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Chronic inflammation has long been associated with the development of cancer. Among
the various signaling pathways within cancer cells that can incite the expression of inflam-
matory molecules are those that activate IL-1 receptor-associated kinases (IRAK).The IRAK
family is comprised of four family members, IRAK-1, IRAK-2, IRAK-3 (also known as IRAK-
M), and IRAK-4, which play important roles in both positively and negatively regulating
the expression of inflammatory molecules.The wide array of inflammatory molecules that
are expressed in response to IRAK signaling within the tumor microenvironment regulate
the production of factors which promote tumor growth, metastasis, immune suppression,
and chemotherapy resistance. Based on published reports we propose that dysregulated
activation of the IRAK signaling pathway in cancer cells contributes to disease progres-
sion by creating a highly inflammatory tumor environment. In this article, we present both
theoretical arguments and reference experimental data in support of this hypothesis.
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INTRODUCTION
Interleukin-1 receptor-associated kinases (IRAK) play a central
role in inflammatory responses by regulating the expression of
various inflammatory genes in immune cells. These signals are
critical for elimination of viruses, bacteria, and cancer cells, as
well as for wound healing. Inflammation plays contradictory roles
in tumor development, exhibiting both the potential to promote
anti-tumor immune responses and also paradoxically to support
tumor growth and metastases. What role the expression of IRAK
family members in cancer cells plays in tumorigenesis and cancer
progression remains relatively unknown and is the focus of this
review. We also describe how these proteins may be novel thera-
peutic targets that can be inhibited in order to sensitize cancer cells
to cytotoxic therapies.

The IRAK family is composed of IRAK-1, -2, and -4, which are
expressed in a variety of human immune cell types and IRAK-M
whose expression is largely limited to monocytes and macrophages
(1), Figure 1. Greater details regarding the structures of the IRAK
family proteins were extensively described in a recent review by
Flannery and Bowie (1). All four IRAK family proteins contain
an N-terminal death domain (DD), a ProST domain, and a cen-
trally located kinase domain (1). With the exception of IRAK-4,
all IRAK family members also contain a C-terminal domain.
The DD serves as a platform that allows protein–protein inter-
action with other DD-containing proteins, the most important
of which is the adaptor protein myeloid differentiation factor 88
(MyD88) (1, 2).

The proST domain, which contains serine, proline, and threo-
nine residues, is important for regulating some of the IRAK family

proteins. For example, in IRAK-1, auto-phosphorylation occurs
several times in the ProST domain, which is located between
the N-terminal DD and the kinase domain. Phosphorylation
at multiple sites allows IRAK to dissociate from MyD88 while
maintaining interactions with downstream proteins such as TNF
receptor-associated factor 6 (TRAF-6) to initiate signaling (1, 3).
Furthermore, all IRAK proteins contain an invariant lysine in sub-
domain II of the kinase domain. This invariant lysine is essential
for ATP binding and catalytic function, and disruption of this
lysine abrogates kinase activity (1, 4). IRAKs also contain a tyro-
sine “gatekeeper” residue (Tyr262) that alters the conformation of
the IRAK protein, allowing it to maintain an active orientation.
The term“gatekeeper”arises from its role in blocking a hydrophilic
pocket located behind the ATP-binding site where small-molecule
ATP competitive inhibitors bind and impair function (5). In a
database search of over 400 kinases, this Tyr262 residue was seen
exclusively on IRAK family members (5). Finally, IRAK proteins
can initiate downstream activation of NF-κB and JNK through
engagement and activation of TRAF-6 (1, 6). Interaction with
TRAF-6 occurs through Pro-X-Glu-X-X-(Ar/Ac) motifs located
in the C-terminal region of IRAK1-3 (1, 6).

IRAK ACTIVATION
IL-1 receptor-associated kinase signaling can be initiated from
Toll-like receptors (TLRs) or from the interleukin-1 family
receptors (IL-1R), Figure 2 (7, 8). Thirteen TLRs have been
identified in human beings. TLRs recognize conserved pathogen-
associated molecular patterns (PAMPs) expressed on a variety
of microbes including bacteria, fungus, yeast, and viruses. Some
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Jain et al. Dysregulated IRAK signaling in cancer progression

FIGURE 1 | IL-1 receptor-associated kinase family members and
domains. MyD88 interaction with TLRs or IL-1R receptors is mediated
via interactions between the toll-interleukin receptor (TIR) domains.
MyD88 recruitment to TLRs or IL-1R induces IRAK proteins to

associate with MyD88 through death domains. IRAK-M blocks IRAK
dissociation from the receptor complex, thus, acting as a negative
regulator of downstream signaling. Key residues important for
activation are noted.

TLRs can also be stimulated by endogenous danger signals released
from stressed or dying cells such as HMBG-1 and A100 (9, 10).
A wide variety of cancers have been shown to express functional
TLRs. A detailed review regarding the expression of TLRs and
the consequence of ligating these receptors on tumor cells was
recently published by Kaczanowska et al. (11). The IL-1Rs bind
pro-inflammatory cytokines in the IL-1 family, the most well-
known of which are IL-1α, IL-1β, and IL-18. The signaling cascade
is initiated by the adaptor MyD88 binding to the toll/interleukin-1
receptor (TIR) domain, which is shared by these receptors. MyD88
oligomerizes and recruits IRAK-4 via the DD. IRAK multimeriza-
tion is dependent on DD interactions, which in turn result in
kinase activation and propagation of the downstream signal.

Of the four IRAK proteins, IRAK-1 and IRAK-4 are active ser-
ine/threonine kinases (12). IRAK-4, the most recent IRAK family
protein to be discovered, is the most proximal IRAK family protein
in the TIR-mediated signaling pathway and directly downstream
of MyD88 (8, 13, 14). IRAK-4 and IRAK-1 are able to associate
with each other upon engaging MyD88 through their DD. IRAK-4
is thought to phosphorylate IRAK-1, which allows IRAK-1 to initi-
ate an auto-phosphorylation cascade occurring in three sequential
steps (15). IRAK-1 is first phosphorylated at Thr209, which causes
a conformational change in the protein (14, 15). The second step
is phosphorylation at Thr387. IRAK-1 does not become fully active
until this residue is phosphorylated. There are data suggesting that
either Thr209 or Thr387 may be sites for initial IRAK-1 phospho-
rylation by IRAK-4. However, this question remains unresolved as

both of these residues are also sites of auto-phosphorylation. The
third step is auto-phosphorylation at several residues in the proST
region; this allows IRAK-1 to be released from the active recep-
tor complex. IRAK-1 and TRAF-6 dissociate from the complex,
bind TAB-1 (TAK-1 binding protein-1) followed by binding of
TAK-1 (transforming growth factor-β-activated kinase) and TAB-
2. IRAK-1 ubiquitination and degradation are rapidly induced.
The remaining complex translocates into the cytoplasm, associates
with ubiquitin ligase such as ubiquitin conjugating enzyme-13
(UBC-13) and ubiquitin conjugating enzyme E2 variant-1 (UEV-
1a), leading to ubiquitination and degradation of TRAF-6. This
activates TAK-1 and phosphorylation of the inhibitor of κB kinase
(IKK) complex (IKKα, IKKβ, and IKKγ), as well as mitogen acti-
vated protein kinases (MAPKs). The resulting NF-κB activation
regulates the transcription of pro-inflammatory genes. IRAK-1
activity and induction of NF-κB is also regulated by ubiquitina-
tion at Lys134 and Lys180. It is worth noting that mutant forms of
IRAK containing arginine at these sites have an impaired capacity
to induce NF-κB (16).

While the IRAK-1 kinase activity is also not essential for IL-
1R-mediated NF-κB activation, its role as an adaptor protein that
brings together MyD88, IRAK-4, and Tollip is essential for IL-
1R-mediated NF-κB activation (17–19). IRAK-1 expression and
activation is, of course, subjected to regulation. In addition to
inducing activation, auto-phosphorylation renders IRAK-1 sus-
ceptible to proteasome-mediated degradation (17, 19). Regulation
may also occur at a transcriptional level (19). For example, a
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FIGURE 2 |Toll-like receptor and IL-1R family members activate IRAK
signaling. The engagement of TLRs or the IL-1R recruits MyD88 and IRAK
family proteins to the receptor complex. Upon activation, IRAK members
associate with TRAF6, which leads to the activation of a variety of
transcription factors, including NF-κB, IRF5, AP-1, and CREB. The activation
of these transcription factors results in the expression of a broad array of
inflammatory molecules and apoptosis-related proteins. Moreover, TRAF6
can alter protein stability though its ability to polyubiquitinated various
proteins including anti-apoptotic proteins.

human IRAK-1b splice variant that lacks kinase activity is resis-
tant to proteasome-mediated degradation, and an IRAK-1c splice
variant with a truncated sequence at the C-terminal end of the
kinase domain functions as a negative regulator of TLR and IL-1R
signaling (17, 20, 21).

IRAK-2 was initially thought to be a “pseudokinase” because
a critical aspartate residue in the catalytic domain is replaced
with asparagine and unlike IRAK-1 and IRAK-4, IRAK-2 can-
not autophosphorylate (22–25). However, IRAK-2 possesses cat-
alytic activity and has been implicated in maintenance of pro-
inflammatory cytokine release induced by TLR4 and TLR9 engage-
ment (24). Wesche et al. demonstrated that wild-type IRAK-2 can
be phosphorylated when co-cultured with IRAK-1. Although it is
not as good a substrate as wild-type IRAK-3, it can replace IRAK-1
when IRAK-1 is knocked down (25). However, a mutant IRAK-2
containing a substitution (K237A) in its ATP-binding pocket is
not able to be phosphorylated (23, 25). Kawagoe et al. confirmed

that IRAK-4, and not IRAK-1, phosphorylates IRAK-2, resulting in
activation which essential for IRAK-2 kinase and effector function.

Similar to the other IRAK proteins, IRAK-3 (a.k.a. IRAK-M)
can form complexes with MyD88 and TRAF-6, Like IRAK-2, it
is considered to be a pseudokinase with very limited capacity
for auto-phosphorylation, but with the potential to become acti-
vated by other IRAK proteins and serve as a functional kinase. In
contrast to other IRAK proteins, IRAK-M is thought to function
as a negative regulator that prevents the dissociation of IRAK-1
and IRAK-2 from the receptor complex, inhibiting their interac-
tion with TRAF-6 and interrupting the downstream inflammatory
cascade (26, 27).

More recent data show that IRAK-M may promote anti-
inflammatory effects through a paradoxical “second wave” of
NF-κB activation. In this model, IRAK-M interacts with the
MyD88/IRAK-4 complex to form an IRAK-M Myddosome. Upon
ligation of the IL-1R, the IRAK-M Myddosome can induce a
second wave of NF-κB activation and is dependent on MEKK3 sig-
naling (26). However, this secondary NF-κB activation is believed
to decrease overall inflammation by inducing the expression of
several inhibitory molecules such as SOCS1, SHIP1, A20, and IκBα

(20). IRAK-M can also interact with IRAK-2 in order to inhibit
mRNA transcription of inflammatory cytokines and chemokines.

ROLES OF THE DIFFERENT IRAK FAMILY PROTEINS IN
CANCER
IRAK-1
There is an increasing body of data to suggest that IRAK-1
signaling may be important to the development and progres-
sion of cancer. Helicobacter pylori, bacteria strongly associated
with gastric inflammation and the development of gastric can-
cer has been shown to cause upregulation of TLR2 and TLR5
expression in various cell types and subsequent engagement of
these receptors increases IRAK-1 phosphorylation and NF-κB
activation (1). Importantly, gastric carcinogenesis was recently
reported to be associated with increased TLR expression and
reduced expression of the TLR inhibitors Tollip and PPAR (2).
As another example, an evaluation of over 300 tumor samples
from non-squamous cell lung cancer (NSCLC) patients showed
that tumor tissue had significantly increased cytosolic IRAK-1
expression and decreased nuclear expression relative to adjacent
normal tissue (3). Our group has also found IRAK-1 and/or
IRAK-4 to localize to the nucleus of melanoma cells, but not
melanocytes (Geng, unpublished data). IRAK’s role in the nucleus
and how this contributes to tumor progression has not been
defined. In order to gain a better sense of the expression levels
of each IRAK family member in various cancer types, we analyzed
immunohistochemistry data using the online data base ProteinAt-
las (http://www.proteinatlas.org/), Figure 3. These data highlight
the heterogeneity of different IRAK family members in differ-
ent cancer types. Of all the IRAK family members, IRAK-4 was
the most frequently expressed (at the medium to high range)
and found on the highest percentage of tumor samples. IRAK-
1 was the next most frequently expressed with appreciable levels
(medium to high) in all tumor samples analyzed. IRAK-2 and
IRAK-3 were the least detected IRAK family members, respec-
tively. Despite the high-expression levels of IRAK-1 and IRAK-4,
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Jain et al. Dysregulated IRAK signaling in cancer progression

FIGURE 3 | IL-1 receptor-associated kinase expression on a variety of
tumor cells. ProteinAtlas (www.proteinatlas.org/cancer) was used to
determine the IRAK protein expression patterns in the various human cancer
specimens shown. Protein expression profiles are based on
immunohistochemistry from human specimens. The number of samples for

each specimen are as follows: breast, 12; carcinoid, 4; cervical cancer, 11;
colorectal cancer, 12; endometrial cancer, 11; glioma, 12; head and neck, 4;
liver, 11; lung cancer 11; lymphoma, 12; melanoma, 12; ovarian, 12;
pancreatic, 12; prostate, 11; renal, 12; skin, 11; stomach, 12; testis, 12;
thyroid, 4; urothelial, 12.

it is important to note that the level of activation (phosphory-
lation) was not examined but plays an important role in IRAK
signaling.

Additional evidence indicating the importance if IRAK-1 in
cancer came from studies of microRNAs (miRNAs) (4). miRNAs
are small non-coding RNA sequences that play critical roles in reg-
ulating cellular mRNA stability, protein expression, proliferation,
apoptosis, and cancer metastasis (5, 6). It has been shown that
expression of a specific miRNA (miR-146a) is frequently dimin-
ished in metastatic prostate cancers. Intriguingly, upregulation
of miR-146a and miR-146b in metastatic breast cancer cell lines
has been shown to downregulate TRAF-6 and IRAK-1 expression
and subsequently reduce NF-κB expression (5, 28, 29). Moreover,
inhibiting miR-146a expression also reduced cancer cell invasive-
ness of pancreatic and colon cancer cell lines. Panc-1 and Colo-1
pancreas and colon cancer cell lines, respectively, also have lower
miR-146 expression in comparison to non-malignant pancreas
cells, and induction of miRNA in these cancers lines decreases
their invasiveness. This phenotypic change is also accompanied
by down-regulation of EGFR and metastasis-associated protein 2
(MTA-2) (5).

IRAK-1 may be particularly relevant to the pathogenesis of
melanoma. The use of rapid subtraction hybridization analy-
sis was used to identify IRAK-1 as one of eight genes that are

differentially expressed in metastatic cells compared to parental
human melanoma cell lines, with IRAK-1 expression being upreg-
ulated in the metastatic variants (5, 30). Srivastava et al. reported
that a large percentage of established human melanoma cell lines
exhibit constitutive expression of phosphorylated forms of IRAK-
1 and IRAK-4 (31). Patient-derived melanoma tumor samples
also exhibited increased expression of phosphorylated IRAK-4
although there did not appear to be a correlation between p-IRAK
levels and melanoma stage. Inhibition of IRAK-1 and IRAK-4,
using pharmacological inhibitor or siRNA, sensitized melanoma
tumors expressing phosphorylated forms of these IRAKs to cyto-
toxic chemotherapies in vivo, raising the possibility that IRAK fam-
ily proteins may be potential therapeutic targets in cancer. In agree-
ment with these studies, recent data indicate that inhibiting IRAK-
1,-4 signaling in a variety of leukemias including Waldenstrom
macroglobulinemia, diffuse large B-cell lymphoma, myelodyspla-
sia, and acute myeloid leukemia substantially impaired prolifer-
ation in vitro and in vivo, and treatment with IRAK inhibitors
prolonged mouse survival (32, 33). We recently found that IRAK-4
signaling in T cell acute lymphoblastic leukemia (T-ALL) is criti-
cal for their ability to proliferate but did not induce cell death (Li,
unpublished data). In order to determine whether IRAK inhibitors
could enhance the cytotoxic effects of chemotherapeutic agents,
we screened nearly 500 FDA-approved drugs for their ability to
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kill T-ALL cells when combined with IRAK inhibitors. We identi-
fied three classes of drugs that worked synergistically with IRAK
inhibitors and, in some cases, restored sensitivity of chemoresistant
samples. Whether a similar effect will be observed in other can-
cer types merits further investigation. This is especially true given
that many cancers exhibit increased protein levels of IRAK-1 and
IRAK-4 and are resistant to chemotherapy (Figure 3).

Finally, IRAK-1 activation may also be important for cross talk
between cancer cells and other cell populations present in the
tumor microenvironment. IL-1β release by lingual squamous cell
carcinomas causes upregulation of the IL-1R and increased levels
of p-IRAK-1 in cancer associated fibroblasts. This results in nuclear
translocation of NF-κB and induction of genes important for
tumor progression including IL-6, Cox-2, BDNF, and IRF-1 (34).

IRAK-2
In terms of signaling and function, there is some redundancy
between IRAK-2 and IRAK-1. Using single and double IRAK
knockout mice, Kawagoe and colleagues confirmed that both
IRAK1 and IRAK2 have common functionality in the early phase
of TLR signaling (23). IRAK2 kinase activity, however, was longer
sustained than that of IRAK-1, and IRAK-2 was critical in late-
phase TLR responses. This raises the possibility that IRAK-2 may
be relevant to chronic inflammatory responses often associated
with cancer. Whether downstream signaling differs between IRAK-
1 and IRAK-2 remain to be determined. Recent studies by Cui and
colleagues suggest that a stress-induced NF-κB-activated, miRNA-
146a-mediated down-regulation of IRAK-1 coupled to an NF-
κB-driven upregulation of IRAK-2 supports a self-perpetuating
inflammatory signaling loop (35).

The role of IRAK-2 as a regulator of TLR signaling may be
more complex than originally thought. IRAK-2 is known to induce
NF-κB activation through TLR3, TLR4, and TLR8 (14). Of note,
IRAK-2 is the only member of the family thought to medi-
ate signaling through TLR3. Interestingly, IRAK-2 has recently
been shown to have a dual function (immunosuppressive and
immunostimulatory) in TLR9 related signaling and inflamma-
tory responses. Wan and colleagues demonstrated that IRAK-2
suppresses TLR9 signaling in the early post-stimulation phase,
raising the activation threshold for TLR9-induced inflammatory
response and potentially preventing autoimmunity (36). How-
ever, if the higher activation threshold is successfully triggered
through a strong stimulus, IRAK-2 mediates a positive feedback
loop allowing for sustained release of pro-inflammatory cytokines.
It is conceivable that loss of negative regulatory function could
allow sustained IRAK-2 activation and inflammation, thus, pro-
moting carcinogenesis. Importantly, whereas TLR9 was previously
thought to be expressed only on immune cells, it has been shown
that it also expressed on a number of different cancers (oral,
prostate, breast, lung, Burkitt lymphoma), and signaling through
TLR9 promotes proliferation and/or cell survival (37–44).

IRAK-3 (a.k.a. IRAK-M)
Unlike other IRAK family members that are widely expressed
on a variety of cell types, IRAK-M is thought to chiefly reside
in monocyte and macrophage populations. As mentioned previ-
ously, IRAK-M activation generally acts as a negative regulator

of NF-κB activation in TLR and IL-1R signaling (45). Also, even
though IRAK-M induces a paradoxical “second wave” of MEKK3
dependent NF-κB activation, the overall effect of IRAK-M favors
immunosuppression (26).

IRAK-M is a negative regulator of IRAK-4/IRAK-1 and IRAK-
4/IRAK-2 and thus serves to inhibit the expression of a variety
of inflammatory molecules induced by IRAK-4. Our working
hypothesis is that in cancers with reduced levels of IRAK-M but
elevated levels of IRAK-1, -2, and/or -4 will show increased IRAK-4
signaling and consequently elevated levels of inflammatory mol-
ecules. In addition to augmenting the amounts of inflammatory
factors, the lack of IRAK-M might further sustain IRAK-4 signal-
ing and perpetuate a chronically inflamed tumor environment;
chronic inflammation is a hallmark of tumorigenesis and tumor
progression (46). That IRAK-3 expression levels are reduced in
some cancer types is further highlighted in Figure 3 and supports
our hypothesis.

Even though it is an anti-inflammatory mediator, IRAK-M may
still play an important role in tumorigenesis through modula-
tion of the activity of tumor-associated macrophages (TAMs). It
is generally thought that there are two types of macrophages asso-
ciated with cancer (47). These include classically activated (M1)
macrophages that secrete pro-inflammatory cytokines and present
antigens to cytotoxic immune effector cells, and alternatively acti-
vated (M2) macrophages with impaired Th1-like cytokine release
(and one favoring Th2 cytokines) and decreased capacity to acti-
vate T cells. The M1 type is thought to play a more prominent
role in the early stages of carcinogenesis through NF-κB acti-
vation and chronic inflammation to initiate carcinogenesis. As
cancers become more established, M1 macrophages may become
“re-educated” to take on a M2 phenotype. M2 macrophages can
secrete tumor growth factors, promote angiogenesis and invasive-
ness through remodeling of the tumor matrix, and induce immune
tolerance. The term “tumor-associated macrophage” or TAM is
typically associated with the M2 phenotype. Indeed, macrophage
re-education may be a critical aspect of cancer pathogenesis, and
IRAK-M may play a significant role in this process.

IRAK-M may promote cancer progression through modulation
of macrophage activity. IRAK-M is known to be an important
negative regulator in macrophages in models of inflammation.
For example, in mouse models of myocardial infarction, upreg-
ulation of IRAK-M in cardiac macrophages reduces myocardial
inflammation and prevents adverse cardiac remodeling (45). Naïve
monocytes and macrophages exposed to tumor cell lines exhibited
decreased expression of TNFα, IL-12p40, and IRAK-1 (48, 49).
Moreover, these characteristics, as well as the ability to present
antigens, were diminished with prolonged exposure to tumor cells
as the macrophages take on an M2 phenotype. A hallmark fea-
ture of this transition is the rapid upregulation of IRAK-M in
macrophages upon exposure to tumor cells (48, 49). In vivo mouse
studies using Lewis lung cancer (LLC) cell lines have shown that
tumor infiltrating macrophages have higher IRAK-M expression
and impaired ability to secrete IL-12, TNFα, and IFN-γ com-
pared to peritoneal macrophages isolated from the same mouse
(50). Interestingly, the ability of TAMs to secrete TNFα could be
restored by knocking down IRAK-M expression using siRNA (48).
These data indicate that IRAK-M upregulation can be induced

www.frontiersin.org November 2014 | Volume 5 | Article 553 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Tumor_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jain et al. Dysregulated IRAK signaling in cancer progression

by surface-associated or soluble factors from tumor cells to pro-
mote tumor growth and immune evasion. Proposed mechanisms
include the engagement of hylauronan (a tumor cell surface
glycosaminoglycan) to monocyte-expressed CD44 or secretion
of TGF-β. Furthermore, monocytes isolated from patients with
chronic myleogeneous show upregulation of IRAK-M mRNA,
monocytes from chronic lymphocytic leukemia patients (in whom
IRAK-M expression was not evaluated) showed impaired ability
to secrete cytokines and present antigen. Analysis of a cohort of
439 lung cancer patients showed that the level of IRAK-M expres-
sion on tumor cells was a significant and independent predictor
of mortality. In contrast, these data suggest that IRAK-M is a crit-
ical mediator of cross talk that occurs between tumor cells and
macrophages to allow a more favorable tumor microenvironment
and facilitate cancer progression (48, 49).

IRAK-4
IRAK-4, the most recently identified member of the family, is
considered the“master IRAK”because it is required for all MyD88-
dependent NF-κB activation and for inducing IFNα expression
through TLR 7, 8, and 9 (51). Loss of IRAK-4 renders mice com-
pletely resistant to LPS-induced shock, and deficiencies in human
beings have been associated with increased susceptibility to encap-
sulated bacterial infections (especially pneumococcal) (52, 53).
Data regarding the specific role of IRAK-4 in cancer have not been
fully investigated, and its potential role in cancer progression is
just now beginning to emerge. As previously discussed (in the
Section IRAK-1) some melanomas constitutively express active,
phosphorylated forms of IRAK-1 and IRAK-4. Inhibiting IRAK-4
rather than IRAK-1 using shRNA was more effective at sensitizing
melanoma tumors and T-ALL cells to chemotherapies. It is still
unclear, however, whether this is a direct phenomenon or whether
upstream signaling events drive phosphorylation. As IRAK-4 is
a lynchpin for MyD88-mediated pro-inflammatory signaling, it
can promote carcinogenesis regardless of whether it is directly
mutated or not. For example, a subset (29%) of activated B-cell
type diffuse large B-cell lymphomas (ABC DLBCL) with a very
aggressive phenotype were recently found to carry an oncogenic
MyD88 mutation (L265P) that promotes survival. This muta-
tion allowed spontaneous formation of a stable complex between
MyD88, IRAK-4, and a phosphorylated form of IRAK-1. How-
ever, knockdown of IRAK-1 kinase activity was not required for
survival of ABC DLBCLs, while IRAK-4 kinase activity was essen-
tial (54). To date, no group has reported any mutations in any of
the IRAK family members specifically in cancer but this subject
merits further investigation considering recent data uncovering
an important role for dysregulated IRAK signaling via MyD88
mutations.

IRAK FAMILY PROTEIN INHIBITORS AS NOVEL CANCER
THERAPEUTICS
SMALL-MOLECULE INHIBITORS
Given the strong data indicating that IRAK family proteins are
critical mediators of inflammation, there has been consider-
able interest in developing targeted agents to treat autoimmune
and inflammatory diseases. As we previously addressed, IRAK
inhibitors (especially IRAK-1 and -4) may also have therapeutic

applications in cancer. Several classes of IRAK-4 inhibitors
have been developed, including amino-benzimidazole, thiazole,
or pyridine amides, imidazo[1,2-a] pyridines, imidazo[1,2-
b]pyridazines, and benzimidazole–indazoles (47–50, 52, 54).
IRAK inhibitors may have particular utility in the treatment of
Waldenstrom’s macroglobulinemia, a B-cell lymphoproliferative
disorder that is critically dependent upon NF-κB activation. How-
ever, compounds that target molecules downstream of IRAK-1 are
also potential candidates. One such compound is 5Z-7-oxozeaenol,
which selectively inhibits TAK-1 and has been shown to reduce
inflammation and enhance the sensitivity of breast and pancreatic
cancer cells to various chemotherapeutic agents, further highlight-
ing the central role that IRAK signaling plays in chemotherapy
resistance (54–56).

BOTANICAL DERIVATIVES
It is possible that plant-derived compounds may also induce anti-
inflammatory and anti-cancer therapeutic effects through inhi-
bition of IRAK family members. For example, ginseng (Panax
ginseng ), which is anecdotally described to have a many health
benefits including anti-inflammatory and anti-cancer properties,
contains protopanaxatriol ginsenoside. This agent has been shown
to inhibit IRAK-1 and IKK-β phosphorylation in LPS stimulated
macrophages, as well as alleviate inflammation induced by 2,4,6-
trinitrobenzene sulfonic acid-induced colitis in mice (54, 56–59).
The xanthone derivative 1,3,5-trihydroxy-4-prenylxanthone (TH-
4-PX) isolated from Cudrania cochinchinensis, a plant used as a
traditional remedy for diseases in Asia, inhibits LPS/TLR-mediated
release of nitrous oxide through inhibition of IRAK-1 (60). A sec-
ond agent from this plant (isoalvaxanthone) has anti-neoplastic
properties, as it can inhibit matrix metalloproteinase-2 expression
(a factor associated with tumor invasiveness) in vitro in SW620
colon cancer cells. Admittedly, it is unclear if the isoalvaxanthone
effects are the result of IRAK family member inhibition, as this
agent did not inhibit expression of NF-κB.

NITROGEN BISPHOSPHONATES
There has been increasing evidence that nitrogen bisphospho-
nates (NPBs), a class of drugs used to treat osteoporosis, may
also have potential for treating cancer. Paradoxically, NPBs are
associated with inhibition of IRAK-M expression. The NBP xole-
dronate reduces IRAK-M levels when cultured with PBMCs from
a subset of human blood donors (50%). In these individuals, the
reduction in IRAK-M is associated with enhanced cytokine release
after TLR stimulation or administration of IL-1 (61). Depletion of
IRAK-M in dendritic cells (DCs) using siRNA has been shown to
enhance DC migration to lymph nodes, augment cytokine release,
and enhance antigen presentation, proliferation, and activation of
antigen-specific T cells. Thus, pharmacologic inhibition of IRAK-
M using NBPs may likewise improve the induction of cell-based
anti-tumor immune responses. A summary of the various IRAK
inhibitors is shown in Table 1.

SUMMARY
Dysregulated IRAK signaling in tumors is beginning to emerge
as an important factor in cancer initiation, tumor progression,
and therapy resistance. Studies from several groups highlight the
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Table 1 | A summary of small molecules that can inhibit IRAK family

members.

Target

SMALL-MOLECULE INHIBITORS

Amino-benzimidazole IRAK-4

Thiazole/pyridine amides IRAK-4

Imidazo[1,2-a] pyridines IRAK-4 and IRAK-1

Imidazo[1,2-b]pyridazines IRAK-4 and IRAK-1

Benzimidazole–indazoles IRAK-4 and IRAK-1

5Z-7-Oxozeaenol TAK1

BOTANICAL DERIVATIVES

Protopanaxatriol ginsenoside IRAK-1, IKK-β

1,3,5-Trihydroxy-4-prenylxanthone (TH-4-PH) IRAK-1

NITROGEN BISPHOSPHONATES

Xoledronate IRAK-M

potential of IRAK family members as therapeutic targets for can-
cer treatment alone or when combined with other therapies. A
better understanding of how IRAK signaling drives inflamma-
tion through interaction with TLR and IL-1 family members
will be critical for developing targeted therapies that work syn-
ergistically with systemic chemotherapies. Furthermore, such an
understanding may allow manipulation of these proteins to favor
anti-tumor cytotoxicity rather than carcinogenic downstream
effects.
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