent chemotherapy in children, although its use has been

associated with higher risk for CIPN (Weintraub et al., 1996;

Packer et al., 2006). Nifedipine, cyclosporin, carbamazepine

and phenytoin may modulate pharmacokinetics of

chemotherapy agents and, in turn, the incidence of CIPN,

although this evidence stems from case reports (Kandula

et al., 2016).
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8 Pathophysiological processes
involved in chemotherapy-induced
peripheral neuropathy

The pathological mechanisms involved in pediatric CIPN

are poorly understood. One major obstacle in understanding

the pathology of pediatric CIPN is that most of the

mechanistic evidence stems from studies that utilize adult

rodent models or adult patients. Evidence from these

studies clearly demonstrates that CIPN involves complex

interactions between peripheral and central neurons and

microenvironmental niches, including immune cells and

neuronal accessory cells (Ji et al., 2016). The cellular and

molecular functions of these cells cannot be assumed to be

identical between juveniles and adults, and hence it is

conceivable that the pathophysiological mechanisms

contributing to pediatric CIPN differ from those in adults.

Specifically, it is known that the reactivity and composition of

the innate and adaptive immune system, myelination of

peripheral nerves, the expression and function of ion

channels involved in action potential generation and

propagation in neurons, as well as CNS neuroplasticity

differs in children compared to adults (Loizzo et al., 2009;

Kollmann et al., 2012; Simon et al., 2015; Stadelmann et al.,

2019; Strickland et al., 2019; Bhatt et al., 2020). Although

appropriate juvenile models are thus arguably critical for

comparison of the pathophysiological processes

contributing to CIPN in adult and pediatric populations,

these are currently lacking, possibly due to ethical and

practical reasons. For these reasons, it is not clear to what

extent evidence obtained in adult humans or rodent models

can be applied to pediatric CIPN. Accordingly, in the

following sections knowledge regarding the

pathophysiological mechanisms underlying

CIPN—including axon degeneration, activation of the

immune system and neuroinflammation, mitochondrial

disfunction, dysregulated calcium homeostasis, altered

neuronal hyperexcitability and changes in ion channel

activity (Figure 2) will be discussed with the caveat that

these insights were obtained in adults, and may not

necessarily be identical in pediatric patients.

8.1 Neuronal damage

Chemotherapy agents are known to cause microscopic

changes to peripheral nerves, such as myelin loss, changes to

the cytoskeleton and axon degeneration, that can be visualized

using standard histology and immunohistochemistry methods

and are possibly specific to the chemotherapy agent (Figure 2).

For example, platinum derivates and tubulin targeting agents

accumulate in dorsal root ganglia neurons (Cavaletti et al., 1997;

Cavaletti et al., 2000; Liu et al., 2013; Sprowl et al., 2013; Wozniak

et al., 2016). Accumulated chemotherapeutics in the cell body of a

peripheral neuron may interfere with cellular metabolism,

axoplasmic transport and function of mitochondria, ultimately

leading to cell death. While the mechanisms of accumulation of

chemotherapy agents in dorsal root ganglion neurons is

TABLE 5 Risk factors associated with pediatric chemotherapy-induced peripheral neuropathy.

Risk Factor Description References

Age Younger children may be at greater risk of neuropathies caused by tubulin
targeting agents

de Graaf et al. (1995), van de Velde et al. (2017), Stadelmann et al.
(2019)

Younger children have faster metabolism resulting in faster ability to
metabolize chemotherapeutic drugs

Ethnicity Reduced CYP3A5 activity in Caucasian children Dennison et al. (2006), Kishi et al. (2007), Egbelakin et al. (2011), Diouf
et al. (2015)Allelic variation of the CEP72 gene in Caucasian children

Sex No clear evidence in children van de Velde et al. (2017)

Genetic
polymorphisms

Genetic polymorphism in genes ABCB1, ABCC1, ACTG1, CAPG, MAP4,
SLC5A7, TTPA and TUBB1

Ceppi et al. (2014), Wright et al. (2019)

Nutrition Vitamin B, folate, iron deficiency Jain et al. (2014), Dudeja et al. (2019), Sajdyk et al. (2020)

Underweight and overweight

Pre-existing
neuropathies

Charcot-Marie-Tooth or Guillain-Barre syndrome may increase risk for
CIPN

Chauvenet et al. (2003), Trobaugh-Lotrario et al. (2003), Bhushan et al.
(2015)

Dose Dose-toxicity relationship for CIPN in children receiving vincristine,
thalidomide, docetaxel, paclitaxel and oxaliplatin

Kandula et al. (2016)

Duration of
treatment

Treatment duration-toxicity relationship for CIPN in children receiving
thalidomide and vincristine

Priolo et al. (2008), Lazzerini et al. (2013), Lazzerini et al. (2015), van de
Velde et al. (2017)

Concurrent
medications

Concomitant administration of azole antifungal agents, granulocyte colony
stimulating factor, nifedipine, cyclosporin, carbamazepine and phenytoin

Weintraub et al. (1996), Hamdy et al. (2012), Moriyama et al. (2012),
Teusink et al. (2012), Kandula et al. (2016)
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unknown, some evidence shows that the accumulation of

platinum derivates may be due to high expression of specific

membrane transporters, such as the organic anion-transporting

polypeptides (OATPs), and the organic cation transporter (OCT)

that are responsible for platinum transport (Gregg et al., 1992;

Screnci et al., 2000; Fujita et al., 2019; Huang et al., 2020).

Studies in animals and humans have also shown that the

prolonged use of chemotherapeutic agents such as vincristine,

oxaliplatin, cisplatin, carboplatin, paclitaxel, bortezomib and

ixabepilone can result in degeneration of large, myelinated

axons and the loss of intraepidermal nerve fibers (Sahenk

et al., 1994; Neijt et al., 2000; Parmar et al., 2003; Boyette-

Davis et al., 2013; Boehmerle et al., 2014; Ebenezer et al.,

2014; Yamamoto et al., 2015a; Geisler et al., 2016; Turkiew

et al., 2017; Malacrida et al., 2019; Ogihara et al., 2019). The

extent of neuronal damage has been correlated with different

degrees of neuropathy severity, but the precise underlying

mechanisms by which demyelination and degeneration of

peripheral nerves contribute to CIPN remain unclear (Colvin,

2019; Malacrida et al., 2019). These structural changes in the

peripheral nervous system are probably a reflection of chronic

CIPN and long-term damage caused by chemotherapy. For

example, vincristine and paclitaxel induced CIPN is often

associated with loss of intraepidermal nerve fibers (IENF),

which are thinly myelinated Aδ fibers and unmyelinated C

fibers, that transmit temperature and pain signals (Siau et al.,

2006; Beiswenger et al., 2008; Myers et al., 2013; Geisler et al.,

2016; Mangus et al., 2020). However, mechanical allodynia in

rodents following vincristine develops within 24 h of injection

with no apparent changes in IENF quantity during the first week

(Starobova et al., 2021). Chemotherapy-induced neuronal

damage is likely specific to the chemotherapy agent and its

specific mode of action. Vincristine and paclitaxel affect large,

myelinated fibers, while cisplatin damages all types of myelinated

fibers, and bortezomib affects small, unmyelinated fibers

(Boehmerle et al., 2014; Gornstein and Schwarz, 2014). The

specific mechanisms of neuronal demyelination of large

neuronal fibers caused by vincristine and paclitaxel are

unclear, however the disruption of microtubule function and

the subsequent impairment of retrograde and anterograde

axonal transport of essential cellular components may play a

role (Sahenk et al., 1994; Siau et al., 2006; Boehmerle et al., 2014;

Gornstein and Schwarz, 2017). The degeneration of distal

nerve segments and axonal membrane remodeling is

known as Wallerian degeneration (Yang et al., 2009; Fukuda

et al., 2017). Recent pre-clinical studies have suggested

that Wallerian-like degeneration is driven by sterile alpha and

toll/interleukin-1 receptor motif-containing 1 (SARM1)

(Bosanac et al., 2021). SARM1 is an inducible NAD+

hydrolase that triggers the loss of axons and neuronal

cell death, and both SARM1 and its intrinsic NADase

activity are required for injury-induced axon degeneration

(Essuman et al., 2017; Bosanac et al., 2021; Ko et al.,

2021). Genetic deletion of SARM1 protected rodents treated

with paclitaxel from distal degeneration of small fibers

(Turkiew et al., 2017). Additionally, the genetic deletion of

SARM1 was demonstrated to prevent vincristine-induced

neuropathy and bortezomib-induced axon destruction (Geisler

et al., 2019).

8.2 Molecular mechanisms of
chemotherapy-induced peripheral
neuropathy

8.2.1 Activation of the immune system and
neuroinflammation

A traditional view has been that chemotherapy agents have

predominantly immunosuppressive properties due to their

effects on rapidly dividing cells, including immune cells

(Zitvogel et al., 2008). This is certainly evident from the

profound myelosuppression that can occur clinically following

chemotherapy treatment. Recent studies show that

chemotherapy agents can also activate the innate and adaptive

immune system, presenting a double-edged sword (Byrd-Leifer

et al., 2001; Zitvogel et al., 2008; Starobova et al., 2020a; Starobova

et al., 2021). On one hand, activation of inflammatory cascades

may have a positive impact on patient recovery and response of

tumors to chemotherapy treatment (Zitvogel et al., 2008). On the

other hand, dysregulation of neuro-inflammatory processes in

the dorsal root ganglia, axons, and spinal cord, including the

dysregulation of cytokine and chemokine levels, increased

presence and activation of immune cells, and activation of

neuronal accessory cells, has been associated with CIPN

pathology. Specifically, increased levels of pro-inflammatory

cytokines such as interleukin-1β (IL-1β), interleukin-6 (IL-6),

interleukin-8 (IL-8), tumor necrosis factor α (TNFα), interferon
γ (IFN-γ) and chemokines, such as CCL2, CXCL12, CCL11,

CCL3, and CCL4 have been observed following vincristine,

oxaliplatin, cisplatin and paclitaxel administration in human,

rodent and in vitro studies (White et al., 1998; Wang et al., 2012;

Makker et al., 2017; Brandolini et al., 2019a; Brandolini et al.,

2019b; Kleckner et al., 2021). Additionally, a decline in the

expression of anti-inflammatory cytokines (IL-10 and IL-4)

was observed (Makker et al., 2017; Brandolini et al., 2019a;

Brandolini et al., 2019b). The origin of these cytokines and

chemokines can be attributed to the increased activation of

immune cells and neuronal accessory cells. For example, an

increase in the number of immune cells, such as

macrophages, in the proximity of peripheral nerves has been

implicated in CIPN pathology (Figure 2). Specifically, the

number of F4-80+ cells, which include monocytes and

macrophages, was increased in dorsal root ganglia and sciatic

nerve following vincristine and paclitaxel treatment, correlating

with CIPN symptoms development (Peters et al., 2007; Old et al.,

2014; Starobova et al., 2021). Conversely, depletion of these cells
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FIGURE 2
The effects of chemotherapy on various components of the nervous and immune system: (A) nerve terminal, (B) dorsal root ganglia (DRG), (C)
spinal cord, (D) immune cells and (E) neuronal axons. CaV, voltage-gated calcium channel; K+, potassium channel; NaV, voltage-gated sodium
channel; TRPA1, transient receptor potential (TRP) ankyrin 1; TRPM8, transient receptor potential cation channel subfamily melastatin member 8;
TRPV1, transient receptor potential vanilloid-type 1; TRPV4, transient receptor potential vanilloid-type 4; ROS, reactive oxygen species; TLR4,
toll-like receptor 4; NLRP3, NOD-, LRR- and pyrin domain-containing protein 3; IL-1B, interleukin-1 beta; IL-1R, interleukin-1 receptor; CX3CR,
CX3C chemokine receptor 1.
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using liposomal clodronate alleviates CIPN symptoms in rodents

(Peters et al., 2007; Old et al., 2014; Starobova et al., 2021).

Activation of sensory neuron TRPA1 channels downstream of

reactive oxygen species produced by these CX3CR+

macrophages likely accounts for sensory symptoms associated

with CIPN, at least in part (Old et al., 2014; Montague et al.,

2018). In contrast, the contribution of neutrophils to the

development of CIPN is less clear: an increase in neutrophils

in the blood of breast cancer patients receiving paclitaxel has

been associated with CIPN, although no increase in the number

of neutrophils was observed in the DRGs of rodents following

treatment with paclitaxel (Ruiz-Medina et al., 2013). Similarly,

oxaliplatin treatment did not increase DRG neutrophil numbers,

and depletion of neutrophils in rodents receiving vincristine did

not reverse CIPN symptoms (Makker et al., 2017; Starobova

et al., 2021).

Central and peripheral neuronal accessory cells such as the

central microglia, astrocytes, satellite glial cells and Schwann

cells can also release pro-inflammatory cytokines and

chemokines in the neuronal microenvironment and

contribute to the development of CIPN, in particular in

paclitaxel-induced neuropathy (Cavaletti et al., 1995; Peters

et al., 2007; Kiya et al., 2011; Burgos et al., 2012; Ruiz-

Medina et al., 2013; Robinson et al., 2014) (Figure 2). The

role of T-cells in CIPN is still unclear, although some

studies report an increase in circulating CD4+ and CD8+

T-cells following paclitaxel or oxaliplatin treatment, with

the presence of CD8+ T-cells in dorsal root ganglia

appearing crucial for the resolution of CIPN symptoms

(Zhang et al., 2008; Krukowski et al., 2016; Makker et al.,

2017).

The molecular mechanisms contribution to activation of the

innate immune system and neuronal accessory cells following

chemotherapy treatment are still unclear, although activation of

specific pro-inflammatory receptors may play a role. For

example, the Nod-Like-Receptor 3 (NLRP3) inflammasome is

predominantly expressed by macrophages and neutrophils and

to some extent by dendritic cells, microglia and possibly by dorsal

root ganglia (Guarda et al., 2011; Gustin et al., 2015; Fann et al.,

2018). NLRP3 was previously implicated in the pathology of

painful conditions and is activated in two steps (Starobova et al.,

2020b). The first step includes the priming of the

NLRP3 inflammasomes via the activation of Toll-like

receptors such as the Toll-like receptor 4 (TLR4) leading to

NF-kB-dependent expression of NLRP3, pro-IL-1β and pro-IL-

18. The second step is the activation of the

NLRP3 inflammasome by so-called DAMPs (danger-

associated molecular patterns) and PAMPs (pathogen-

associated molecular patterns), leading to assembly of a large

inflammasome complex that provides an activation platform for

caspase 1 and subsequent cleavage of pro-IL-1β and pro-IL-

18 into their active forms (Bauernfeind et al., 2009; Tschopp and

Schroder, 2010). With regards to chemotherapeutics, tubulin

targeting agents such as paclitaxel and vincristine were shown to

either prime NLRP3 via TLR4, or to indirectly activate

NLRP3 leading to release of IL-1β. IL-1β-mediated sensory

neuron sensitization via modulation of ion channel function

could, in turn, be prevented by genetic deletion or direct

inhibition of TLR4, NLRP3 or IL-1R in rodents treated with

vincristine, paclitaxel or oxaliplatin (Byrd-Leifer et al., 2001; Son

et al., 2019; Starobova et al., 2019; Starobova et al., 2021).

How chemotherapeutics activate NLRP3 is unclear. One

possible activation pathway could be via increased production

of reactive oxygen species caused by mitochondrial disfunction

(Cruz et al., 2007; Tschopp and Schroder, 2010). Mitochondria

are cellular organelles that control the transformation of energy

and production of adenosine triphosphate (ATP) and are the

main source and targets of reactive oxygen species (ROS).

Various chemotherapeutics damage neuronal and non-

neuronal mitochondria, increasing the production of ROS

(Sangeetha et al., 1990; Look and Musch, 1994; Weijl et al.,

1998; McDonald and Windebank, 2002; Canta et al., 2015).

Although the mechanisms leading to mitochondrial damage

are likely specific to the chemotherapy agent, the underlying

mechanisms are poorly understood (Doyle et al., 2012; Griffiths

and Flatters, 2015) . ROS produced in small amounts in healthy

tissue carry out important signaling functions; however,

increased ROS production may damage intracellular

biomolecules, activate NLRP3 and lead to increased release of

pro-inflammatory cytokines (Slater, 1984; Stadtman et al., 2003;

Valko et al., 2005). These processes may further damage

mitochondria, amplifying ROS production and neuronal

damage including demyelination of axons and disruption of

the cytoskeleton (Zheng et al., 2011).

8.2.2 Dysregulated calcium homeostasis
As calcium (Ca2+) is a ubiquitous signaling molecule and

particularly important for function of sensory neurons, it is

perhaps not surprising that evidence of dysregulated Ca2+

homeostasis has been reported for several chemotherapeutics,

including oxaliplatin, cisplatin, paclitaxel, bortezomib and

vincristine (Tomaszewski and Busselberg, 2007; Chen et al.,

2017; Leo et al., 2017; Li et al., 2017; Chine et al., 2019;

Tomita et al., 2019). As discussed below, dysregulation of

calcium homeostasis includes direct changes to the expression

of Ca2+ channel subunits, but also global changes to intracellular

Ca2+ homeostasis, in particular mitochondrial Ca2+ levels which

in turn may be associated with altered mitochondrial function

(Figure 2). A direct link to Ca2+ sequestration has been proposed

for oxaliplatin, whose metabolites includes a Ca2+−chelating

oxalate moiety. Indeed, local oxalate injection induces

spontaneous nocifensive behaviors and mechanical allodynia

in rodents, although the pathognomonic cold allodynia

typically seen following oxaliplatin treatment could not be

recapitulated consistently (Sakurai et al., 2009; Deuis et al.,

2013). Nonetheless, administration of Ca2+/Mg2+ infusions
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prior to oxaliplatin has shown some positive effects on CIPN

development in clinical trials (Deuis et al., 2013; Canta et al.,

2015; Jordan et al., 2016).

8.2.3 Altered neuronal excitability
Chemotherapeutic agents associated with development of

sensory peripheral neuropathy, such as vincristine, oxaliplatin,

cisplatin, paclitaxel and bortezomib, have been observed to alter

peripheral nerve excitability. Changes to the expression and

function of ion channels such as voltage-gated sodium (NaV),

voltage-gated potassium (KV), voltage-gated calcium (CaV) and

transient receptor potential family (TRP) channels are believed to

contribute substantially to the cascade of events that lead to

neuronal hyperexcitability (Figure 2).

Nav channels are essential for nociceptive signal transduction

and propagation, with at least five of the nine mammalian

subtypes (NaV1.1, 1.6, 1.7, 1.8 and 1.9) being expressed in

dorsal root ganglion neurons. Although involvement of

tetrodotoxin (TTX)-resistant NaV isoforms, most notably

NaV1.8 and NaV1.9, in CIPN has been suggested (Descoeur

et al., 2011; Argyriou et al., 2013b; Lolignier et al., 2015),

several lines of evidence implicate TTX-sensitive NaV
isoforms as key contributors to enhanced excitability and

allodynia. Both oxaliplatin-induced nerve hyperexcitability

and allodynia, as well as paclitaxel-induced mechanical and

cold allodynia, could be reversed by TTX in mice (Webster

et al., 2005; Nieto et al., 2008; Deuis et al., 2013), and some

positive effects of subcutaneous TTX on QoL indicators were

also reported in a small clinical trial (Goldlust et al., 2021).

The NaV subtypes contributing to this effect appear to be

agent-specific, with the TTX-sensitive NaV1.6 contributing

to vincristine-induced mechanical and oxaliplatin-induced

cold allodynia (Sittl et al., 2012; Deuis et al., 2013; Chen et al.,

2020), while contributions of the TTX-sensitive NaV1.7,

including increased expression and trafficking, were seen

in both rodent and human dorsal root ganglion neurons after

administration of paclitaxel (Akin et al., 2021; Goldlust et al.,

2021). While further confirmation of similar pathological

mechanisms in humans is needed, modulation of NaV
channel function remains an attractive strategy for

treatment of sensory symptoms associated with CIPN.

Potassium (K+) channels regulate the excitability and

resting membrane potential of a cell and shape the action

potential waveforms in neurons. They are classified into

4 groups, namely the voltage-gated K (KV) channels,

calcium-activated potassium (KCa) channels, inwardly

rectifying potassium channels (Kir) and two-pore domain

potassium (K2P) channels. Enhanced neuronal excitability

attributable to altered expression and/or function of K+

channels has been suggested as a putative

pathophysiological mechanism for some chemotherapeutic

agents, although the functional heterogeneity of these

channels, which can assemble as homo- or

heteromultimers, has made dissection of specific subtype

contributions comparatively difficult. Evidence of

functionally altered K+ conductances arose from

observations that oxaliplatin treatment leads to

broadening of the repolarization phase as well as

repetitive firing and afterhyperpolarization (AHP) in

isolated rat sciatic nerve (Kagiava et al., 2008). Altered

expression of TREK1, TREK2 and TRAAK potassium

channels, M-type (KCNQ) channels, KV1.1 and

KV4.3 have all been attributed to treatment with

oxaliplatin (Descoeur et al., 2011; Thibault et al., 2012;

Pereira et al., 2014; Poupon et al., 2018; Viatchenko-

Karpinski et al., 2018). The contribution of K+ channels to

CIPN induced by other agents is less clear, with upregulation

of a range of channel subtypes/genes reported for paclitaxel

(Zhang and Dougherty, 2014), but little information is

available on the effect of other chemotherapeutics on K+

channel expression and function.

Consistent with their well-defined roles in pain signaling,

upregulation of both the pore-forming α subunit of

CaV2.2 channels, as well as the α2δ auxiliary subunit, has been

reported in response to cisplatin, paclitaxel and oxaliplatin, but

not vincristine (Matsumoto et al., 2006; Xiao et al., 2007;

Gauchan et al., 2009; Kawakami et al., 2012; Leo et al., 2017).

Similarly, paclitaxel also led to an increase in T-type current

amplitude and density in DRG neurons, in conjunction with up-

regulation of CaV3.2 protein (Li et al., 2017).

Transient receptor potential (TRP) channels function as

stimulus transducers and often respond to thermal or

chemical signals—including protons and reactive oxygen

species—leading to activation and sensitization of peripheral

nerve terminals. The intense interest in the role of TRP

channels in various pain states has also extended to CIPN,

often with conflicting results that may arise due to species,

dose, or other experimental differences. Particular interest in

pathognomic cold hypersensitivity induced by oxaliplatin has

seen the cold-thermosensors TRPA1 or TRPM8 implicated

by several studies (Yamamoto et al., 2015b; Nakagawa and

Kaneko, 2017; Chukyo et al., 2018; Rimola et al., 2021; Wu

et al., 2021; Marcotti et al., 2022), although others have found

no contribution (Deuis et al., 2013). TRPA1 and TRPM8, but

also the heat-sensitive TRPV1 and more recently, TRPV4,

have also been found to be involved in paclitaxel-,

vincristine- and thalidomide-induced neuropathy, where

both increased channel expression and analgesic effects

from antagonists were reported (Alessandri-Haber et al.,

2004; Chen et al., 2011; Materazzi et al., 2012; Hara et al.,

2013; Chiba et al., 2017; Boehmerle et al., 2018). The

molecular mechanisms leading to altered TRP channel

activity in these conditions remain unclear, although it

appears likely that oxidative stress may contribute

(Alessandri-Haber et al., 2008; Materazzi et al., 2012; Old

et al., 2014; De Logu et al., 2020).
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9 Chemotherapy-induced peripheral
neuropathy management

9.1 Pharmacological management

The management of pediatric CIPN includes preventative

strategies as well as pharmacological and non-pharmacological

measures to control symptoms. The future of CIPN prevention

and treatment arguably lies in the development of mechanism-

based treatment strategies, targeting specific molecular structures

and preventing peripheral nerve damage caused by

chemotherapy agents. Currently, pharmaceutical agents used

for the prevention and/or management of CIPN include

supplements, such as calcium, acetyl carnitine, glutamine, and

omega 3, and medications, such as amifostine, amitriptyline,

venlafaxine, oxcarbazepine, and carbamazepine (Hershman

et al., 2014). The benefit of using these agents in children is

unclear, as most studies were conducted in adult populations and

the benefits for CIPN patients are often inconclusive. Duloxetine

is the only drug shown to have moderate effect on CIPN in adults

receiving oxaliplatin and paclitaxel and is thus the only treatment

recommended for CIPN by The American Society of Clinical

Oncology (ASCO) (Hershman et al., 2014; Meng et al., 2019).

Carbamazepine and gabapentin are both anticonvulsants that

modulate the function of neuronal ion channels, but evidence

showing positive effects of these drugs on CIPN is mostly

inconclusive due to small cohort sizes and a lack of studies in

the pediatric population (von Delius et al., 2007; Eckel et al., 2002;

Rao et al., 2007). The use of pyridoxine (Vitamin B6) and

pyridostigmine for the prevention of CIPN has shown some

benefit. Pyridostigmine is used to enhance decreased

gastrointestinal motility in children (Manini et al., 2018;

Aydin Koker et al., 2021). Case reports suggest that

pyridoxine alleviates vincristine-induced neuropathy in

children (Jackson et al., 1986; Muller et al., 2004; Duman

et al., 2005; Ngamphaiboon et al., 2010; Aydin Koker et al.,

2021). Additionally, various studies performed in adult patient

populations have demonstrated that vitamin D deficiency

increases the severity of CIPN, while supplementing vitamin

D during chemotherapy may improve neuropathy symptoms

(Wang et al., 2016; Grim et al., 2017; Jennaro et al., 2020; Yildirim

and Cengiz, 2020). However, these findings are limited by small

sample sizes and further validation is needed to demonstrate

significant clinical utility for vitamin D particularly for pediatric

cancer patients (Tofthagen et al., 2022).

Some studies have also explored topical administration of

drugs to manage CIPN. Topical gel containing baclofen (10 mg),

amitriptyline HCL (40 mg), and ketamine (20 mg) alleviated

CIPN symptoms such as cramping and tingling in patients

but this outcome was associated with higher systemic toxicity

(Barton et al., 2011; Gewandter et al., 2014).

Due to the lack of efficacy of the above-mentioned

management strategies for CIPN, in recent years the focus has

shifted to delineating the molecular mechanisms underlying

CIPN, with the view to identify mechanism-specific treatment

targets. As discussed above, CIPN following some chemotherapy

agents is driven by neuro-inflammatory processes, suggesting

that inhibition of specific immune processes may be an effective

treatment strategy. For example, vincristine, ixabepilone and

paclitaxel-induced peripheral neuropathies are driven by

neuroinflammatory processes, in particular by the release of

nerve sensitizing IL-1β. Accordingly, CIPN symptoms were

alleviated following the co-administration of IL-1 receptor-

targeting agents such as anakinra (Kineret®) in in vivo rodent

models (Kuyrukluyildiz et al., 2016; Starobova et al., 2021).

Additionally, Starobova et al. found that anakinra co-

administration is safe, with no negative effects on tumor

progression or vincristine efficacy in medulloblastoma patient

derived xenograft models (Starobova et al., 2021). Similarly,

minocycline, a second-generation tetracycline derivative,

alleviated CIPN symptoms and histological abnormalities in

tissue following vincristine, oxaliplatin and paclitaxel

administration in rodent models, likely through inhibition of

pro-inflammatory processes (Boyette-Davis and Dougherty,

2011; Boyette-Davis et al., 2011; Starobova et al., 2019). The

exact mode of action of minocycline is not known, however it is

widely accepted that minocycline inhibits the activation of

monocytes and microglia and exerts a range of anti-

inflammatory properties (Ledeboer et al., 2005; Huang et al.,

2014; Salat et al., 2021). In one clinical study, minocycline

decreased overall the pain scores and fatigue in patients

treated with paclitaxel (Pachman et al., 2017). Metformin is

another anti-inflammatory agent that has been explored as a

treatment of CIPN in rodents. Metformin inhibits macrophage

activation and decreases the release of pro-inflammatory

cytokines, such as TNFα and IL-6 (Huang et al., 2009).

Rodents treated with cisplatin or paclitaxel and co-treated

with metformin experienced milder CIPN symptoms

compared to control. This included the alleviation of

mechanical allodynia, numbness, and reduced loss of

intraepidermal nerve fibers (Mao-Ying et al., 2014). One

clinical study has investigated the benefits of metformin in

breast cancer patients treated with paclitaxel and

anthracycline. Metformin decreased the incidence of

peripheral neuropathy and bone pain but exacerbated

gastrointestinal disturbances (Barakat et al., 2022).

Erythropoietin is a cytokine produced by the kidney, with

several rodent studies demonstrating that erythropoietin

improves nerve regeneration, functional nerve recovery and

partially prevents intraepidermal fiber loss following cisplatin

and docetaxel administration (Bianchi et al., 2006; Bianchi et al.,

2007; Cervellini et al., 2010; Yin et al., 2010).

Generally, the use of FDA approved anti-inflammatory drugs

such as anakinra, minocycline or metformin for the prevention of

CIPN is a strategy that may lead to accelerated translation of

preclinical studies into the clinical setting. However, the addition
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of an anti-inflammatory drug to the chemotherapy regimen may

have adverse impacts on tumor progression and chemotherapy

efficacy, and high-quality clinical studies addressing these issues

as well as efficacy are urgently needed.

9.2 Non-pharmacological approaches

There is limited evidence regarding non-pharmacological

methods for effectively managing CIPN in children, with most

evidence stemming from adults (Table 6). Only a few studies

investigating small cohorts of children show improvement in

pain perception and balance with non-pharmacological

interventions; and many participants had ongoing

impairments in distal muscle strength, reduced deep tendon

reflexes, and sensory deficits. Given these data, further

research in the field of pediatric CIPN is warranted

(Casanova-García et al., 2015; Gilchrist and Tanner, 2018).

This dearth of high-quality and consistent evidence was also

noted in recent clinical practice guidelines, which—as noted

above—only support duloxetine as moderately effective for

treatment of existing CIPN (Hershman et al., 2014). More

recently, Gu et al. reported a 20-year bibliometric analysis

highlighting the rise in efforts to study non-pharmacological

interventions for CIPN reaching a high point in only the last few

years (Gu et al., 2022). Of note, some of the key potential

mechanisms underpinning CIPN, including inflammation,

may be influenced by exercise, providing a possible

mechanistic link (Chung et al., 2022). Other non-

pharmacological, complementary, and non-opioid methods

that have been investigated for the prevention and treatment

of CIPN, such as photobiomodulation therapy, also have anti-

inflammatory and neuro-immunological effects (Martins et al.,

2016; Kobiela Ketz et al., 2017).

Exercise alone or in combination has been reported increasingly

in recent years for its effect in preventing or treating CIPN however,

the evidence stems from studies in adult patients. Several systematic

reviews and meta-analyses show beneficial effects of exercise on

QoL andCIPN symptoms, including improvedmuscle strength and

endurance (Duregon et al., 2018; Kanzawa-Lee et al., 2020; Tanay

et al., 2021). The most recent literature syntheses suggest that

exercise undertaken concurrently with chemotherapy is

significantly beneficial in preventing, mitigating, or improving

CIPN symptoms and associated sleep disturbances (Brett

Whalen et al., 2022). Similar findings were also reported by Guo

et al., where significant effects of exercise on QoL and CIPN

symptoms, including neuropathic pain, upper and lower limb

muscle strength and increased balance performance were

reported (Guo et al., 2022). Other studies investigating the

benefits of exercise for CIPN management are often inconsistent

and report both improvement, or lack of positive effects of exercise

on CIPN symptoms (Fernandes and Kumar, 2016; Kleckner et al.,

2018; Kneis et al., 2019; McCrary et al., 2019; Dhawan et al., 2020).

The disparate nature of the findings may be related to the variety of

exercises, exercise protocols and dosing regimens investigated.

Additionally, exercise compliance is likely to be another factor

that determines whether study participants gain benefits from

exercise (Kneis et al., 2019; Müller et al., 2021).

Several recent studies, systematic reviews and meta-analyses

have investigated acupuncture and related procedures, such as

electro or laser acupuncture, for the management of CIPN

(Brami et al., 2016; Greenlee et al., 2016; Hsieh et al., 2016;

Wong et al., 2016; Derksen et al., 2017; Oh and Kim, 2018;

Hwang et al., 2020; Chien et al., 2021). Despite some evidence

that acupuncture may decrease sensory neuron

hypersensitization through GABA-ergic, serotoninergic and

adrenergic effects (Hao et al., 2020), evidence supporting the

benefits of acupuncture for the management of CIPN remains

limited.

Electrophysical agents encompass methods that incorporate

physical, thermal, magnetic, or electrical energies either applied to

the body or used as a medium for biofeedback or diagnosis. One

such agent is photobiomodulation (PBM) which has effects at the

molecular/genetic, cellular and systems levels. PBM has found

some support in recent placebo/sham-controlled studies for

reducing and/or controlling neuropathy pain, function and

symptoms (Argenta et al., 2017; Lodewijckx et al., 2020;

Lodewijckx et al., 2022). Electrical stimulation (eStim) has nerve

blocking and endogenous opioid effects, and has been reported to

improve pain scores, tingling, numbness, and cramping

(Gewandter et al., 2019). However, in a randomized, placebo-

controlled study of 72 participants, low-frequency

electrostimulation showed no difference between active and

sham groups for pain, although cold arthralgia was significantly

better in the active treatment group (Song et al., 2020). Scrambler

therapy, a form of eStim, was used in one study and significantly

reduced pain and improved quality of life (Coyne et al., 2013).

Thermal therapies such as frozen gloves have been investigated

primarily for their preventive effects. Thermoregulatory effects

delivered by cryocompression were well-tolerated and were found

to significantly reduce the incidence of CIPN (Bandla et al., 2020;

Oneda et al., 2020; Chitkumarn et al., 2022). One study has

investigated the benefit of combination therapy and

implemented a 15-week integrated program of massage, passive

mobilization and physical exercises with or without whole body

vibration and patients reported less pain and improved function

over time (Schönsteiner et al., 2017). Somatic yoga, reflexology and

meditation have been tested with some influence on various

measures of outcome (Kurt and Can, 2018; Galantino et al.,

2019). In common with all these studies is the disparate nature

in outcomes across various measures of symptoms and signs of

CIPN. Although some methods and approaches show promise,

more rigorously controlled studies with greater statistical power

are needed. We propose that a more complete understanding of

themechanism of CIPNmay assist in focusing efforts on designing

non-pharmacological studies. Indeed, it may prove that combining
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some of the treatment methods spatially and temporally may

address some of the different features contributing to the causes

of CIPN.

The diversity of effectiveness of both pharmacological and

non-pharmacological approaches to the prevention and

management of CIPN suggests that a precision medicine

approach tailored to an individual’s CIPN phenotype, physical

capabilities, co-morbidities and willingness to comply with

treatment may be needed, therefore accurate profiling of the

individual’s CIPN would need to be developed (Dorsey et al.,

2019; Mezzanotte et al., 2022).

10 Discussion

Our understanding of the pathomechanisms leading to CIPN

have improved greatly in recent years. In particular, combination of

optimized chemotherapy regimens with molecular or personalized

treatment approaches could lead to development of improved

treatments for CIPN with the promise to deliver improved

patient outcomes. Some of the key considerations that have

become apparent include the need for agent-specific,

mechanisms-based treatments. These will likely include

approaches targeting both aberrant neuronal function, as well as

pathological processes such as inflammation that may indirectly

affect sensory systems. Although adult rodent models remain

invaluable in this regard, there is also a clear need for juvenile

rodent models and humanized, or human, model systems that will

facilitate clinical translation. One such approach may include the

use of human DRGs, or stem-cell derived sensory neurons that can

facilitate investigation of pathological mechanisms in more directly

relevantmodel systems. Importantly, this review has highlighted the

dearth of evidence specific to CIPN mechanisms and treatments in

the pediatric population. Additional research is desperately needed,

particularly in light of the clear physiological differences between

children and adults that are likely to contribute to divergent

mechanisms, and accordingly divergent treatment approaches,

that are needed for individuals suffering from CIPN.
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TABLE 6 Status of types of non-pharmacological methods to prevent, treat or limit severity of CIPN.

Intervention Status and potential References

Exercise Individualized, multimodal exercise programs that are undertaken during
chemotherapy and include balance training and sensorimotor integration
have greatest potential to influence CIPN

Duregon et al. (2018), Oh and Kim, 2018), Kanzawa-Lee et al. (2020),
Tanay et al. (2021), Brett Whalen et al. (2022), Guo et al. (2022)

Matters of dose and patient compliance need addressing

Acupuncture and
derivatives

Mixed outcomes using different forms of acupuncture suggest further
research in this field is required to determine optimal treatment parameters

Brami et al. (2016), Hsieh et al. (2016), Wong et al. (2016), Derksen
et al. (2017), Oh and Kim, (2018), Li et al. (2019), Hao et al. (2020),
Chien et al. (2021)

Electrophysical agents Photobiomodulation, electrical stimulation and thermal therapies show
some positive effects on CIPN

Coyne et al. (2013), Argenta et al. (2017), Gewandter et al. (2019),
Bandla et al. (2020), Lodewijckx et al. (2020), Oneda et al. (2020), Song
et al. (2020), Chitkumarn et al. (2022), Lodewijckx et al. (2022)Once mechanism/s of CIPN identified, therapies that target those

mechanisms may have greatest potential (e.g., PBM which has a
neuroimmune effect)

Combination therapies Multimodal preventive and treatment strategies (e.g., exercise ± PBM ±
acupuncture) may address different pathophysiological effects of
chemotherapies

Schönsteiner et al. (2017), Kurt and Can (2018), Galantino et al. (2019)
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