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Background: Combined MET and BRAF inhibition showed clinical benefit in a patient with rectal cancer carrying BRAFV600E and
MET amplification. However after 4 months, acquired resistance emerged and the patient deceased shortly after disease
progression. The mechanism of resistance to this drug combination is unknown.

Methods: We analysed plasma circulating tumour DNA obtained at progression by exome sequencing and digital PCR. MET gene
and mRNA in situ hybridisation analyses in two bioptic specimens obtained at progression were used to confirm the plasma data.

Results: We identified in plasma MET gene hyper-amplification as a potential mechanism underlying therapy resistance. Increased
MET gene copy and transcript levels were detected in liver and lymph node metastatic biopsies. Finally, transduction of MET in
BRAF mutant colorectal cancer cells conferred refractoriness to BRAF and MET inhibition.

Conclusions: We identified in a rectal cancer patient MET gene hyper-amplification as mechanism of resistance to dual BRAF and
MET inhibition.

The MET oncogene encodes for a receptor tyrosine kinase involved
in the regulation of tumour growth, survival, angiogenesis,
invasion and metastases (Birchmeier et al, 2003; Raghav et al,
2012). Its amplification is associated with sensitivity to MET
inhibition in preclinical models as well as in a subset of patients
(Smolen et al, 2006; Camidge et al, 2014). MET gene amplification

may be present in subclones of tumour cells that are positively
selected during anti-EGFR-based therapy in both NSCLC and
colorectal cancer (CRC) patients (Turke et al, 2010; Bardelli et al,
2013; Pietrantonio et al, 2016). MET amplification or copy gain
occurs in a fraction of BRAF-mutated tumours including CRC
(Jardim et al, 2014; Pietrantonio et al, 2016). The combination of
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vemurafenib (BRAF inhibitor) with crizotinib (dual ALK-MET
inhibitor) is being assessed in a phase I study (NCT01531361), but
to date no mechanisms of primary or secondary resistance to
combined BRAF and MET inhibitors have been characterised at
preclinical or clinical level. Here, for the first time, we identified a
molecular mechanism of clinical resistance to BRAF and MET
inhibition by analysis of circulating tumour DNA (ctDNA) from
plasma alongside tissue taken at progression to this combination
therapy in a rectal cancer patient.

MATERIALS AND METHODS

Patient care. The study involved a 48-year-old patient with
BRAFV600E mutant microsatellite-stable mucinous metastatic rectal
cancer. Biospecimens were collected in accordance with a
Fondazione IRCCS Istituto Nazionale dei Tumori Review Board-
approved protocol, to which the patient provided written informed
consent, and all studies were conducted in accordance with the
Declaration of Helsinki. The patient’s insurance company covered
the cost of crizotinibþ vemurafenib off-label combination therapies,
to which the patient gave written informed consent. CT scans were
obtained as part of routine clinical care. Additional information
about specimen collection and its process (whole-exome sequencing
and digital PCR on plasma samples; DNA and RNA in situ
hybridisation (ISH)) are reported in Supplementary Material S1.

Cell lines. WiDr parental cells were obtained from Dr René
Bernards (Amsterdam, The Netherlands) in July 2011. The genetic
identity of parental cell lines and their resistant derivatives was
confirmed by short tandem repeat profiling (Cell ID System;
Promega, Madison, WI, USA) at 10 different loci. Cell lines were
tested and resulted negative for mycoplasma contamination with
the VenorGeM Classic Kit (Minerva Biolabs GmbH, Berlin,
Germany). WiDr METampl cell line was generated as previously
described (Pietrantonio et al, 2016). Additional information is
reported in Supplementary Material S1.

RESULTS

The first part of this molecular case study was previously published
and involved the same BRAF-mutated metastatic rectal cancer
patient who became resistant to combined BRAF and EGFR
blockade (vemurafenibþ panitumumab) due to the emergence of
MET amplification. The patient was shifted from EGFR to MET
inhibition, and received the combination of vemurafenib and
crizotinib achieving an early response (Pietrantonio et al, 2016).
Then, partial response was confirmed after 2 months of treatment,
although the computed tomography (CT) scan at 4 months
showed progressive disease (PD) across all sites (Figure 1A).

To uncover the potential mechanisms of the acquired resistance,
whole-exome next-generation sequencing (NGS) analysis of
plasma ctDNA obtained prior to crizotinib and vemurafenib
treatment and at PD was performed. DNA isolated from PBMC
was used to remove germline variants from the analysis. The
number of sequencing reads supporting the presence of a
BRAFV600E mutation was comparable in the pre-treatment and
post-resistance samples, indicating similar amounts of tumour-
derived circulating cell-free DNA in both samples (Figure 1B). No
acquired single-nucleotide variants were observed in plasma
ctDNA at PD (Supplementary Table S1). However, MET copy
number variation (CNV) further increased in the plasma ctDNA
sample obtained at progression (Figure 1B).

To validate these findings, BRAFV600E mutation and MET gene
copy were longitudinally monitored in plasma ctDNA by droplet
digital PCR using 15 samples collected at regular intervals from

initial receipt of vemurafenibþ panitumumab (Figure 1C). A rapid
decrease in BRAFV600E mutation and MET CNV in ctDNA was
observed within two weeks from the start of vemurafenibþ
crizotinib. The dynamics of mutant BRAFV600E alleles anticipated
radiological progression, as mutant BRAF in plasma increased
again as early as 8 weeks after starting therapy. At progression, the
percentage of BRAFV600E alleles were comparable to the pre-
treatment sample, while—proportionally—a notable increase in the
number of MET copies was detected (Figure 1C), thus validating
the exome data.

To corroborate MET hyper-amplification, and to further
exclude tumour burden-related MET CNV, we performed gene
copy number analysis by MET/CEP7 bright-field ISH in tissue
specimens obtained before and after treatment. In the liver biopsy
obtained after resistance to vemurafenibþ panitumumab but prior
to vemurafenibþ crizotinib (Figure 2, indicated as baseline 2),
heterogeneous MET gene copy number (ranging from 2 to 20) had
previously been reported (Pietrantonio et al, 2016). Upon
resistance to vemurafenibþ crizotinib, the patient consented to
liver and inguinal lymph node tumour biopsies, both of which
displayed MET hyper-amplification by ISH. Of note, the pre- and
post- treatment liver biopsies were taken from the same metastatic
lesion. Exome analysis performed on DNA from the liver biopsy at
resistance confirmed the presence of MET amplification and ruled
out other genetic mechanisms of resistance (Supplementary
Table S1). Collectively, the results in liquid and tissue biopsies
suggest that clones with higher levels of MET gene amplification
had been selected by the treatment.

Since evaluation of MET activation has recently been proposed
to better correlate with transcription rather than protein expression
due to the rapid turnover of the activated protein (Bradley et al,
2016), we investigated MET transcript levels in tissues by RNA
ISH. While MET mRNA was undetectable in the rectal primary
tumour tissue, low expression level was seen in the liver biopsy
taken after vemurafenibþ panitumumab. Notably, upon resistance
to vemurafenibþ crizotinib, both available re-biopsies demon-
strated MET RNA overexpression (Figure 2A).

To test whether MET overexpression is causally responsible for
resistance to vemurafenibþ crizotinib combination treatment, we
conducted in vitro forward genetic experiments. We previously
reported that a BRAF mutant CRC cell line, WiDr, which also has
increased MET gene copy number (WiDr-METampl), was sensitive
to vemurafenibþ crizotinib treatment (Pietrantonio et al, 2016).
We found that exogeneous hyper-expression of MET in the same
WiDr-METampl cells (called WiDr-hyper-METampl, Figure 2B)
could confer resistance to dual BRAF and MET inhibition and
prevented drug combination induced cytotoxicity (Figure 2C and D,
Supplementary Figure S1).

DISCUSSION

Concomitant inhibition of BRAF and MET in CRC patients with
BRAFV600E and MET amplification could represent a rationale
therapeutic strategy (Pietrantonio et al, 2016). Recent work
correlated MET amplification with a higher prevalence of
BRAFV600E tumours (Jardim et al, 2014), which may increase the
impact of this combination.

The patient reported in this work achieved 4 months of partial
response under therapy with vemurafenibþ crizotinib until drug
resistance emerged. Our effort to uncover the gene alteration(s)
driving resistance was based on ctDNA plasma sequencing. This
approach has the potential to capture the inter- and intra-tumour
heterogeneity present in metastatic disease (Russo et al, 2016). Single-
nucleotide variants and CNV were comprehensively analysed by
whole-exome sequencing comparing plasma ctDNA taken before
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target treatment and at PD. No single-nucleotide variants previously
associated with resistance to BRAF inhibition in melanoma or CRC
were observed (Ahronian et al, 2015; Hong et al, 2016; Oddo et al,
2016). We also did not detect secondary MET mutations affecting the
crizotinib-binding region, which had been observed either by drug-
protein co-crystal structure analysis or in MET-amplified tumours
after acquired resistance to MET inhibition (Cui et al, 2011; Qi et al,
2011; Bahcall et al, 2016; Heist et al, 2016).

In a previous study of a MET-amplified gastric cancer cell line
treated with increasing concentrations of MET inhibitors,
resistance was correlated with increased MET amplification
accompanied by increased KRAS expression (Cepero et al, 2010).
Our analyses identified only MET hyper-amplification, detected
both by ISH and mRNA ISH methodologies, as the most likely
genetic alteration underlying clinical acquired resistance to BRAF
and MET inhibition.
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Figure 1. Emergence of MET gene hyper-amplification in plasma ctDNA of a BRAFV600E metastatic colorectal cancer patient upon progression
to crizotinib and vemurafenib combinatorial treatment. (A) Clinical course of the disease during treatment with vemurafenibþ crizotinib.
Computed tomography scans document the disease status before treatment (left), after the initial response (middle) and at disease progression
(right). (B) Exome analysis of ctDNA by NGS. Mutant BRAFV600E allele frequencies of 46 and 50% were seen in the baseline 2 plasma sample and at
resistance, respectively, indicating similar amounts of ctDNA in both samples. MET CNV is increased when comparing ctDNA before therapy with
vemurafenibþ crizotinib and after disease progression. (C) Analysis of ctDNA by ddPCR. Time kinetics of the percentage of BRAFV600E alleles
(red line) or copies of MET gene copy number (blue line) show a decrease of both circulating markers during patient response to
vemurafenibþ crizotinib. At radiological disease progression, the percentage of BRAFV600E alleles were comparable to the pre-treatment sample,
while—proportionally—a notable increase in MET gene copy number was detected. Datapoints represent mean±s.d. of two independent
observations, each performed in duplicate. ddPCR¼digital droplet PCR; PR¼ partial response; PD¼progressive disease.
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Even when precision oncology is successful, the efficacy of
targeted strategies is generally transient. Since the patient died
about two months following disease progression, we speculate that
MET hyper-amplification coupled with BRAFV600E mutation not
only conferred resistance to vemurafenibþ crizotinib but also
could be responsible for the particularly aggressive disease
behaviour. Elucidating the molecular mechanisms underlying
secondary resistance may help in designing further lines of therapy
(Bahcall et al, 2016; Pietrantonio et al, 2016; Russo et al, 2016). We
believe that the traits associated with the extremely high level of
MET expression shown by the resistant tumour in this study could
have been exploited as a Achilles’ heel to rationally test as a further
salvage line novel anti-MET antibody–drug conjugates, such as
ABBV-399, which showed promising activity in MET-amplified

cancer cells and non-small cell lung cancer patients (Strickler et al,
2016; Wang et al, 2017). However, the rapid deterioration of
patient conditions prevented administration of further active
treatments.
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