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Abstract

based on the GO structure and gene expression data.

Background: With the rapid accumulation of genomic data, it has become a challenge issue to annotate and
interpret these data. As a representative, Gene set enrichment analysis has been widely used to interpret large
molecular datasets generated by biological experiments. The result of gene set enrichment analysis heavily relies on
the quality and integrity of gene set annotations. Although several methods were developed to annotate gene sets,
there is still a lack of high quality annotation methods. Here, we propose a novel method to improve the annotation
accuracy through combining the GO structure and gene expression data.

Results: We propose a novel approach for optimizing gene set annotations to get more accurate annotation results.
The proposed method filters the inconsistent annotations using GO structure information and probabilistic gene set
clusters calculated by a range of cluster sizes over multiple bootstrap resampled datasets. The proposed method is
employed to analyze p53 cell lines, colon cancer and breast cancer gene expression data. The experimental results
show that the proposed method can filter a number of annotations unrelated to experimental data and increase gene
set enrichment power and decrease the inconsistent of annotations.

Conclusions: A novel gene set annotation optimization approach is proposed to improve the quality of gene
annotations. Experimental results indicate that the proposed method effectively improves gene set annotation quality

Keywords: Gene ontology, Gene set enrichment, Clustering algorithm, Gene set annotation

Background

With the development of next-generation sequencing
technology, a large amount of genomic data generated in
biological and medical fields. It has become an impor-
tant task how to interpret these data and make full use
of these data to help researchers understand the mecha-
nism of complex diseases. Currently, some gene knowl-
edge databases and annotation tools, such as Gene Set
Enrichment Analysis (GSEA) [1, 2], Kyoto Encyclopedia
of Genes and Genomes (KEGG) [3] and Gene Ontol-
ogy (GO) [4] have been developed to help researchers
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annotate and understand gene functions. For example,
KEGG is a knowledge base for systematic analysis of gene
functions, linking genomic information with higher order
functional information. GO is widely used to annotate and
analyze gene sets from complex diseases. However, the
annotation results from GO are incomplete and overly
general [5] and manual annotations are time-consuming
and laborious. Thus, some computational methods are
developed to address these issues. Masseroli et al. [6] pro-
posed a modified Probabilistic Latent Semantic Analysis
(pLSA) method based on credible GO annotations to pre-
dict the unknown functions of genes. Compare with SVD
method [7] in different types of data, the pLSA has bet-
ter performance. In addition to pLSA, Frasca et al. [8, 9]
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developed a neural-network-based imbalance-aware algo-
rithm called COSNet to predict the unknown functions
of genes. The COSNet algorithm is compared with many
methods, however, its accuracy is not very high. Yu et al.
[10] proposed downward random walk (dRW) method
on a gene ontology to predict gene product functions.
Compared with COSNet and pLSA, the dRW algorithm
has better performance and it is mainly based on gene
ontology structure to expand the annotations, which is in
line with our requirements. In the paper, it is introduced
into our algorithm to construct annotation matrix. Some
other methods are also proposed to improve the quality of
gene set annotations. Huang et al. [11, 12] established the
DAVID database, which allows users to annotate gene sets
and analyze gene set functions for different species, but
not different diseases. Faria et al. [13] proposed a method
based on association rule mining to identify the rela-
tionship between different GO terms. QuickGO [14] was
developed to construct GO slims according to the user’s
needs and filtered some annotations to some specific GO
terms. These databases and methods are mainly based
on the relationship of GO terms or related literatures to
reconstruct gene annotations. However, gene expression
data are not combined with existing annotation data to
improve the quality of gene set annotations and increase
specificity of gene set annotations. In order to improve
the quality of gene annotations and enable more accu-
rate and reproducible gene set annotation analysis. Frost
et al. [15] proposed a method for optimizing gene set
annotations via entropy minimization over variable clus-
ters (EMVC), which filters inconsistent annotations for
gene sets by mRNA expression levels measured using
RNA-seq or microarray technology. The EMVC algorithm
can remove unreliable annotations and make an improve-
ment on the enrichment power and replication. Although
EMVC optimizes gene annotations, it only considers the
structural information of gene expression data. The GO
structure information and probabilistic gene clustering
results are not introduced to improve the quality of anno-
tations. The correlation between gene set annotation
results and gene expression data need to further improve.
In the paper, we incorporated GO structure informa-
tion and gene expression data to optimize the gene set
annotations. The overview of the proposed algorithm is
shown in Fig. 1.

Methods
The proposed method optimizes gene set annotations
using gene expression data and structure information of
gene ontology. The process of this algorithm is as follows:
(i) In the process of data preprocessing, gene expres-
sion data will be normalized by Z-score. For cancer gene
expression data, the differentially expressed genes will be
selected for the follow analysis.
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(i) The extension of gene (gene product) annotations is
quantified by integrating the random walks with restart
algorithm [16] and the true path rule [17] and the
extended annotation matrix will contain GO structure
information.

(iii) In the process of gene annotation optimization,
Genes are divided into several categories created by the
clustering algorithm using gene expression data. Then a
cluster contained the largest number of annotations for
each GO term will be retained as a result of the gene anno-
tations. Different from the previous methods, we convert
the clustering results into the probability values and use
it to optimize the annotation matrix. After optimizing
by the GO structure and gene expression data, genes
in the same cluster (gene set) in the annotation matrix
will be given similar annotations, namely, the optimiza-
tion algorithm successfully improves the quality of gene
annotations.

Annotation matrix construction

The classical annotation matrix is generally a binary
matrix and it places all annotations on the same hor-
izontal line, e.g. all the gene annotation information
is converted into 0 or 1 in the annotation matrix
[15]. In the paper, the elements of annotation matrix
are probability values which more fully reflects the
annotation information based on the GO structure
from downward random walk algorithm [10] as shown

Eq. (1).

ai,1 al,n
A=l .
L 4t,1 " Gtn
1 gene j is annotated by term i (1)

in the existing GO data
a;j = | p(i,)) the probability of
unknown annotation
for gene j and term i

where a;; denotes gene j is annotated by term i. The p(i, /)
denotes the predicted probability that gene j is annotated
by term i using downward random walks algorithm for the
unknown annotation for gene j and term i. (i = 1,--- ,¢,
j=1,--,n).

The dRW algorithm has been used to obtain the GO
structure information in this article. The first step in the
construction of annotation matrix is to quantify the sim-
ilarity between different GO terms. In this article, we
used Gene Ontology semantic similarity Tool (GOssTo)
[18] to calculate semantic similarity and selected Lin’s [19]
similarity measuring method.
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Fig. 1 Overview of the proposed method. The cell line and cancer gene expression are introduced into our experiment. All of gene expression data
are normalized us by Z-score. Differentially expressed(DE) genes are introduced as the genes to be optimized. Gene annotation data obtain the
structure information using the dRW algorithm. Then, the normalized gene expression data and gene annotations contained the GO structure
information will be introduced into the gene set annotation optimization algorithm. Gene set annotation optimization: gene sets divided by the
clustering algorithm will own similar annotations using gene expression data. Finally, the proposed method and the state-of-the-art methods are

After calculating the semantic similarity, downward
random walks with restart [16] on the GO directed acyclic
graph (DAG) has been introduced to find out unknown
gene annotations. GO annotations abide by the true path
rule, namely, if a gene is annotated with a GO term, it will
be annotated with all of the ancestor terms of this specific
term in the GO DAG. Thus gene annotation extension is
mainly how to establish links between genes and the off-
spring of existing annotated terms. Downward random
walks with restart algorithm can chase down the poten-
tial functions of a gene for the available terms associated
to the same gene.

The adjacency matrix of GO DAG is constructed to
show the association of terms. It is defined as follows:

P { 1 term q is child of term p
P47 ] 0 otherwise
wherep=1,--- ,t,q=1,--- ,t.

After getting the adjacency matrix X, the correspond-
ing probability matrix T is constructed using the semantic
similarity matrix SSM and adjacency matrix X. For term p
and term g, we use trans(p,q) = SSM(p,q) x X(p,q) to
filter the semantic similarity between different terms and
represent the random walk probability between different
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terms. Since we need to get the probability values, we
normalize the corresponding probability matrix T by the
following formula:

trans(p, q)
) trans (m, q)

3)

Tpq) =

Zmeancestor(lermq

where ancestor(termq) denotes all ancestor terms of
term q.

The downward random walkers iteratively reach the
descendant nodes of the starting term according to the
corresponding probability matrix 7. The final iteration
process converges to the steady state. The process is
defined as follows:

Rit@r+l — ﬁRitEVT_,’_ (1 _ /3)1 (4)

where B €[0,1] is the restart probability between differ-
ent terms, 1 — B is the probability of a random walker
staying the current term. / is an identity matrix. R¢"
represents the current transition matrix and R +1 rep-
resents the transition matrix at the next moment. When
the difference between R*¢"*+1 and R¥" is less than a fixed
value, the transition matrix R reaches a steady state, and
at this point, the iterative process is terminated, and R*
is obtained. Here the difference between R€"+1 and Riter
will be calculated using the following formula:

t t
>3 |Riert — Rt < e (5)

p=1q=1

where ¢ denotes the number of terms. The € denotes
a preset value. When the value on the left side of the
inequality is less than e, the iterative process will be ter-
minated.(according to our empirical study, the number
of iteration is less than 15) And the transition matrix at
this time is said to be in a steady state. (p = 1,---,¢,
q= 1,.---, t)

The process of downward random walk algorithm will
achieve the steady state after several iterations. Finally,
the transition probability matrix in the steady state will
be combined to construct gene annotation probability
matrix. It is defined as follows:

AGj) =) R*(ei) sit.R*(ei) >0 ©6)

ecx;

where 6 is the row mean of the transition probability
matrix in the steady state. Its main purpose is to remove
those very small probability values. x; represents the set
of GO terms annotated to the gene j. The term e repre-
sents the terms that do not annotate the gene j. A(,)) is
the probability that the gene j is annotated by the term i.
R* is the transition probability matrix in the steady state.
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Finally, we can get the gene annotation matrix con-
tained the GO structure information. Compared to the
traditional method, threshold is not directly introduced
to decide whether to annotate genes using GO terms in
this article. Probability values are retained as inputs to the
gene annotation optimization algorithm to compensate
for the inability of the optimization algorithm to increase
annotation data.

Gene annotations optimization algorithm

In this section, we introduce the process of gene set
annotation optimization algorithm. Our main goal is to
annotate the same function for genes with similar expres-
sion patterns based on the gene expression data, and filter
out inconsistent functional annotation. The algorithm is
designed as follows:

® Genes are divided into k partitional clusters through
clustering algorithm (e.g. K-means) based on gene
expression data and establish a category matrix C
according to cluster result.

€11 * - Clk

P 1 gene j belongs to cluster |
=10 otherwise

(7)
where ¢;; denotes gene j belongs to cluster 1.

(]': 1, ,n,l: 1’ ,k)
e Let A x C, get annotation statistic matrix S.

S1,1 7 Sl,k

St1 Stk

e Normalize the annotation statistic matrix S by Eq. (8)

S,',,‘
iy = —2— ®)
sum(s;s)
where sum(s; ) is the sum of row i.
e Calculate the optimized annotation matrix A*

* *
AT = ajj = AijCjkmaxSikmax )

* *
“t,l e at,n

where kmax is the column with the max probability
of each row in the matrix S. Each row of S will be
used to find the largest subset of annotations. If there
are multiple clusters with same values, the algorithm
will select one cluster randomly.
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e Through Z — 1 iterations, get Z — 1 optimized
annotation matrix Ay (k = 2,---,Z) and the average
optimized annotation matrix.

z

(10)

e Calculate the final optimized annotation matrix A}‘im /
after N bootstrap resample datasets

1Z
A;inal = N ZA:ve (11)
k=2

Results

Experimental evaluation

In this section, the proposed method was evaluated using
gene expression data (p53 cell lines, colon cancer and
breast cancer) and the Molecular Signatures Database
(MSigDB) [20, 21] gene sets which are widely used
[1, 15, 22-25]. MSigDB includes 522 C2 gene sets and
431 C4 cancer modules. The p53 gene expression data
[26] are from MSigDB repository. The colon and breast
cancer gene expression data [27] are from The Cancer
Genome Atlas (TCGA) [28]. All gene expression data were
normalized by Z-score [29]. Biological process annotation
terms which are used to construct gene annotation matrix
are downloaded from Gene Ontology Consortium [30].
The performance of the proposed method is compared
with the state-of-the-art methods [15]. Breast cancer gene
expression data can be divided into multiple groups to
optimize gene set annotation data according to breast
cancer subtypes [31]. The enrichment power, enrichment
replication and the area under ROC curve (AUC) were
used to evaluate the proposed and other methods. The
ROC curve was plotted based on the non-core genes as
true positives and the genes filtered by the optimized
annotation as predicted true positives. Here, genes were
labeled with core or non-core using the GSEA algorithm
and the designation of each gene set member by the
GSEA algorithm as either a core gene or non-core gene
with respect to enrichment against phenotypes of gene
expression data was used as proxy for gene set annota-
tion validation, that is, non-core genes mean that it’s not
important for phenotypes of gene expression data, thus,
we need to filter out genes (non-core) by the annota-
tion optimization algorithm. In this way, we can construct
some contingency table statistics to draw the ROC curves
and calculate the AUC values to evaluate optimization
algorithms.

Experiment on MSigDB C2 v1.0 gene sets and p53 gene
expression data

The proposed method was performed on the curated
MSigDB C2 v1.0 gene sets and the p53 gene expression
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data. With a minimum gene set size of 15 and maximum
gene set size of 200, 301 of original 522 gene sets were
used in our experiment. The results of optimization meth-
ods were generated on 50 bootstrap resampled datasets
derived from the normalized p53 gene expression data.
All genes were clustered by executing the k-means algo-
rithm with the parameter k ranging from 3 to 15. The
elements of final optimized annotation matrix were set to
0, if its value is less than 0.1 [15]. The performance eval-
uation of the annotation optimization method is difficult,
in order to better evaluate the annotation results, we first
used GSEA to determine the core genes and non-core
genes of each gene set, thereby calculating the area under
ROC curve [32] to evaluate algorithms. The improvement
in enrichment power was quantified using the Benjamini’s
false discovery rates (FDR) [33] calculated by the Corre-
lation Adjusted Mean RAnk (CAMERA) [34] competitive
enrichment method using the R implementation in the
limma [35] package. The evaluation in enrichment repli-
cation was quantified using Kendall's W(Kendall’s coef-
ficient of concordance) [36] calculated on 20 bootstrap
resample gene expression data. It was implemented by irr
[37] package.

Experiment on MSigDB C4 v6.0 cancer modules and colon
cancer gene expression data

The proposed method was performed on the MSigDB C4
v6.0 cancer modules [38] and colon cancer gene expres-
sion data. Similarly, 302 of original 431 cancer modules
were used in our experiment. MSigDB cancer modules
were generated by the analysis and integration of multiple
data. Its specificity was not significant. Thus, the can-
cer modules should be optimized through gene expres-
sion data to increase its specificity. At the same time,
differentially expressed genes have more representative
significance in the expression data. MSigDB cancer mod-
ules were filtered by t-test to chase down differentially
expressed genes. Similar to the parameter settings in
the previous section, the results of optimization meth-
ods were generated on 50 bootstrap resampled datasets
derived from the normalized colon cancer gene expres-
sion data. All genes were clustered by executing the k-
means algorithm with the parameter k ranging from 3
to 15. The elements of final optimized annotation matrix
were set to 0, if its value is less than 0.1 [15]. The
CAMERA algorithm and Kendall’s coefficient of concor-
dance were also used to evaluate the proposed and other
methods.

Experiment on MSigDB C4 v6.0 cancer modules and breast
cancer gene expression data

In this section, MSigDB C4 v6.0 cancer modules and
breast cancer gene expression data were introduced into
evaluate the optimization methods. For breast cancer gene
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expression data, we chose samples with positive estro-
gen receptor and four subtypes of Luminal A, Luminal B,
HER2-enriched and Normal-like as experimental data.
310 of original 431 cancer modules were used in our
experiment. Similar to the parameter settings in the pre-
vious section, MSigDB cancer modules were filtered by
t-test to chase down differentially expressed genes. The
relevant experimental parameters were consistent with
the p53 gene expression data and colon cancer gene
expression data.

Experimental results

Results of MSigDB C2 v1.0 gene sets and p53 gene expression
data

The enrichment FDR values and P-values of all 301
MSigDB C2 v1.0 gene sets were calculated by unop-
timized annotations, the proposed method and EMVC
using CAMERA method. The results of all gene sets were
sorted by the P-values of the unoptimized annotations
and the top 15 gene sets were used to show evaluation
results. Compared with unoptimized annotations, EMVC
did not make any reduction in the enrichment FDR values
for all 15 gene sets. The proposed method could effec-
tively reduce the enrichment FDR values for 12 gene sets
among 15 gene sets (80%) as shown in Fig. 2a. Com-
pared with EMVC, the proposed method also reduced the
enrichment FDR values for 12 gene sets (80%) as shown
in Fig. 2b. The proposed method effectively improved
the enrichment power on MSigDB C2 v1.0 and p53 gene
expression data.

The area under ROC curve is calculated by genes which
were designated as core or non-core by GSEA algorithm
for gene sets. As shown in Table 1, Area under the ROC
curve (AUC) calculated by the EMVC algorithm is 0.489.
The AUC value calculated by the proposed method was
0.515. This demonstrated that the proposed method effec-
tively removed the inconsistent annotations for p53 gene
expression data.

The Kendall’s W values calculated by the unoptimized
annotations, EMVC and the proposed method respec-
tively (Table 1) were 0.323, 0.322 and 0.325. The unopti-
mized annotations and EMVC showed slightly differences
on the enrichment replication (Kendall's W). As shown
in Table 1, the proposed method had better performance

Page 6 of 134

on the impact of enrichment replication than the EMVC
algorithm and the unoptimized annotations.

Results of MSigDB C4 v6.0 cancer modules and colon cancer
gene expression data

In this section, we evaluated the optimization algorithms
using MSigDB C4 v6.0 cancer modules and colon cancer
gene expression data. The enrichment FDR values and
P-values of all 302 MSigDB C4 v6.0 cancer modules were
calculated by unoptimized annotations, EMVC and the
proposed method using CAMERA method. The results of
all gene sets were sorted by the P-values of the unopti-
mized annotations and the top 15 cancer modules were
used to show evaluation results. The EMVC algorithm
made the reduction to unoptimized annotations in enrich-
ment FDR values for the top 15 MSigDB C4 v6.0 cancer
modules. As shown in Fig. 3a, the proposed method
made the reduction in enrichment FDR values for the
top 15 cancer modules (100%). And the enrichment FDR
values of 13 cancer modules (86.67%) calculated by the
proposed method were lower than EMVC as shown in
Fig. 3b. In summary, all of these demonstrated that the
proposed method had better performance than EMVC on
the impact of enrichment power.

As shown in Table 2, the AUC value calculated by the
EMVC algorithm is 0.622. The AUC value calculated by
the proposed method was 0.642. This demonstrated that
the proposed method had better performance than EMVC
in removing inconsistent annotations for colon cancer
gene expression data.

The Kendall's W calculated by the unoptimized anno-
tations was 0.968. As shown in Table 2, The Kendall's W
calculated by EMVC and the proposed method were 0.975
and 0.975 respectively. The proposed method had a same
performance on the impact of enrichment replication as
the EMVC algorithm.

Results of MSigDB C4 v6.0 cancer modules and breast cancer
gene expression data

In this section, MSigDB C4 v6.0 cancer modules and
breast cancer gene expression data were introduced to
evaluate optimization algorithms. Breast cancer gene
expression data samples were divided into four groups
according to subtypes that were HER2-enriched, Luminal

a

\

The Proposed Method(80%)

The statistics of enrichment FDR values

b

N

The Proposed Method(80%)

B Unoptimized Annotations(20%) B e Enve Algorithm(20%)

Fig. 2 The enrichment FDR values calculated by unoptimized annotations, EMVC-optimized annotations and the-proposed-method-optimized
annotations using p53 gene expression data. The ratio of different colors indicates the number of minimum FDR values compared to the two
methods
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Table 1 The Kendall's W and AUC on MSigDB C2 v1.0 and p53
gene expression data
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Table 2 The Kendall's W and AUC on MSigDB C4 v6.0 and colon
cancer gene expression data

The proposed method The EMVC algorithm The proposed method The EMVC algorithm
Kendall's W 0.325 0.322 Kendall's W 0.975 0.975
AUC 0515 0.489 AUC 0.642 0.622

A, Luminal B and Normal-like. Analogously, the top 15
cancer modules were used to show evaluation results. The
Fig. 4 intuitively showed comparison results of the enrich-
ment FDR values for the top 15 cancer modules obtained
by unoptimized annotations, the proposed method and
EMVC using HER2-enriched, Luminal A, Luminal B and
Normal-like gene expression data.

Compared with the unoptimized annotations, the
EMVC algorithm made the reduction in enrichment FDR
values for all of the 15 most significant cancer modules
using HER2-enriched, Luminal A, Luminal B and Normal-
like gene expression data respectively. The proposed
method made the reduction to unoptimized annotations
in enrichment FDR values for 15, 14, 15 and 15 among
the 15 most significant cancer modules using HER2-
enriched, Luminal A, Luminal B and Normal-like gene
expression data respectively (Fig. 4a, ¢, e, g). Then EMVC
and the proposed method were compared. The enrich-
ment FDR values of 9, 13, 12 and 8 cancer modules (60%,
86.67%, 80%, 53.33%) calculated by the proposed method
were lower than EMVC for HER2-enriched, Luminal A,
Luminal B and Normal-like gene expression data respec-
tively (Fig. 4b, d, f, h). Both of the proposed method and
EMVC algorithm had an improvement to unoptimized
annotations on enrichment power for breast cancer sub-
type gene expression data. However, the proposed method
showed the best performance than EMVC on the impact
of enrichment power.

Table 3 showed the AUC values calculated by the pro-
posed method and the EMVC algorithm using different
breast cancer subtype gene expression data. Especially for
HER2-enriched and Luminal B breast cancer gene expres-
sion data, the proposed method was significantly better
than the EMVC algorithm. This demonstrated that the

proposed method effectively removed the inconsistent
annotations on breast cancer gene expression data.

As shown in Table 4, the proposed method and EMVC
got better performance than unoptimized annotations
on the enrichment replication (Kendall's W). For HER2-
enriched and Luminal B subtype, the performance of
EMVC algorithm was slightly better than the proposed
method. For Luminal A subtype, these two optimization
algorithms had the same performance. For Normal-like
subtype, the proposed method had better than EMVC.
In summary, the performance of EMVC on the enrich-
ment replication was slightly better than the proposed
method using four subtype gene expression data, but it is
not significant.

Discussion

It is important to annotate gene functions for understand-
ing the mechanism of complex diseases. However, the
results of gene annotation based on the existing methods
are relatively broad and not specific for different diseases.
In the study, we optimize the results of gene set anno-
tation by combining GO structure and gene expression
data. Experimental results on several data shown that
the proposed method improves the quality of gene set
annotations, for example, the inconsistent annotations are
filtered out, the enrichment power and the enrichment
replication are effectively improved.

The proposed method is based on GO structure and
gene expression data. The structure information of GO
and gene annotations are still incomplete, in addition,
there are noises in gene expression data due to exper-
imental techniques and to the research bias in biology.
Researchers from gene ontology and Microarray tech-
niques are working hard to solve these problems. With

The Proposed Method{100%)
; . Unoptimized Annotations(0%)

two methods

The statistics of enrichment FDR values

Fig. 3 The enrichment FDR values calculated by unoptimized annotations, EMVC-optimized annotations and the-proposed-method-optimized
annotations using colon cancer gene expression data. The ratio of different colors indicates the number of minimum FDR values compared to the

b
N

The Proposed Method(86.67%)
. The EMVC Algorithm(13.33%)
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compared to the two methods

The statistics of enrichment FDR values on Her2 subtype

. The Proposed Method(100%)
- Unoptimized Annotations(0%)

The statistics of enrichment FDR values on LumA subtype
I the Proposed Method(93.33%)
. Unoptimized Annotations(6.67%)

The statistics of enrichment FDR values on LumB subtype

. The Proposed Method(100%)
. Unoptimized Annotations(0%)

The statistics of enrichment FDR values on Normal subtype

I The Proposed Method(100%)
B unoptimized Annotations(0%)

Fig. 4 The enrichment FDR values calculated by unoptimized annotations, EMVC-optimized annotations and the-proposed-method-optimized
annotations using breast cancer subtype gene expression data. The ratio of different colors indicates the number of minimum FDR values

. The Proposed Method(60%)
. The EMVC Algorithm{40%)

o

[ The Proposed Method(s6 67%)
B e Enve Aigoritim(13.33%)

o

f

- The Proposed Method(30%)
. The EMVC Algorithm(20%)

O

h

I the Proposed Method(53.33%)
B e Enve Aigorithm(46 67%)

O

the development of GO and microarray techniques, the
proposed method may achieve better results.

Conclusions

Gene set annotations play a pivotal role in the analysis and
interpretation of genomic data. Although some gene set
annotation methods have been developed, the results of
gene set annotations are not special enough for different
experimental data. In this article, we proposed a method
to remove the inconsistency of gene set annotations and

Table 3 The AUC on MSigDB C4 v6.0 and breast cancer subtype
gene expression data

AUC HER2- Luminal A Luminal B Normal-like
enriched subtype subtype subtype
subtype

The 0.570 0.617 0.646. 0.563

proposed

method

The EMVC 0.540 0614 0.635 0.562

algorithm

improve the quality of gene set annotations. Experiment
results on the GO annotations of the genes and differ-
ent gene expression data confirmed the effectiveness of
the proposed method. Compared with the state-of-the-art
methods, the proposed method improved effectively the
enrichment power and remove the inconsistent of gene set
annotations. For different gene expression data, the pro-
posed method provides the optimized results of gene set
annotations.

Table 4 The Kendall's W on MSigDB C4 v6.0 and breast cancer
subtype gene expression data

Kendall's W HER2- Luminal A" Luminal B Normal-like
enriched subtype subtype subtype
subtype

The proposed 0.978 0.980 0.984 0.963

method

The EMVC 0979 0.980 0.985 0.961

algorithm

Unoptimized 0.969 0.969 0978 0.935

annotations
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