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Abstract: Rheumatoid arthritis (RA) is a chronic autoimmune disease that can lead to severe joint damage, disability and mortality.
Quercetin (QUE) is a natural flavonoid that is ubiquitous in fruits and vegetables. This article reviews the effect of QUE on articular
and extra-articular manifestations of RA in vitro and in vivo. In general, for articular manifestations, QUE inhibited synovial
membrane inflammation by reducing inflammatory cytokines and mediators, decreasing oxidative stress, inhibiting proliferation,
migration and invasion, and promoting apoptosis of fibroblast-like synoviocytes (FLS), regulated autoimmune response through
modulating Th17/Treg imbalance and Th17 cells differentiation, reducing autoantibodies levels and regulating ectonucleoside tripho-
sphate diphosphohydrolase (E-NTPDase)/ectoadenosine deaminase (E-ADA) activities, reduced bony damage via lowering matrix
metalloproteinase (MMP)-1, MMP-3, receptor activator of nuclear factor kappa B ligand (RANKL) expression and osteoclasts
formation. For extra-articular manifestations, QUE could reverse the neurodegenerative processes of the enteric nervous system
(ENS) and exhibited cytoprotective, genoprotective and hepatoprotective effects. In addition, we also summarize some contradictory
experimental results and explore the possibility for these differences to form a sound basis for the clinical application of QUE for RA.
Keywords: rheumatoid arthritis, quercetin, pharmacological

Introduction
Rheumatoid arthritis (RA), a systemic inflammatory autoimmune disease, is more common in women than men with a
worldwide prevalence of 0.5%–1.0%.1 RA is featured with progressive cartilage and bone destruction by invasive
hyperplastic synovial membrane, leading to an increased risk of disability and mortality.2 Though current therapeutic
options have, to some extent, improved the prognosis of RA, the pharmacological treatment seems to be continuously
inadequate in preventing the progression of RA; therefore, new anti-arthritic therapies are essential.3,4 Currently, there is
growing interest in the pharmacological potential of natural products.

Quercetin (QUE) is a type of flavonoid, which is ubiquitous in fruits and vegetables, such as onion, apples, beans and
various berries.5 A growing body of evidence has shown the anti-hypertensive,6 anti-inflammatory,7 anti-angiogenic,8

anticancer,9–11 hepatoprotective,12 anti-diabetic,13 anti-aging,14 and neuroprotective15 potential of QUE. In addition,
QUE is also proved to be effective in management of RA in pre-clinical or clinical studies. In this review, we discuss the
effect of QUE on articular and extra-articular manifestations in RA.

Pharmacological Mechanism of QUE in Pre-Clinical Studies (Figure 1)
The zymosan-induced arthritis, collagen-induced arthritis (CIA) and adjuvant-induced arthritis (AA) models are commonly
used animal models of RA, which is helpful for understanding the complex pathogenic mechanisms involving inflammation,
autoimmunity, and cartilage and bone destruction in RA.16,17
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Anti-Inflammatory Effect
Effect of QUE on Clinical Parameters and Inflammatory Parameters
Synovial inflammation is a hallmark of RA, and joint swelling reflects synovial membrane inflammation, characterized
by leukocyte infiltration into the normal synovial compartment. Besides, the inflammatory milieu of the synovial
compartment is correlated with the complex cytokine and chemokine network.1,18 Previous studies have proved that
QUE could decrease paw edema in arthritis model.19,20

In zymosan-induced arthritis mice, QUE significantly reduced mechanical hyperalgesia and joint edema, inhibited the
recruitment of total leukocytes, neutrophil and mononuclear cells, decreased the tumor necrosis factor (TNF)-α and
interleukin (IL)-1β production, and inhibited zymosan-induced prepro-endothelin-1 (prepro-ET-1) and cyclooxygenase-2
(COX-2) mRNA expression in the knee joint of mice. These effects of QUE might be related to the inhibitory effect on
nuclear factor (NF)-κB activation.21

Similarly, QUE remarkably mitigated the paw edema and arthritis index scores, down-regulated the total pathological
score (including inflammatory cells infiltration, synovium congestion and hyperplasia, and cartilage and bone erosion),
decreased TNF-α, IL-1β, IL-6 and prostaglandin E2 (PGE2), inhibited nucleotide-binding oligomerization domain-like
receptor family pyrin domain containing-3 (NLRP3) inflammasome (NLRP3, Caspase-1 and IL-1β) activation with no
remarkable effect to pro-IL-1β and pro-Caspase-1 in CIA models.22–25 Further mechanistical studies suggested that QUE
could improve impaired mitochondrial biogenesis and function via regulating silent information regulator 1 (SIRT1)/
peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)/nuclear respiratory factor 1 (NRF1)/mitochondrial

Figure 1 The anti-articular effect of QUE on RA in pre-clinical studies. (A): Rheumatoid arthritis joint. (B): The immune-regulatory effect of QUE on RA: QUE
regulated Th17/Treg cell balance, decreased Th17 cells-related cytokines (IL-17A, IL-21 and IL-23), increased Treg cells-related cytokines (IL-10 and TGF-β), and reduced the
autoantibodies levels. (C): The anti-inflammatory and bone protective mechanisms of QUE on RA: Anti-inflammatory effect: QUE decreased pro-
inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8, PGE2, COX-2, iNOS, and prepro-ET-1) by regulating MAPKs (ERK, p38, JNK), NF-κB and Nrf2/HO-1 signaling pathway
as well as lncRNA XIST/miR-485/PSMB8 axis; QUE decreased gp91phox expression, increased GSH levels through regulating Nrf2/HO-1 signaling pathway, indicating the
participation of HO-1 in the anti-inflammatory effect of QUE; QUE inhibited FLS proliferation via inhibiting the activation of intracellular MAPKs (ERK, p38, JNK) and NF-κB
signaling pathways; QUE inhibited the migration and invasion of FLS, which might be related to the up-regulatory effect on miR-146a and the down-regulatory effect on the
downstream target GATA6; Besides, QUE upregulated lncRNA MALAT1, inducing the inhibitory effect on the activation of PI3K/AKT signaling pathway, leading to caspase-3,
caspase-9, and Bax elevated, Bcl-2 diminished, the Bcl-2/Bax ratio decreased, ultimately to promote RAFLS apoptosis; QUE could also enhance p53 phosphorylation at ser15,
leading to caspase-3 and caspase-9 activated, Bcl-2 expression diminished, Bax expression elevated, the Bcl-2/Bax ratio decreased, caused a loss in mitochondrial membrane
potential, and enhanced the subsequent release of cytochrome c from mitochondria in FLS, ultimately to promote RAFLS apoptosis. Bone-protective effect: QUE
suppressed RANKL expression of FLS by regulating mTOR, ERK, IκB-α and AMPK signaling pathway. QUE inhibited MMP-1 and MMP-3 expression of FLS via suppressing the
activation of MAPKs (ERK, p38, JNK) and NF-κB signaling pathway.
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transcription factor A (TFAM) signaling pathway, and QUE could inhibit inflammation by regulating high-mobility
group box 1 (HMGB1)/Toll-like receptor 4 (TLR4)/p38/extracellular signal-regulated kinases (ERK)-1/2/NF-κB p65
signaling pathway.24 But, interestingly, combined administration of QUE and methotrexate (MTX) exhibited no greater
protection than administration of QUE alone for CIA mice.26

As well, in AA model, oral or intra-cutaneous QUE significantly decreased arthritis index score27,28 and paw
thickness, increased paw thermal latency, reduced infiltration of inflammatory cells and decreased p-P65 level in
histological analysis of joint tissue.28–32 What’s more, intra-cutaneous QUE simultaneously with adjuvant induced and
prior to the appearance of clinical signs also resulted in reduction of clinical scores, suggesting the preventive property of
QUE on RA.27 However, another study indicated that, in AA rats treated with QUE group, the changes in arthritis score
observed were not obvious compared to the AA group, which were, partly, in contradiction with the related experimental
results observed in zymosan-induced arthritis, CIA and AA model.33 This might be partially associated with the
difference in experimental models and administration dosage and ways. ELISIA analysis of the levels of inflammatory
cytokines in AA model serum indicated that QUE decreased proinflammatory cytokines, including interferon (IFN)-γ,
TNF and IL-6, increased anti-proinflammatory cytokines, including IL-4 and IL-1030. QUE also ameliorated nitric oxide
(NO), decreased macrophage-derived inflammatory cytokines, including TNF-α, IL-1β, IL-6, monocyte chemotactic
protein-1 (MCP-1),27,28,32,33 and myeloperoxidase (MPO) activity.29 Adenosine deaminase (ADA), another inflammatory
biomarker for RA.34 QUE could inhibit ADA enzyme activity and gene expression in sera and joints.28 Furthermore, the
regulatory effect on miRNA-26b, miRNA-20a and glycogen synthase kinase-3β (GSK-3β)/NF-κB/NLRP3 signaling
pathway, possibly, made contributions to the anti-inflammatory effect of the atorvastatin and QUE combination therapy
on AA model.32 In addition, suppression of lipoxygenase (LOX) production ameliorates inflammation of RA.35

Meanwhile, QUE decreased the activity of 12/15-LOX in liver and lung of AA model, which might be correlated to
the inhibitory effect of QUE on the activation of NF-κB in joint, lung and liver, and the activation of extracellular signal-
regulated kinases (ERK) in joint and lung.33

In vitro, an early study showed that QUE inhibited TNF-α-induced stimulation of IL-8 and MCP-1, partly, by
inhibiting the activation of NF-κB in human RA fibroblast-like synoviocytes (RAFLS).36 Furthermore, a recent study
found that QUE could suppress TNF-α-induced production of IL-1β, IL-6 and IL-8 by targeting long non-coding RNA
(lncRNA) (si)-X-inactive specific transcript (XIST), sponging microRNA (miR)-485, which, subsequently, targeting
proteasome subunit β type-8 (PSMB8).37 Besides, IL-1β stimulated the expression of COX-2 and PGE2, but for COX-1
in RAFLS. QUE inhibited the effects of IL-1β on COX-2 and PGE2, which were due partly to the inhibitory effect on
activation of intracellular mitogen-activated protein kinase (MAPK) signaling pathways, including ERK, p38, c-Jun
N-terminal kinase (JNK), and NF-κB signaling pathways.38

In short, QUE attenuated clinical parameters, decreased pro-inflammatory cytokines and increased anti-inflammatory
cytokines, which might be related to the regulatory effect of QUE on numerous signaling pathways, including GSK-3β,
NF-κB, MAPKs (ERK, p-38, JNK), SIRT1/PGC-1α/NRF1/TFAM, and HMGB1/TLR4/p38/ERK1/2/NF-κB p65 signal-
ing pathways, as well as lncRNA XIST/miR-485/PSMB8 axis.

Inhibition of Oxidative Stress
In rheumatoid joint, neutrophil can release various potentially harmful peptides and enzymes, and toxic oxygen
metabolites to drive inflammation.39 Reactive oxygen species (ROS) can activate signaling pathways involved in the
inflammation of RA,40 which is related to the levels of reduced glutathione (GSH), glutathione S-transferase (GST),
glutathione reductase (GSR) and glutathione peroxidase (GSH-Px).41

A recent study indicated that QUE could inhibit neutrophil infiltration and activation in joint of RA model and in
LPS-mediated air pouch model. QUE could attenuate neutrophil invasion and increase apoptosis of activated neutrophil.
In addition, QUE inhibited the formation of neutrophil extracellular traps (NETs) by suppressing autophagy.30

QUE could counteract the oxidative stress associated with AA-induced in the joint tissues and plasma of rats.28,33 Also,
QUE reduced ROS level and increased catalase activity in serum in complete Freund’s adjuvant (CFA)-induced arthritis.42 As
well, in zymosan-induced arthritis mice, QUE decreased gp91phox (a subunit of NADPH oxidase) mRNA expression,
increased GSH levels, nuclear factor erythroid 2 related factor 2 (Nrf2) and heme oxygenase (HO-1) mRNA expression,
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indicating these antioxidant molecular effects of QUEmight be associated with Nrf2/HO-1 signaling pathway.21 As coincided
with in zymosan-induced arthritis mice, QUE increased HO-1 at protein level in synovium and FLS (concentration- and time-
dependent) of CIA rats.22 Furthermore, in HO-1 siRNA transfected CIA-FLS, QUE or cobalt protoporphyrin IX (CoPP, the
inducer of HO-1) failed to downregulate inflammatory cytokines and mediators (TNF-α, IL-1β, IL-6, PGE2, iNOS and
COX-2), providing sound evidences indicating the participation of HO-1 in the anti-inflammation effects of QUE.22

Interestingly, in AA rats, HO-1 protein level increased in joint, while decreased in lung, QUE treated further increased HO-
1 expression in joint, and restored HO-1 to control level in lung compared to AA rats.33

Briefly, QUE regulated neutrophil activities and exhibited antioxidant molecular effects to inhibit oxidative stress
through Nrf2/HO-1 signaling pathway, to attenuate synovial inflammation.

Regulation of Behavior of FLS
The process that hyperplastic synovial membrane, acting as cytokine-producing tissue, facilitates structural damage is
based on sustainable activation and aggressive behavior of FLS, including proliferation, migration, invasiveness and
resistance to apoptosis.18,43

QUE inhibited IL-1β-induced proliferation of RAFLS by inhibiting the activation of intracellular MAPKs (ERK, p38,
JNK) and NF-κB signaling pathways.38 QUE also induced RAFLS apoptosis.38 Moreover, QUE promoted RAFLS
apoptosis by upregulating the lncRNA metastasis associated with lung adenocarcinoma transcript 1 (MALAT1), and
MALAT1 induced RAFLS apoptosis via inhibiting the activation of the phosphoinositide 3-kinase/protein kinase B
(PI3K/AKT) signaling pathway. Besides, in the RAFLS transfected with si-MALAT1, the expression of caspase-3,
caspase-9 and Bax decreased, while the expression of Bcl-2 increased at protein level.44 Similarly, another study
indicated that QUE induced RAFLS apoptosis, activated caspase-3 and caspase-9, diminished Bcl-2 expression, elevated
Bax expression, decreased the Bcl-2/Bax ratio, caused a loss in mitochondrial membrane potential, and enhanced the
subsequent release of cytochrome c from mitochondria in concentration-dependent manner in RAFLS, which indicated
that quercetin-induced RAFLS apoptosis through mitochondrial pathway.45 It has been suggested that protein 53 (p53), a
tumor suppressor, plays a vital role in regulating cellular behaviors in rheumatoid synovium.46,47 And, the phosphoryla-
tion of p53 at ser15 reflects its functional response to the cellular stress and leads to cell apoptosis.48 QUE treatment
could enhance p53 phosphorylation at ser15 in a concentration-dependent manner with no effect on the expression of
total p53. Besides, further experimental results indicated that RAFLS treated with pifithrin-α (PFT-α, an inhibitor of p53)
or siRNA targeting to p53 significantly abrogated quercetin-induced apoptosis, indicating that p53 activation was
contributed to quercetin-induced apoptosis in RAFLS.45

QUE could inhibit the migration and invasion of RAFLS in vitro, which was proved to be related to the up-regulatory
effect on miR-146a and the down-regulatory effect on the downstream target GATA transcription factor 6 (GATA6) of
QUE. miR-146a inhibitor transfection could enhance the migration and invasion of RAFLS. Moreover, miR-146a
inhibitor transfection could inverse the inhibitory effect of QUE on RAFLS migration and invasion, abolish the
suppression of QUE on GATA6 and F-actin, indicating that QUE inhibited the migration and invasion of RAFLS
might be related to the regulatory effect on miR-146a/GATA6 axis.49

In brief, QUE attenuated hyperplastic synovial membrane by regulating FLS behavior, including inducing apoptosis,
inhibiting proliferation, migration and invasion.

Immune-Regulatory Effect
RA is an autoimmune disease. It has been identified that T cells and B cells play a crucial role in pathogenesis and
pathology of RA.50,51 Moreover, it has proved that the presence of autoantibodies is related to more severe clinical
symptoms and joint damage in RA patients.1

In CIA model, the relative weight of spleen increased when compared with healthy controlled group, QUE could decrease
spleen index.24 Besides, QUE decreased the proportion of CD4+IL-17A+T cells, increased the percentage of
CD4+CD25+Foxp3+ Tcells.22,25 Besides, the further studies proved that QUE could significantly increase Foxp3 and decrease
RORγt of Th17 cells (IL-17-producing CD4+ T cells) and Treg cells (Foxp3+ regulatory T cells) could inhibit CD4+ T cells
polarized into Th17 cells and could decrease the proportion of CXCR3+IL-17A+ T cells and IFN-γ+IL-17A+CD4+ T cells,
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indicating the anti-arthritic effects of QUEmight be partially due to the modulation of Th17/Treg cells balance and Th17 cells
differentiation.22,25 Moreover, QUE activated peroxisome proliferator activator receptor γ (PPARγ) to promote the suppressor
of cytokine signaling 3 (SOCS3) gene transcription then to inhibit signal transducer and activator of transcription 3 (STAT3)
activation, QUE also redistributed the corepressor retinoid and thyroid-hormone receptors (SMRT) from PPARγ to STAT3 to
inhibit the STAT3 transcriptional activity, namely, QUE target PPARγ to inhibit STAT3 by dual mechanisms, ultimately
inhibiting Th17 differentiation.25 But that, a little paradoxically, some experimental results were different from these. In
Peripheral blood mononuclear cells (PBMCs) cultured with Th17-differentiation conditions, QUE reduced IL-17 cytokine
production in culture medium, suppressed the percentage of IL-17-expressing CD4+ T cells, but exhibited no effect to the
percentage of CD25Foxp3-expressing CD4+ regulatory Tcells.52 Different cell sources might contribute to these contradictory
experimental results. QUE could also regulate the serum levels of Th17/Treg-related cytokines, namely, decreased Th17 cells-
related cytokines (IL-17A, IL-21 and IL-23), increased Treg cells-related cytokines (IL-10 and TGF-β).22,25 In addition, QUE
decreased the elevated levels of IFN-γ, IL-4 and CXCR3.25,29 Besides, QUE could reduce the serum autoantibodies levels,
including anti-CII IgG, anti-CII IgG1 and anti-CII IgG2a in CIA models.22,24 A recent study indicated that QUE could
diminish the sera levels of anti-cyclic citrullinated peptide antibody (anti-CCP) and rheumatoid factor (RF) in AA rats
model.28

Ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) and ectoadenosine deaminase (E-ADA) in lymphocytes
are involved in the pathogenesis of RA.53,54 QUE could reverse the increase of E-NTPDase activity and the decrease of
E-ADA activity in lymphocytes. Besides, though there were no significant changes in the serum levels of ATP, ADP and
AMP in QUE group compared with AA group, QUE lowered the increased serum adenosine levels of AA rats.29

Collectively, QUE exhibited the immune-regulatory effect by restoring T cell homeostasis, regulating Th17 cells
differentiation, regulating the levels of Th17/Treg-related cytokines, reducing autoantibodies production, and regulating
E-NTPDase/E-ADA activities.

Bone-Protective Effect
In RA, proinflammatory cytokines, receptor activator of nuclear factor kappa B ligand (RANKL) and antibodies directed
against citrullinated proteins secreted by synovitis mediate articular bone erosion, including stimulating the differentia-
tion of bone-resorbing osteoclasts.55 And, matrix metalloproteinases (MMPs) made contributions to the cartilage
destruction.56

QUE could inhibit IL-1β induced the expression of MMP-1, MMP-3 at mRNA and protein level in RAFLS, except
for tissue inhibitor of metalloproteinase (TIMP)-1, which might be related to inhibiting the activation of intracellular
MAPKs (ERK, p38, JNK) and NF-κB pathways.38

QUE also suppressed IL-17 induced RANKL expression of RAFLS at mRNA and protein level, inhibited RANKL-
and IL-17- produced TRAP positive osteoclasts formation, and decreased the expression of the osteoclast markers,
including TRAP, cathepsin K, NF-ATc1, DC-STAMP, ATP6vOd2, and OC-STAMP. In addition, QUE exhibited similar
inhibitory effect on osteoclastogenesis (TRAP positive osteoclasts formation and increased expression of the osteoclast
markers) in culture system of monocytes with IL-17-prestimulated RAFLS, and in osteoclast precursors (pre-OC)
cultured with Th17 cells and M-CSF. Moreover, QUE suppressed the phosphorylation of mTOR, ERK and IκB-α,
while enhanced the phosphorylation of AMPK in IL-17 stimulated RAFLS, implying that these molecular effects of
quercetin for RA might be mediated by aforementioned signaling pathways.52

In brief, QUE exerted the bone-protective effect by decreasing MMPs, RANKL production, and osteoclasts formation
by regulating MAPKs (ERK, p38, JNK), NF-κB, mTOR, ERK, IκB-α and AMPK.

Anti-Extra-Arthritic Effect
RA is a multi-systemic disease and some patients may develop extra-articular manifestations at the onset or in the
progression of RA.57

In CFA-induced arthritis model, QUE reduced the increased aspartate aminotransferase (AST), except for alanine
aminotransferase (ALT) and alkaline phosphatase (ALP) in serum, decreased production of thiobarbituric acid-reactive
substances (TBARS), and DNA damage, suggesting the hepatoprotective, genoprotective and cytoprotective effect of
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QUE in arthritic model.42 Another study indicated that the levels of ALT and AST of methotrexate (MTX) treatment
group were higher than control group, while QUE co-administered with MTX could reverse the hepatotoxicity.31

Besides, in CFA-induced arthritis rats, the density of the enteric neurons and the enteric glial cells (EGC) in the
myenteric and submucosal plexuses with neurodegeneration in the jejunum were remarkably decreased, glial fibrillary
acidic protein (GFAP) and glial cell derived neurotrophic factor (GDNF) expression reduced, the mucosa and intestinal
wall atrophied, and intestinal inflammation presented, and QUE substantially reversed most of these effects except the
intestinal atrophy of the jejunum.58

The antioxidant, anti-inflammatory and/or neuroprotective mechanisms might make contributions to the hepatopro-
tective, genoprotective and cytoprotective effect, and to the improvement of RA-induced arthritic neuropathy of QUE.

Potential Effect of QUE in Clinical Studies
Based on the effectiveness of QUE on RA in preclinical studies, some clinical studies have been performed to illuminate
the protective effect on RA though related studies are few.

In a randomized double-blind clinical trial, 51 women with RA aged 19–70 years were assigned into quercetin (500
mg/day) or placebo groups for 8 weeks, finally, there were no significant differences in markers of oxidative stress
including total antioxidant capacity (TAC), oxidized low-density lipoprotein (ox-LDL), malondialdehyde (MDA), and
high sensitivity C-reactive protein (hs-CRP), and blood pressure between quercetin and placebo groups.59

Meanwhile, subsequently, in another double-blind, placebo-controlled, randomized clinical trial, 50 women with RA
were allocated to two groups: a quercetin group and a placebo group, receiving quercetin (500 mg/day) or a placebo,
respectively, for 8 weeks. QUE groups presented a reduced early morning stiffness (EMS), morning pain, and after-
activity pain, and a decreased plasma high-sensitivity TNF-α (hs-TNF-α) level, Disease Activity Score 28 (DAS-28) and
health assessment questionnaire (HAQ) scores.60

The grouping, dosage and administration method of QUE, gender of subject in the two clinical trials above were
same. A study suggested that QUE exhibited no effect on oxidative or inflammatory status in RA patients, but another
study indicated that QUE could significantly improve clinical symptoms and decrease inflammatory factors of RA
patients. Subjects with different levels of disease activity and different evaluation indexes were the possible reasons for
these differences in the two studies.

Conclusion and Future Directions
RA is a chronic inflammatory joint disease, the main pathological process includes synovial membrane inflammation,
autoimmune response, cartilage and bone damage, and oxidative stress. RA patients with insufficient treatment can have
various extra-articular manifestations.1,2,61

In this review, the anti-RA effect of QUE is summarized on anti-articular and anti-extra-articular (Table 1) in pre-
clinical studies. Firstly, QUE decreased synovial inflammation through reducing joint clinical parameters and inflamma-
tory cytokines, inhibiting oxidative stress, and regulating behavior of FLS. Secondly, QUE exhibited immune-regulatory
effect by regulating Th17/Treg balance and Th17 cells differentiation, reducing autoantibodies levels, and regulating
E-NTPDase/E-ADA activities. Thirdly, QUE exerted bone-protective effect by suppressing MMPs, RANKL expression,
and inhibiting TRAP positive osteoclasts formation. Fourthly, for extra-articular manifestations, QUE exhibited cyto-
protective, genoprotective and hepatoprotective effect in arthritic model, and QUE could reverse the neurodegenerative
processes of enteric nervous system (ENS) in arthritic rats. Furthermore, some experimental results are paradoxical
which might be due to the different experimental models, administration methods or dosages, and most of the pre-clinical
evidences are derived from anti-inflammatory effect. Therefore, more pre-clinical studies, especially research on
immune-regulatory, bone-protective and anti-extra-articular effect, are urgently needed in future.

For clinical studies, the conclusion of the current two clinical studies seemed to be confusing and the existing
evidence did not show the corresponding excellent therapeutic potential in pre-clinical studies. The major gap about the
efficacy of QUE on RA between pre-clinical and clinical might be attributed to the limited clinical evidence.
Furthermore, clinical trials of RA patients with different disease activity, larger sample size, gender difference,
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Table 1 Potential Mechanism of QUE in Pre-Clinical Studies

Therapeutic Effect Experimental
Model

Dosage Information Molecular Mechanism Signaling Pathway

Anti-
inflammatory
effect

Effect on clinical
parameters and
inflammatory
cytokines

Zymosan-
induced arthritis
mice

0, 10, 30, 100 mg/kg s.c. 30 min before zymosan injection21 Reduced mechanical hyperalgesia, joint edema, and recruitment of
total leukocytes, neutrophil, mononuclear cells in joint, decreased
TNF-α, IL-1β, prepro-ET-1, COX-221

NF-κB21

CIA model 150 mg·kg−1·0.5 mL−1 three times a week orally administrated for
17 or 28 days;23 0, 50, 100mg/kg/d orally administrated for 5
weeks;24 150mg/kg daily orally administrated for 14 days22 or 21
days;25 30mg/kg daily orally administrated for 49 days26

Mitigated paw edema, inflammatory cells infiltration, synovium
hyperplasia, cartilage and bone erosion, decreased TNF-α, IL-1β, IL-
6, PGE2, and NLRP3 inflammasome (NLRP3, Caspase-1 and IL-
1β)22–26

SIRT1/PGC-1α/NRF1/
TFAM and HMGB1/TLR4/
p38/ERK1/2/NF-κB p6524

AA model 150 mg/rat (30 mg every 2 days, orally administrated for 10 days) or
25, 50 mg/rat (5 or 10 mg every 2 days, intra-cutaneous injection
following the appearance of first arthritic symptoms);27 25 mg/kg/d
orally administrated for 14 days;31 0, 5, 25 50 mg/kg/d orally
administrated for 45 days;29 30mg/kg/d injected intra-peritoneally 31
days;30 100mg/kg injected intra-peritoneally three times a week for 3
weeks;28 0, 50, 100, 150 mg/kg/d orally administrated for 28 days;32

150mg/kg/d orally administrated for 28 days33

Reduced arthritis scores, paw thickness and inflammatory
infiltration, increase paw thermal latency.27–32 Increased IL-4 and IL-
10, decreased TNF-α, NO, IFN-γ, IL-6, IL-1β, MCP-1, MPO,27–30,32,33

decreased 12/15-LOX in liver and lung.33 Decreased ADA enzyme
activity and gene expression in sera and joints28

GSK-3β, NF-κB and
ERK30,32,33

Human RAFLS 50 nmol/L;37

0, 20, 100, 200μM38
Decreased IL-1β stimulated COX-2 and PGE2,38 decreased TNF-α-
induced IL-1β, IL-6, IL-8 and MCP-136,37

MAPKs (ERK, p-38, JNK)38

and NF-κB,36,38 lncRNA
XIST/miR-485/PSMB8
axis37

Inhibition of
oxidative stress

Zymosan-
induced arthritis
mice

0, 10, 30, 100 mg/kg s.c. 30 min before zymosan injection21 Increased GSH, decreased gp91 phox21 Nrf2/HO-121

CIA model 150mg/kg daily orally administrated for 14 days22 Increased HO-1 in synovium and FLS, failed to downregulate
inflammatory cytokines and mediators (TNF-α, IL-1β, IL-6, PGE2,
iNOS and COX-2) in HO-1 siRNA transfection CIA-FLS22

-

AA model 30mg/kg/d injected intra-peritoneally 31 days;30 0, 5, 25, 50 mg/kg/d
orally administrated for 45 days;42 150mg/kg/d orally administrated
for 28 days33

Decreased neutrophil infiltration, activation, and invasion, increased
neutrophil apoptosis, decreased NETs formation by inhibiting
autophagy.30 Reduced ROS level and increased catalase activity in
serum.42 Further increased HO-1 expression in joint, and restored
HO-1 to control level in lung33

NF-κB and ERK33

Regulation of
behavior of FLS

Human RAFLS 0, 10, 20, 30 μM;49 0, 10, 50, 100, 150, 200, 300 μM;44 0, 100, 200,
300 μM,45 0, 20, 100, 200μM38

Increased apoptosis and decreased IL-1β-induced proliferation.38

Increased apoptosis via upregulating lncRNA MALAT1.44

Upregulated caspase-3, caspase-9, Bax, downregulated Bcl-2,44,45

caused a loss in mitochondrial membrane potential, and enhanced
the subsequent release of cytochrome c from mitochondria.45

Inhibited migration and invasion49

MAPKs (ERK, p38, JNK),
NF-κB38 and PI3K/AKT,44

p53 activation,45 miRNA-
146a/GATA6 axis.49
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Table 1 (Continued).

Therapeutic Effect Experimental
Model

Dosage Information Molecular Mechanism Signaling Pathway

Immune-
regulatory
effect

- CIA model 0, 50, 100mg/kg/d orally administrated for 5 weeks;24 150mg/kg daily
orally administrated for 14 days22 or 21 days25

Decreased IL-17A, IL-21, IL-23, increased IL-10, TGF-β, decreased
CD4+IL-17A+T cell proportion, increased CD4+CD25+Foxp3+ T
cells proportion; upregulated Foxp3 and downregulated RORγt of
Th17 cells and Treg cells,22,24,25 decreased serum autoantibodies
levels (anti-CII IgG, anti-CII IgG1 and anti-CII IgG2a)22,24

PPARγ25

AA model 100mg/kg injected intra-peritoneally three times a week for 3
weeks;28 0, 5, 25 50 mg/kg/d orally administrated for 45 days29

Decreased anti-CCP, RF.28 Reversed the increase of E-NTPDase
activity and the decrease of E-ADA activity in lymphocytes, lowered
the increased serum adenosine levels, decreased the elevated levels
of IFN-γ and IL-429

-

Human PBMC
cultured with
Th17-
differentiation
conditions

0, 1, 5, 25 μM52 Reduced IL17 production in the culture medium, suppressed the
percentage of IL-17-expressing CD4+ T cells, but exhibited no effect
to the percentage of CD25Foxp3-expressing CD4+ regulatory T
cells52

mTOR, ERK, IκB-α and
AMPK52

Mouse naïve
CD4+ T cells

0, 1, 3, 10 μM25 Decreased CXCR3, inhibited CD4+ T cells polarized into Th17 cells,
and decrease the proportion of CXCR3+IL-17A+ T cells and IFN-
γ+IL-17A+CD4+ T cells25

Bone-
protective
effect

- Human RAFLS 0, 1, 5, 25 μM;52 100μM38 Suppressed IL-17 produced RANKL expression at mRNA and
protein level, inhibited RANKL- and IL-17- produced TRAP positive
osteoclasts formation, and decreased the expression of the
osteoclast markers, including TRAP, cathepsin K, NF-ATc1, DC-
STAMP, ATP6vOd2, and OC-STAMP, decreased TRAP positive
osteoclasts formation and the osteoclast markers in culture system
of monocytes with IL-17-prestimulated RAFLS, and in osteoclast
precursors (pre-OC) with Th17 cells and M-CSF.52 Inhibit IL-1β
stimulated MMP-1, MMP-3 at mRNA and protein level38

mTOR, ERK, IκB-α,
AMPK.52

MAPKs (ERK, p38, JNK)
and NF-κB38

Anti-extra-
articular
effect

Hepatoprotective
Cytoprotective
Genoprotective

AA model 0, 5, 25, 50 mg/kg/d orally administrated for 45 days42 Decreased the increased serum ASTexcept for ALT, ALP, decreased
TBARS, DNA damage42

-

Neuroprotective AA model 50 mg/kg/d orally administrated for 60 days58 Reversed the density of the enteric neurons and the enteric glial
cells (EGC) in the myenteric and submucosal plexuses, the
expression of GFAP and GDNF expression, reduced intestinal
inflammation58

-
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exploration of administration methods or dosages, pharmacokinetics, etc. will also be needed. Only sufficient evidence of
pre-clinical and clinical could form a sound basis for the clinical application of QUE for RA.
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