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Abstract
Endocytic pathways are broadly classified into clathrin dependent and
independent on the basis of the requirement for the coat protein, clathrin. The
molecular pathways and mechanisms underlying the formation of
clathrin-independent pathways are still being explored, and this review
summarizes recent advances and emerging functional roles of these diverse
pathways. In particular, this review will discuss the growing consensus on the
role of BAR domain proteins and the actin machinery in different
clathrin-independent pathways and its significance to the functions fulfilled by
these endocytic pathways.
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Introduction
Endocytosis involves vesicular carriers that bud from the plasma 
membrane carrying membrane components, including signaling 
ligands, receptors, nutrients, or growth factors that are delivered 
to intracellular sites where they are further processed, recycled, 
or degraded. Secretion and endocytosis are closely integrated 
with the cellular protein synthesis and degradation machinery  
such that the flux of material through these processes is a key  
element in maintaining homeostasis in a cell. Naturally, the 
diversity in the types of cargo and the kinetics of their traffick-
ing demand a diversity in the types of endocytic machinery 
employed. The convenient classification based on the requirement  
for the coat protein, clathrin, divides these endocytic processes 
into clathrin-dependent and clathrin-independent pathways1–3.  
The formation of clathrin-coated pits and associated molecular 
machinery has been relatively well studied along with its  
functions in many physiological contexts4,5. This review will deal 
with recent findings about the clathrin-independent pathways.

Molecular machinery underlying clathrin-
independent endocytic pathways
Dynamin-dependent clathrin-independent endocytic 
pathways
Endocytic pathways that do not use clathrin can either use the scis-
sion GTPase dynamin or be independent of it. They are known 
to be more sensitive to the dynamics of the cytoskeletal actin 
machinery for stabilization and scission2. Recently, a role for BAR 
domain proteins has emerged in multiple clathrin-independent 
endocytosis (CIE) pathways. The members of the BAR domain 
protein endophilin—primarily endophilin-A2 and endophilin- 
A1—directly bind to and facilitate the endocytosis of selected  
G-protein-coupled receptors like β1-adrenergic receptor (β1-AR)  
and dopaminergic and acetylcholinergic receptors6. Endophilin 
and lamellipodin have previously been implicated in the clath-
rin-mediated endocytosis of epidermal growth factor receptor  
(EGFR)7. During the CIE of β1-AR, rapidly formed vesicles 
labeled by endophilin and its binding partners, synaptojanin 
and dynamin, internalized β1-AR from the leading edge of cells 
in culture and mediated the downregulation of its signaling. 
This novel endocytic pathway was named the fast endophilin- 
mediated endocytic pathway (FEME) and requires the lipid  
phosphatidylinositol 3,4-bisphosphate—PI(3,4)P2—as well as 
the protein lamellipodin, which binds both PI(3,4)P2 and the SH3 
domain of endophilin for its recruitment to the leading edge. The 
class I PI(3)K pathway and associated phosphatases, including 
the 5′ phosphatase SHIP1/2, act near the plasma membrane to  
locally enhance the PI(3,4)P2 levels. This assists in the formation  
of FEME vesicles enabled by the recruitment of endophilin6.

Endophilin-A2 has also been recently implicated in the CIE 
of glycosphingolipid (GSL)-binding toxins Shiga (STxB) 
and cholera toxin B8. These toxins induce local membrane  
curvature upon binding to their receptor, following which the  
BAR domain-containing protein is recruited to the cholesterol- 
dependent curved membrane surfaces8,9. Cortical actin  
dynamics were previously shown to be necessary for scission 
of STxB endosomes10. With reconstituted model membranes,  

endophilin-A2 was observed to stabilize the tube-shaped StxB  
vesicles. Actin, endophilin-A2, and dynamin independently 
and additively contribute to the scission of these vesicles, and 
the authors  propose a model wherein endophilin-A2-stabilized  
invaginations are acted upon by the pulling forces of cytoskel-
etal motors (possibly microtubule-associated motors11) to lead  
to scission at a controlled rate and length8.

Clathrin- and dynamin-independent endocytic pathways
The reliance on actin cytoskeletal machinery has also been  
studied in a clathrin- and dynamin-independent, CLIC/GEEC 
(CG) pathway. This is the major route of internalization of a 
large fraction of glycosylphosphatidylinositol-anchored proteins 
(GPI-APs) and fluid phase in several mammalian and Drosophila 
cell lines and tissues1,12–16. The CG endocytic intermediates  
carrying GPI-APs and fluid phase markers were visualized by  
electron microscopy to reveal uncoated, tubular intermediates17 
called clathrin-independent carriers (CLICs), which eventually 
fuse to form GPI-AP-enriched early endosomal compartments 
(GEECs)18. Arf1, its GEF (guanine exchange factor), GBF1/
Garz (gartenzwerg), and membrane cholesterol are necessary 
for forming the CG endocytic vesicles in this pathway1,12,15,19.  
In a screen in S2R+ insect cell lines to identify molecular players 
regulating this pathway, Arf1-COP1 machinery, BAR domain-
containing proteins, vacuolar ATPase, lysosomal genes involved 
in vacuole biogenesis, and actin remodeling factors, including 
Slingshot, Coronin, Arcpc1, and Capping protein, were among  
the major hits19. Actin inhibitors used at concentrations that  
disrupt the cortical actin network without affecting the long-lived 
structures like stress fibers selectively perturb CG endocytosis 
while not affecting clathrin-dependent uptake12. This acute  
sensitivity to actin dynamics also translates to the regulation of  
CG endocytosis by Cdc42, a modulator of actin polymerization.

Recently, the recruitment of these early molecular players at 
nascent endocytic vesicles was studied at high spatial and tem-
poral resolution to understand the sequence of events leading 
to the formation of a CG endocytic vesicle20. While reaffirm-
ing the role of ARF1-GBF1, the actin nucleator Arp2/3, and 
associated GTPase Cdc42 at the nascent sites of endocytosis, 
this study also identifies the role of a BAR domain protein, 
IRSp53, and an ARP2/3 inhibitor, PICK1. Imaging the direct  
recruitment of these molecular players also helps develop a 
mechanistic picture of how a GEEC is formed: initial recruitment 
of ARF1/GBF1, IRSp53, and Arp2/3 to the cell surface is  
followed by the arrival of Cdc42 that activates Arp2/3 and IRSp53 
to catalyze the formation of F-actin and membrane buckling,  
leading to the formation of the CG endosome20. The ARF1/GBF1 
(Garz)-dependent CG pathway was also shown to be active in 
Drosophila wing disc tissue, wherein class I PI3-kinase activity 
is necessary for the recruitment of Garz to the cell surface and  
the initiation of the CG endocytosis16.

Besides the role of the actin machinery, membrane composi-
tion is a key component that determines the enrichment of 
clathrin-independent cargoes in endocytic pits2. Perturbations 
in cholesterol and sphingolipid levels affect the distribution of  
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GPI-APs, normally present as actively maintained nanoclusters 
on the cell surface21, and subsequently the formation of GEEC  
endosomes12. The CIE of cholera and Shiga toxins too is  
initiated upon their binding to specific GSLs, which induces 
membrane bending and endosome formation8,9,22. Endogenous 
galectins, which can bind glycan chains and GSLs, are postulated 
to use a similar mechanism for concentration and multimeriza-
tion leading to membrane bending, potentially facilitating the  
internalization of a large variety of endogenous glycosylated  
proteins. This GSL-galectin-3-mediated mechanism (termed  
GL-Lect22) can mediate the CIE of β1-integrin and CD44,  
dependent on their glycan chains23. Recently, galectin-3 bind-
ing was also implicated in the endocytosis of the GPI-AP CD59 
and major histocompatibility complex (MHC) class I protein, 
suggesting a more global utilization of this axis of interac-
tion to lend specificity to CIE24. Interestingly, the degree of  
glycan branching affects the internalization rates in contrasting 
ways. CD59 internalization is obstructed by a highly branched  
glycan lattice. This raises the possibility of clathrin- 
independent endocytic fluxes being selectively altered by factors 
affecting N-glycosylation, like metabolic substrates24.

Functional roles of clathrin-independent endocytosis
Emerging understanding of the molecular machinery behind 
non-canonical endocytic processes provides a view of the versa-
tility of CIEs depending on the context. Clathrin-independent 
rapid endocytosis (~100 ms) at the synapses of Caenorhabditis  
elegans neurons25 and also in mouse hippocampal neurons26 is 
necessary for compensating and coordinating membrane retrieval 
with exocytosis rates27. This ultra-fast endocytosis is triggered 
by exocytosis, and recently synaptojanin-1 and endophilin-A  
have been implicated in the rapid maturation of these endocytic 
pits so as to facilitate membrane turnover in milliseconds—an  
essential feature of synapses28.

Plasma membrane cholesterol is necessary for the functioning 
of many CIEs, including CG and Shiga toxin endocytosis.  
Cholesterol-dependent CLICs were recently found to be 
enriched at the mid-body during cytokinesis at the intercellular 
bridge by electron microscopy. This postulates a role for CLICs 
to stabilize and maintain the membrane reservoir during cell  
division29.

Down-regulation of signaling by CIE has also been documented 
for EGFR and other ubiquitinated cargoes: at low ligand concen-
tration, clathrin-mediated uptake is employed; at higher ligand 
concentration, the CIE pathway operated to down-regulate sig-
naling30. A recent role for promoting Wingless/Wnt signaling 
in developing Drosophila wing discs highlights the potential 
role of CIEs during development and cell fate determination in  
metazoans16. The previously described CG pathway internalizes 
and brings together the apically localized ligand Wingless with 
its basolaterally localized receptor Dfrizzled2 (internalized 
by clathrin-mediated uptake) to activate full-strength signal-
ing. This novel mechanism of cooperating endocytic pathways  
that promote signaling could be functional in other contexts 
where the dosage of signaling needs to be graded rather than 
act as an on/off switch. The requirement for class I PI3-kinase  

activity for CG endocytosis and hence Wingless signaling  
illustrates how this endocytic pathway introduces new nodes of  
control and modulation from the single modality of ligand– 
receptor interaction in a tissue16. The well-documented roles 
of GPI-APs (cargo for CG endocytosis), Dally, and Dlp as 
potential co-receptors for multiple signaling molecules during 
development31–33 also make this pathway an exciting candidate  
as an integrator of signaling with cues from the actin cytoskeletal 
machinery and membrane composition in the growing organ.

An actin-dependent macro-pinocytic pathway is upregulated 
in cancer cells in a nutrient-sensitive manner. Specifically, in 
Ras-driven tumors, growth factor signaling appears to activate 
this mechanism. This helps in nutrient scavenging from  
surrounding extracellular material and even necrotic cell debris 
to supplement increased energy demand34–36. This pathway 
shares some similarities with the CG pathway in its cargo: the 
fluid phase and its molecular players, actin and PI(3,4,5)P3.  
However, it is also able to accommodate large dextran (>70 
kDa), is amiloride sensitive, and appears specifically upregu-
lated by Ras-mediated activation of Rac and Cdc42, triggered in  
some cases by AMPK (5′-AMP-activated protein kinase)36.

CLICs are reported to internalize a large fraction of the total 
plasma membrane surface area; their endocytic volume is 
capable of internalizing the entire surface area of the plasma  
membrane in 12 minutes in fibroblasts37. The extreme reliance 
of CIEs on the actin cytoskeletal machinery makes them a good 
candidate to transduce information from the mechanical tension  
experienced by the cell to its homeostatic machinery. A recent 
study has explored the dependence of the flux in the CG path-
way of endocytosis on mechanical tension and finds a reciprocal 
relationship between the two38. The CG pathway is specifically 
upregulated transiently to buffer a decrease in mechanical tension  
during stimulated stretch-relax cycles as well as during normal  
de-adhering of cells. Conversely, inhibiting CG endocytosis 
reduced the membrane tension within the cell. This newly  
uncovered function of the CG endocytic pathway makes it a 
crucial cog in the homeostatic machinery that maintains cel-
lular mechanical tension and, by extension, its shape, size, and 
response to the environment. Depleting a molecular player  
implicated in CIE-Graf1 leads to increased cancer cell blebbing 
and enhances its invasiveness in culture39, which could be linked  
to the function of CIEs in maintaining membrane tension and 
also highlights the many ramifications this process could have 
in multiple tissue contexts if perturbed. The extent to which the 
functions of these pathways influence signaling networks and 
their interdependence remains to be explored, and recent work  
indicates that there is significant cross-talk28.

Thus, the common emerging theme among CIEs is their reliance 
on the cell cytoskeletal machinery, especially the cortical 
actin network, for the early steps. This dependence also  
provides these endocytic pathways with the ability to respond 
to rapid changes in the cellular environment. Perhaps the  
cortical actin network provides the feedback for the control of  
these endocytic pathways, integrating the endocytic machinery  
with the dynamic cortical actin mesh.
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